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Ischemic stroke and
concomitant gastrointestinal
complications- a fatal
combination for
patient recovery
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Dortmund, Germany
Stroke is primarily a neurodegenerative disease but can also severely impact the

functions of other vital organs and deteriorate disease outcomes. A

malfunction of the gastrointestinal tract (GIT), commonly observed in stroke

patients, is often characterized by severe bowel obstruction, intestinal

microbiota changes and inflammation. Over-activated immune cells after

stroke are the major contributors to endorse intestinal inflammation and may

induce damage to single-layer epithelial cell barriers. The post-stroke leakage

of intestinal barriers may allow the translocation and dissemination of resident

microflora to systemic organs and cause sepsis. This overshooting systemic

immune reaction fuels ongoing inflammation in the degenerating brain and

slows recovery. Currently, the therapeutic options to treat these GIT-

associated anomalies are very limited and further research is required to

develop novel treatments. In this mini-review, we first discuss the current

knowledge from clinical studies and experimental stroke models that provide

strong evidence of the existence of post-stroke GIT complications. Then, we

review the literature regarding novel therapeutic approaches that might help to

maintain GIT homeostasis and improve neurological outcomes in

stroke patients.

KEYWORDS

stroke, intestinal disturbances, dysbiosis, systemic infections, inflammation
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1037330/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1037330/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1037330/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1037330/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1037330/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1037330&domain=pdf&date_stamp=2022-11-10
mailto:vikramjeet.singh@uni-due.de
https://doi.org/10.3389/fimmu.2022.1037330
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1037330
https://www.frontiersin.org/journals/immunology


Tuz et al. 10.3389/fimmu.2022.1037330
Introduction

Stroke is the second most frequent cause of death and the

third most prevalent cause of human disability in the world. Due

to improvements in post-stroke handling including

recanalization therapies and prevention studies, the mortality

and prevalence of stroke have decreased in the last decades (1).

Nevertheless, there is a shift in the overall burden of stroke

toward younger ages showing the importance of stroke

management and long-term rehabilitation for all adult age

groups (2). Even though there are different epidemiological

trends among countries, the absolute mortality of stroke

patients is expected to increase in the future with one key

reason being the longer life expectancy and growing

populations worldwide (1, 3). The prediction that elderly

people are more susceptible to post-stroke complications
Frontiers in Immunology 02
suggests the importance and urgency of efficient and targeted

treatments. In addition to neurological deficits, stroke patients

also show a wide spectrum of non-neurological complications

like gastrointestinal (GIT) disturbances, immunosuppression,

and bacterial infections in all recovery periods from hyper-

acute to chronic phases (1), (Table 1). This imposes a

significant burden on patients’ overall health and considerably

slows post-stroke brain recovery. Moreover, GIT complications

are the most frequent cause of increased morbidity and mortality

in patients (8). The post-stroke deterioration of intestinal

epithelial barriers may allow the invasion of lumen bacteria to

systemic tissues and induce activation of immune cells (16). The

severity of GIT problems depends on the magnitude of stroke

and clinical characteristics of patients, hence, timely prognosis

and management of intestinal disorder may reduce systemic and

parenchymal inflammation.
TABLE 1 Stroke induces gastrointestinal disturbances in human patients.

Study Study design Outcomes

Arnold, M. et al. PloS
One, vol. 11,2 (2016)
(4)

Evaluation of acute ischemic stroke patients in a tertiary stroke center
(Patients=570). Hospital admission evaluation and outcome after three
months were analyzed.

Dysphagia was diagnosed in 20.7% of patients and persisted in 50.9%
at hospital discharge.
Patients with dysphagia suffered more frequently from pneumonia,
had longer hospital stays, worse prognoses and higher mortality.

Bonkhoff, AK. et al. J.
Am Heart Assoc., vol
11,6 (2022) (5)

Retrospective analysis of German registry data from ischemic stroke
patients obtained in 2016 and 2017 (N=152710).

