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and experimental
autoimmune neuritis
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Guillain Barré syndrome (GBS) and its variants, and chronic inflammatory

demyelinating polyradiculoneuropathy (CIDP and its variants, are regarded as

immune mediated neuropathies. Unlike in many autoimmune disorders, GBS

and CIDP are more common in males than females. Sex is not a clear predictor

of outcome. Experimental autoimmune neuritis (EAN) is an animal model of

these diseases, but there are no studies of the effects of sex in EAN. The

pathogenesis of GBS and CIDP involves immune response to non-protein

antigens, antigen presentation through non-conventional T cells and, in CIDP

with nodopathy, IgG4 antibody responses to antigens. There are some

reported sex differences in some of these elements of the immune system

and we speculate that these sex differences could contribute to the male

predominance of these diseases, and suggest that sex differences in peripheral

nerves is a topic worthy of further study.
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Guillain Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy,
sex differences, gangliosides, IgG4 antibodies, experimental autoimmune neuritis
Introduction

The Guillain Barré syndrome (GBS) and its variants, and chronic inflammatory

demyelinating polyradiculoneuropathy (CIDP and its variants, are regarded as immune

mediated neuropathies, due to their pathological findings and their response to immune

therapy (1–3). Because there is sexual dimorphism of the immune system (4) it could be
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that the sex of the subject might affect the features of these

diseases. This review summarizes knowledge of the effects of sex

on GBS and CIDP and discusses possible mechanisms. Firstly,

however, we provide a brief overview of GBS and CIDP, and also

of their animal model, experimental autoimmune neuritis (EAN).
Overview of GBS, CIDP and EAN.

GBS and variants

The term GBS arises from the initial description by Guillain,

Barre and Strohl of a syndrome of ascending weakness,

associated with loss of deep tendon reflexes, and early

recovery, in two soldiers (5). However, the earliest report is

likely to be that that of Landry who, in 1859, described a patient

who died of respiratory failure after developing ascending

weakness (6). The modern use of the term “the Guillain Barre

syndrome” is attributed to Haymaker and Kernohan (7). The

history of GBS has been written at different times and these

reports show evolution of our understanding and conception of

the syndrome and its causes (8–10).

Although at one stage GBS was well-known as a demyelinating

disease, in modern times it is recognized that there are variants

with axonal pathology; it is also known that there are focal

variants, such as the Fisher syndrome, first described in 1954

(11). There are clinical and neurophysiological criteria for the

diagnosis of GBS (12–14). The “Brighton criteria” (15) are widely

accepted for the diagnosis of GBS and Fisher syndrome and are

shown in Table 1. The prevalence of GBS increases with age up to

70–75 years, then declines (16–18).

Based on clinical findings and electrodiagnostic studies, GBS

can be divided into subtypes (19). These include acute

inflammatory demyelinating polyradiculoneuropathy (AIDP),

in which there is inflammation in nerves and demyelination of

nerve fibers, acute motor axonal neuropathy (AMAN), and acute

motor and sensory neuropathy (AMSAN) which cause

generalized weakness with demyelinating or axonal features.

The relationship between the demyelinating and axonal

disorders is unclear in that there appear to be conditions

where there is primary damage to axons, and conditions where

severe demyelinating disease leads on to axonal damage (20).

There can be difficulty in distinguishing between conduction

block and axonal degeneration (21, 22). There are other GBS

variants with specific restricted phenotypes; as well as Fisher

syndrome (FS), a syndrome of ophthalmoplegia, ataxia and

areflexia (23), there is a phenotype of isolated facial diplegia

(24) and a pharyngeal-cervical-brachial variant (25).

GBS often follows a preceding illness or event such as an

infection. In an analysis of the first 1000 patients enrolled in the

International GBS Outcome Study, 72% of patients reported an

antecedent infection (26). In that study, the organisms that lead

to the preceding infections included Campylobacter jejuni (30%),
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Mycoplasma pneumoniae (10%) and cytomegalovirus (4%) (26,

27) and more than one preceding infection was identified in 6%

of patients. In our own study, we found that 75% of subjects had

a preceding infection (16). This association with a prior infection

has led to the view that the immune abnormalities in GBS are

triggered in many by exposure to an infectious agent.

However, it must be noted that these infections do not lead

to GBS in most people, which suggests that humans vary in their

response to infection and in the tendency to develop GBS. It is

likely that this is due to genetically mediated variation in the

function of the immune system, but it could also be due to

“target organ resistance” to immune attack.

There is also increasing recognition that GBS can follow

trauma or surgery. The first report of GBS after surgery was in

1968 (28), and since then there have been numbers of case

reports. More detailed studies have attempted to quantify the

risk. A study from Switzerland found that the relative risk of

developing GBS in the 6 weeks after surgery was 13.1 times that

of the non-surgically exposed population (29). A French

nationwide case-crossover study found that among 8364 cases

of GBS, 175 had undergone surgery within the preceding 60 days

which increased the risk by greater than 1.5 times compared

those who had undergone surgery in the preceding 336-425 days

(30). While any recent surgery was a risk, the risk was stronger

with bone and digestive organ surgery. Furthermore, a

systematic review of 136 cases and 6 cases series of trauma-

related GBS found that 89% of patients developed GBS following

injury or surgery, with spontaneous intracranial haemorrhage

making up nearly 10% of the remaining cases (31). In this study,

trauma or surgery to brain and spine were the most likely to pre-

date GBS. At present the mechanism for “trauma-related GBS” is

speculative and warrants further research.