Dysphagia was observed in 22% of stroke patients.

Rofes, L. et al.
Neurogastroenterol.
Motil (2018) (6).

Prospective longitudinal analysis of patients after hospital admission for
up to 12 months (Patients=395).

Oropharyngeal dysphagia was observed in 45% of patients and was
an independent risk factor for poor functional outcomes and
mortality.

Li, J. et al. Medicine,
vol. 96, 25 (2017) (7)

Meta-analysis of clinical studies reporting on stroke patients
(Patients=1385).

Constipation incidence was 48%. The frequency was higher in
hemorrhagic stroke. Patients in the rehabilitation phase experienced
bowel disturbances more frequently than in the acute phase.

Fu, J. et al. Medicine,
vol. 98, 28 (2019) (8)

Retrospective analysis of patients with acute cerebral infarction in 2015
and 2016 (Patients= 1662).

GIT bleeding incidence after stroke was 8.4%.
One-year mortality was higher in patients with GIT bleeding.

Du, W. et al. Stroke
Vasc Neurol. vol. 5, 2
(2020) (9)

Retrospective analysis of patients with ischemic stroke and GIT
bleeding in China National Stroke Registry from symptom onset to 12
months (Patients=12415).

GIT bleeding was an independent risk factor for stroke recurrence
within 3, 6 and 12 months.

Roth, WH. et al. Stroke
(2020) (10)

An exploratory analysis evaluating the relationship between GIT
problems and ischemic stroke (Patients=1.725.246).

GIT disorders were associated with an increased risk of future
ischemic stroke.

Xia, GH. et al. Front.
Neurol., vol 10, 937
(2019) (11)

Fecal microbiota of 104 ischemic stroke patients was characterized
using 16S rRNA sequencing and compared with microbiota of healthy
subjects (Patients=104, healthy controls=90).

Stroke causes dysbiosis with 18 bacterial genera being significantly
different in comparison to healthy subjects. The degree of dysbiosis
was associated with increased inflammation and deteriorated stroke
outcomes.

Li, N. et al. BMC
Microbiology (2019)
(12)

Fecal microbiota changes in ischemic stroke patients and healthy
controls were analyzed using 16S rRNA sequencing (N=30 per group).

Gut microbiota dysbiosis was observed in stroke patients and their
microbiota was enriched with SCFA-producing bacterial genera
compared to healthy subjects.

Tan, C. et al. JPEN. vol.
45,3 (2021) (13)

Fecal microbiota analysis using 16S rRNA sequencing. Fecal SCFAs
levels were measured by gas chromatography for up to 3 months
(Patients=140, healthy controls=92).

Dysbiosis was observed in stroke patients. A lack of SCFA-producing
bacteria and reduced SCFAs levels were found in patients compared
to controls. Changes were associated with poor stroke outcomes.

Haak, BW. et al.
Transl. Stroke Res. 12,
581–592 (2021) (14)

Fecal microbiota changes were analyzed after one day of hospital
admission using 16S rRNA amplicon sequencing (Patients=349 and
healthy controls=51).

Gut microbiota was severely altered after ischemic and hemorrhagic
stroke compared to healthy controls. Enrichment of TMAO-
producing and loss of butyrate-producing bacteria after stroke.

Xu, K. et al. Gut (2021)
(15)

Fecal microbiota analysis of stroke patients using 16s rRNA amplicon
sequencing (Patients=152 and healthy controls=28).

Stroke-induced dysbiosis with the expansion of Enterobacteriaceae
and was an independent risk factor for a worse outcome.
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Stroke induces gastrointestinal
complications

Several studies have demonstrated GIT disturbances in stroke

patients such as dysphagia, gastrointestinal bleeding, or constipation

(17). A recent stroke registry study showed that 19.6% of patients

experience swallowing problems and indicate dysphagia frequency

of 75.4% which is associated with a high risk of death during

hospital admissions (5). Approximately 50% of the dysphagia

complications persisted even after hospital discharge (4, 6, 17),

causing a persistent burden on patients’ health. One of the widely

discussed pathophysiological explanations for dysphagia after

stroke is cranial nerve involvement, thereby causing severe

malnutrition in patients (4). With dysphagia, paralytic ileus

causing constipation is the second most prominent symptom

observed in patients with brain stem infarcts, with an overall

incidence of 45%, of which 30% had proximal colonic transit

delay (7, 18). Conversely, in addition to constipation history

being related to worse stroke outcomes, the usage of laxatives

increases stroke risk in patients with constipation (19).

Furthermore, old-age patients with existing disorders of GIT such

as dysbiosis, hypertension, diabetes mellitus, and intestinal

infections present a higher risk of future ischemic stroke (10).

These exploratory data from a large number of patients indicate that

even before stroke, gastrointestinal problems might exist and may

increase the incidences of stroke. The reason for this derived

relationship might be that these complications are also the major

comorbidities in cerebrovascular diseases. Previous studies have

consistently reported a higher rate of mortality in women patients

compared to men patients and was associated with aging, stroke

severity, and atrial fibrillation (20, 21). However, the presence of

GIT complications did not differ between men and women patients

(21). Experimental studies using animal models of stroke have also

highlighted the beneficial role of male and female hormones in

reducing brain inflammation and injury (22). Conversely, the

clinical studies investigating the circulating levels of hormones

and their relationship to post-stroke functional outcomes have

provided inconsistent results. How GIT complications in patients

promote vascular pathology and associated stroke risk are

important questions for further research.

GIT bleeding is diagnosed in about 0.1-8.4% of stroke

patients and contributes to high mortality (8, 23). The use of

calcium channel blockers, steroid hormones, or nonsteroidal

anti-inflammatory drugs increases the risk of GIT bleeding (8).

Of note, when a patient is diagnosed with GIT bleeding,

antithrombotic treatment is not endorsed as this can further

increase susceptibility to bleeding-related mortality, causing

limitations to existing approved therapies (24). GIT bleeding is

also an independent risk factor for recurrent stroke, indicating

bidirectional crosstalk between the intestine and brain (9).

Moreover, patients with large cortical infarcts have more

severe gastrointestinal symptoms that significantly correlate
Frontiers in Immunology 03
with worse outcomes (6, 8). Other than early diagnosis,

erythrocyte transfusion, and endoscopic interventions, there

are no approved therapies against GIT bleeding, thus requiring

careful patient diagnosis in hospitals (24). The recent

experimental studies using animal models of stroke have

largely reproduced similar patterns of GIT disturbances

observed in stroke patients (Figure 1). Using a fluorescence

gastric bolus tracking approach, we demonstrated that GIT in

mice is severely paralyzed after a large stroke (25). A recent work

from Ye et al. showed increased intestinal permeability and

signatures of local inflammation after experimental stroke (26).

Their results demonstrated reduced intestinal motility and lower

expression of tight junction proteins in intestinal tissue which

closely relates to constipation and intestinal inflammation

observed in stroke patients (26). Future studies in animal

models of experimental stroke will greatly help to understand

the in-depth mechanisms of gastrointestinal changes and the

development of targeted therapies.
Stroke changes intestinal
microflora and increases
inflammatory responses

The human intestine harbors more than 100 trillion bacteria

with Bacteriodetes and Firmicutes as the most abundant

phylotypes (27). The fermentation of dietary fiber by intestinal

bacteria generates short-chain fatty acids (SCFAs) such as

acetate, propionate, and butyrate which influence intestinal

barrier integrity and regulate inflammatory processes (28, 29).

Moreover, intestinal microflora can modulate the levels of

important neurotransmitters, thus playing a crucial role in

nervous system development and physiology (29).

Interestingly, most bacterial species in the human GIT are not

cultivable but their identification using 16S rRNA sequencing

has helped to analyze microbiota changes in different brain

diseases. The composition of intestinal microbiota is severely

altered (a process termed dysbiosis) in stroke patients and a

higher abundance of genera Enterobacteriaceae is an

independent risk factor for poor outcomes (15). In addition,

UniFrac distance analysis revealed altered microbiota structure

in the acute and subacute phases of stroke. However, a-diversity
was only reduced in the convalescent phase (1-3 months post-

stroke) (15). On the contrary, Li et al. showed no differences in

microbiota a-diversity between healthy controls and stroke

patients that were sampled within two days of admission (12).

These results may indicate delayed kinetics of large-scale

microbiota changes in stroke patients.

The mechanisms underlying post-stroke alterations in specific

bacterial species are still unknown but have been reasoned to be

affected by intestinal paralysis and increased inflammation.

Intestinal microbiota composition or produced metabolites show
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a positive correlation with serum inflammatory markers in stroke

patients. For instance, Lactobacillus ruminis levels in stool were

correlated to elevated serum interleukin-6 concentrations, while

valeric acid levels were associated with serum C-reactive protein

(30). Interestingly, intestinal microbiota of stroke patients is

enriched with SCFA-producing bacteria Odoribacter,

Akkermansia, Ruminococcaceae and Victivallis (12). Higher levels

of SCFAs in stroke patients who underwent thrombectomy were

associated with increased systemic inflammation and poor stroke

outcomes (12, 31). However, different studies on analyzing the

plasma or fecal levels of SCFAs in stroke patients and underlying

outcomes have derived variable results. A new clinical study

involving 141 aged stroke patients showed a low abundance of

butyrate-producing bacteria and reduced levels of fecal butyrate in

the high-risk group compared to the low-risk group (32). In this

regard, animal models of stroke have significantly contributed to

deciphering the interrelationship between SCFAs and stroke
Frontiers in Immunology 04
outcomes. A study by Sadler et al. showed that four weeks

treatment of mice with SCFAs improves post-stroke cortical

reorganization and increases neuronal spine density (33). The

beneficial effects were further correlated with reduced microglia

activation and brain invasion of T lymphocytes. These results are in

line with previous research findings demonstrating the impact of

microbiota-derived SCFAs on microglia functions (34, 35). The

analysis of post-stroke changes in intestinal microbiota or their

produced molecules may help to predict stroke severity. Recently,

Xia et al. performed 16S rRNA analysis on patients’ fecal samples

and generated a Stroke Dysbiosis Index (SDI), demonstrating that a

higher SDI was associated with larger brain infarcts and high

mortality (11). The SDI established in this study might help to

predict clinical prognosis after stroke. Another study showed that

the bacterial metabolite-trimethylamine N-oxide (TMAO) is

increased after stroke and correlates with recurrent cardiovascular

events (36). Those prognostic factors might shed further light on
FIGURE 1

Stroke induces intestinal paralysis, barrier leakage, and inflammation. Left panel: In healthy conditions, there is immune homeostasis at intact
intestinal barriers with balanced microbiota. Right panel: After stroke, the activation of SNS/HPA axis and release of DAMPs trigger microbiota
dysbiosis, and paralytic ileus and promote immune cell-driven inflammation. Activated neutrophils, macrophages, and dendritic cells release
toxic cytokines, free radicals, and proteases and cause epithelial damage. Invasion of intestinal bacteria to systemic tissues enhances immune
cell activation and neuroinflammation. Rebalance of dysbiotic microbiota with pre and probiotics, food supplements, or its depletion with
antibiotics is associated with reduced brain inflammation and improved stroke outcome in experimental studies and their application to stroke
patients requires validation. APC, Antigen-presenting cell, DAMPs, Damage-associated molecular patterns, FMT Fecal microbiota transplantation,
HPA, Hypothalamus Pituitary Adrenal; IFN, Interferon; IL, Interleukin; SCFA, Short-chain fatty acid; SNS, Sympathetic Nervous System. Created
with BioRender.com.
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clinical paradigms to closely monitor patients with

cardiovascular disease.

Inflammation is a crucial part of stroke-related GIT

complications. In healthy conditions, intestinal homeostasis is

maintained between immune cells, intestinal microflora and

epithelial cells. In inflammatory disorders, activated

macrophages release chemokines that attract neutrophils to

the intestinal lamina propria (37). The activated neutrophils

release toxic cytokines, free radicals, and proteases, causing

further disruption of a single-layer intestinal epithelial cell

barrier. On the other side, neutrophils can phagocytose the

luminal bacteria that translocate through the epithelial barriers

and may reduce systemic infections (38). Intestinal microbiota-

generated SCFAs have been shown to regulate the inflammatory

functions of neutrophils (39, 40). In addition, neutrophil

maturation is regulated by gut microbiota via the involvement

of toll-like receptors and myeloid differentiation factor 88-

mediated signaling pathways (41). However, further research is

required to understand the functions of neutrophils in post-

stroke intestinal inflammation. Previous studies observed that

activated neutrophils can migrate to intestinal tissues and release

the inflammatory protein calprotectin (42). Stroke patients show

increased levels of fecal calprotectin which positively correlates

with high concentrations of serum inflammatory C-reactive

protein. Moreover, fecal calprotectin amounts negatively

correlate with serum albumin levels and the Glasgow Coma

Scale which is suggested as an indicator of intestinal

inflammation (43). Thus, activated neutrophils after stroke can

increase intestinal inflammation and fecal calprotectin can be a

promising biomarker for diagnosing intestinal inflammation.

In the last years, experimental research has largely

contributed to our understanding of post-stroke disturbances

at the intestinal-brain-immune axis. Recently, we have shown

that intestinal microbiota after stroke is severely changed in mice

and activates T cells in systemic and intestinal lymphoid tissues

(25, 44). This study showed that proinflammatory T cell subsets

Th1 and Th17 in intestinal Peyer’s patches can migrate to the

injured brain and increase tissue injury via the release of toxic

cytokines (25). In line with our findings, Benakis et al. observed a

lower number of intestinal gd T cells after experimental stroke in

mice that caused reduced secretion of neuroprotective cytokine

interleukin-10 (45). T regulatory (Treg) cells exhibit

neuroprotective functions after stroke via the release of anti-

inflammatory cytokines such as IL-10 and TGF-b (46). Intestinal
microbiota plays a significant role in the development of Treg

cells and microbiota-deficient germ-free mice exhibit low

numbers of IL-10-producing Treg cells in lymphoid organs

(47). Previous studies have highlighted the contribution of

microbiota-derived SCFAs in the generation of Treg cells in

intestinal lymphoid tissues (48, 49). But, how intestinal

microbiota changes after stroke influence the activation of T

cells is still an open question. Nevertheless, recent findings have

demonstrated that intestinal bacteria can invade systemic tissues
Frontiers in Immunology 05
and induce sepsis-like conditions. For example, Stanley et al.

showed that intestinal bacteria can invade organs like liver,

spleen and lungs in mouse models of experimental stroke (16).

In addition, conventional intestinal bacteria such as

Enterococcus species, Escherichia coli and Morganella morganii

were identified in the sputum of stroke patients with pneumonia

(16). In this study, the number of patients was low (N=8)

however the high mortality of about 37.5% may relate to

severe stroke and related pneumonia (16). Hence, studies with

a higher number of stroke patients are required to identify

intestinal bacterial species that may induce pneumonia or

sepsis-like conditions. A further understanding of the

mechanisms of intestinal bacteria invasion and spread would

be important to specifically block these routes and inhibit post-

stroke inflammation.
Potential therapies for post-stroke
GIT dysfunction

The GIT complications after stroke strongly modify the

disease pathogenesis and are associated with an unfavorable

functional outcome. Thus, the identification of potential

therapeutic approaches to prevent these side effects is a clinical

priority. In this regard, the following therapeutic regimens have

been clinically explored in stroke and other brain diseases and

the results are optimistic, but require careful interpretation in

multi-center clinical trials.
Antibiotics prophylaxis

Post-stroke bacterial infections are a common complication

after stroke (17). For its treatment, multiple clinical trials have tested

a combination of different antibiotics. A recent multicenter and

randomized clinical trial investigated the effect of intravenous

ceftriaxone given daily for four days and analyzed the infection

rates and functional outcomes at three months (50). The study

results showed a reduction in post-stroke infections but no

significant improvement in functional outcomes. Two large meta-

analysis studies included patients from more than seven clinical

trials that received prophylactic antibiotics treatment at the time of

stroke onset and found significantly decreased levels of bacterial

urinary tract infections but not pneumonia (51, 52). On the

contrary, a recent study by Benakis et al. observed

neuroprotection in mice that were pre-treated with antibiotics for

four weeks (53). However, the results are difficult to anticipate in

clinical situations when treating patients in acute or subacute phases

after stroke. The absence of antibiotics protective effects in stroke

patients can be due to multiple reasons; (a) the acceleration of

existing stroke-induced dysbiosis (b) reduced levels of bacterial

metabolites involved in epithelial barrier integrity (c) severe
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immunosuppression in patients and (d) antibiotic resistance in

pneumonia-causing bacterial strains. Thus, instead of using

antibiotics, cause-aiming treatment modalities that help to

maintain intestinal homeostasis should be introduced.
Healthy microbiota transplantation

Fecal microbiota transplantation (FMT) is the transfer of

intestinal bacteria and other microbes from a healthy donor to a

patient. This process is performed to restore microbiota and

inhibit the detrimental effects of dysbiosis (54). In healthy

volunteers, FMT is suggested to be a safe procedure without

any long-term complications (55). A recent study has reported

the beneficial effect of FMT in a patient with secondary

progressive multiple sclerosis and showed disease stability for

over ten years (56). Furthermore, FMT is currently the most

effective intestinal microbial intervention and approved therapy

for frequent Clostridioides difficile infections (54). Interestingly,

FMT composition enriched in Bifidobacterium produced a more

favorable symbiosis after transplant and indicates the necessity

of microbiota characterization in healthy donor FMT samples to

select more favorable bacterial species (57). Considering the

beneficial impact of FMT in other neurodegenerative diseases,

this approach might prove helpful in stroke patients (58, 59).
Prebiotics and probiotics

Prebiotics act as a substrate to be used solely by the host

microbiota, which has regulatory and balance-maintaining effects.

Human milk oligosaccharides, fermentable fibers, and indigestible

oligosaccharides are examples of prebiotics. Earlier studies have

evidenced the protective function of prebiotics in reducing

neuroinflammation and improving cognitive function in

Alzheimer’s disease patients (60, 61). The treatment of obese

patients with prebiotic inulin was shown to increase plasma

acetate and improve fat oxidation (62). Probiotics comprise a

combination of microorganisms that have beneficial effects on

human health. Most are bacterial strains that can produce lactic

acid via fermentation such as Lactobacillus, Bifidobacterium and

Lactococcus. A recent meta-analysis by Liu et al. showed that stroke

patients treated with enteral nutrition including probiotics had a

better outcome and reduced incidence of bacterial infections (63).

Similarly, another meta-analysis study involving 26 randomized

controlled trials in probiotics-treated stroke patients revealed a

significant reduction in GIT complications and lower incidences

of bacterial infection (64). Importantly, the composition of probiotic

regimens used in different patient studies differs and might have

unsolicited effects. Thus, probiotics with standardized molecules

and proven beneficial effects in pre-clinical stroke models and

multi-center clinical trials would be required for their translation

to clinics.
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Dietary interventions

Stroke patients often suffer from dysphagia and require the

placement of a nasogastric tube or endoscopic gastrostomy (PEG)

(17) which shows positive effects (65, 66). Nutritional support in

stroke patients via oral feeding is crucial and decreases mortality. A

balanced diet supplementation in stroke patients may improve

stroke outcomes possibly by reducing intestinal microbiota

changes and associated inflammation. The manipulation of diet

contents for stroke treatment might serve as a vital therapeutic

option but findings in animal models of stroke have provided

inconsistent results. For example, the administration of a high-

protein diet in rats has been shown to reduce post-stroke

neurological deficits (67). In contrast, we recently showed that the

restriction of dietary protein from 20% to 8% rebalanced intestinal

microbiota, reduced brain inflammation, and was neuroprotective

after stroke in mice (68). These variable results might be due to the

differences in used animal models or the composition of protein

diets. Furthermore, a Mediterranean diet with a higher percentage

of plant-based foods and olive oil was shown to have short and

long-term protective effects on stroke outcomes (69). Another study

demonstrate that feeding strokedmice with a high-fat diet increased

infarct volumes and more hemorrhagic complications via the

mechanisms involving altered lipid profiles and high blood sugar

levels (70). Other important nutrients in the human diet are choline

and carnitine which are required for the synthesis of acetylcholine,

betain, phopholipids, and trimethylamine (TMA). Choline exerts a

wide range of beneficial effects like reducing inflammation,

placental health, and positive neurocognitive effects. Intestinal

microbiota can also convert choline/carnitine into TMA which is

then metabolized into trimethylamine N-oxide (TMAO) by host

hepatic monooxygenases (71). Despite many protective functions,

higher circulating levels of TMAO and its precursors are related to

an increased risk of stroke and poor functional outcomes (72, 73).

Diets with reduced levels of choline/carnitine or probiotics to

reduce TMAO biosynthesis may help to reduce the incidences of

cardiovascular events such as atherosclerosis and ischemic stroke

(74). Thus, diet manipulation studies after stroke require further

standardization and large-scale validation in multicenter preclinical

trials before their application to stroke patients.
Summary and future prospective

There is extensive clinical and experimental evidence that

highlights the existence of GIT disturbances after stroke.

However, the clinical trials focused on treating stroke-

associated intestinal comorbidities are still very limited.

Post-stroke disturbances of GIT can increase bacterial

infections and systemic inflammation that reversibly impacts

brain tissue degeneration. The clinical trials on the use of

antibiotics as prophylaxis treatment have not delivered
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promising results and suggest research on new avenues to benefit

stroke patients. In this direction, recent preclinical studies have

shown the protective effects of regimens that focused on

rebalancing disturbed intestinal microbiota via FMT (25) or

diet manipulations (68). As in the emergency stroke treatment

motto, “Time is brain”, a new point of approach “Gut is brain”

could be proposed to impose the crucial role of intestinal

microbiota on post-stroke pathologies and long-term outcomes.

In terms of stroke-induced immunosuppression and the

susceptibility of patients toward bacterial infections, there is an

urgent need to find the underlying pathomechanisms and

treatment options. Our recent findings have highlighted the key

role of the stroke-induced release of circulating DNA as a major

factor in causing lymphocyte loss in systemic lymphoid tissues (75).

However, if stroke can induce a similar loss of lymphocytes in

intestinal immune compartments is not completely known. The

understanding of these pathways might help to uncover novel drug

targets to maintain immune homeostasis at the intestinal barriers

and reduce GIT complications. Further research on testing the

effects of novel therapeutics for correcting intestinal immune

dysbalance will help to reduce post-stroke neuroinflammation

and ongoing brain degeneration.
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