In AIDP, the inflammatory demyelinating form of GBS, the

pathological findings include many macrophages and small

numbers of T cells in the nerves (32, 33). Both CD4+ and CD8+

T cells have been found in nerve biopsies from AIDP patients, as

have gd-T cells and NK T cells (34). Autopsy studies show that

pathological changes are prominent in the nerve roots (32). This

infiltration is followed by segmental demyelination, meaning

demyelination of internodes, which are produced by a single

Schwann cell. Demyelination occurs by stripping of myelin by

macrophages (35–37). Ultrastructural studies indicate the

presence of vesicular degeneration in the outer myelin layer can

predate macrophage infiltration (32). Secondary axonal

degeneration, thought to occur with severe inflammation, can

be seen in spinal roots and in motor and sensory nerves (38). In

GBS there are reports of deposition of complement in peripheral

nerves (32, 33), including on the outer surface of Schwann cells.

The process of recovery fromGBS involves remyelination with the

production of thinly myelinated fibers with short internodes (37).

In AMAN there is axonal injury but macrophage-activated

demyelination and inflammatory infiltrates are not characteristic

(39). Activated complement deposition occurs at the nodes of
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Ranvier with formation of the membrane attack complex and, in

addition, macrophages infiltrate along the periaxonal space leading

to myelin detachment (39, 40). The resulting injury leads to nodal

lengthening and axonal degeneration (39, 41). The pathology of FS,

on the other hand, is not well elucidated as it is rarely fatal, and
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post-mortem studies are rare but the available pathology indicates

demyelination of the extraocular nerves (42).

There are many reports of immune abnormalities in GBS

and its variants. There have been reports of T cell and antibody

reactivity to myelin antigens (eg P0 and P2 proteins) (43), but
TABLE 1 The Brighton Criteria for diagnosis of GBS and Fisher syndrome.

Clinical case definitions: Guillain–Barré syndrome (GBS)

Level 1 of diagnostic certainty

Bilateral AND flaccid weakness of the limbs AND

Decreased or absent deep tendon reflexes in weak limbs AND

Monophasic illness pattern10 AND interval between onset and nadir of weakness between 12 h and 28 days AND subsequent clinical plateau AND

Electrophysiologic findings consistent with GBS AND

Cytoalbuminologic dissociation (i.e., elevation of CSF protein level above laboratory normal value AND CSF total white cell count <50 cells/ml) AND

Absence of an identified alternative diagnosis for weakness

Level 2 of diagnostic certainty

Bilateral AND flaccid weakness of the limbs AND

Decreased or absent deep tendon reflexes in weak limbs AND

Monophasic illness pattern AND interval between onset and nadir of weakness between 12 h and 28 days AND subsequent clinical plateau AND

CSF total white cell count <50 cells/ml (with or without CSF protein elevation above laboratory normal value) OR

IF CSF not collected or results not available, electrophysiologic studies consistent with GBS AND

Absence of identified alternative diagnosis for weakness

Level 3 of diagnostic certainty

Bilateral AND flaccid weakness of the limbs AND

Decreased or absent deep tendon reflexes in weak limbs AND

Monophasic illness pattern AND interval between onset and nadir of weakness between 12 h and 28 days AND

subsequent clinical plateau AND

Absence of identified alternative diagnosis for weakness

Clinical case definitions: Fisher syndrome (FS)

Level 1 of diagnostic certainty

Bilateral ophthalmoparesis AND bilateral reduced or absent tendon reflexes, AND ataxia AND

Absence of limb weakness AND

Monophasic illness pattern AND interval between onset and nadir of weakness between 12 h and 28 days AND subsequent clinical plateau AND

Cytoalbuminologic dissociation (i.e., elevation of cerebrospinal protein above the laboratory normal AND total CSF white cell count <50 cells/ml]) AND

Nerve conduction studies are normal, OR indicate involvement of sensory nerves onlyAND

No alterations in consciousness or corticospinal tract signs AND

Absence of identified alternative diagnosis.

Level 2 of diagnostic certainty

Bilateral ophthalmoparesis AND bilateral reduced or absent tendon reflexes AND ataxia AND

Absence of limb weakness AND

Monophasic illness pattern AND interval between onset and nadir of weakness between 12 h and 28 days AND subsequent clinical plateau AND

Cerebrospinal fluid (CSF) with a total white cell count <50 cells/ml])(with or without CSF protein elevation above laboratory normal value) OR

Nerve conduction studies are normal, OR indicate involvement of sensory nerves only AND

No alterations in consciousness or corticospinal tract signs AND

Absence of identified alternative diagnosis

Level 3 of diagnostic certainty

Bilateral ophthalmoparesis AND bilateral reduced or absent tendon reflexes AND ataxia AND

Absence of limb weakness AND

Monophasic illness pattern AND interval between onset and nadir of weakness between 12 h and 28 days AND subsequent clinical plateau AND

No alterations in consciousness or corticospinal tract signs AND

Absence of identified alternative diagnosis
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these were found only in a few patients. These antigens were of

interest because immunization of experimental animals with

such antigens and adjuvant led to experimental autoimmune

neuritis, which shares clinical and histological features with GBS.

More recently, immunity to nodal antigens (44) has been

demonstrated in GBS.

However, there is now extensive evidence to suggest that

glycolipid antigens are the target of a humoral and cell-mediated

immune response in some patients with GBS and its variants;

this is seen predominantly in AMAN and FS rather than in

AIDP and AMSAN (45, 46). The glycolipid targets are mainly

gangliosides which are found widely in cell membranes and are

important in the biology of the nervous system (47). As well as

reactivity to structures found on individual gangliosides there is

also reactivity to ganglioside complexes (48). This immune

response is thought to be triggered with cross-reactivity

between glycolipids on infectious agents and on peripheral

nerve. This is known as molecular mimicry (49, 50) and GBS

is an excellent example (51). It must be noted that although the

gangliosides that are the targets of these antibodies are expressed

in other tissues such as the brain and the kidney, the pathological

process in GBS is generally confined to the peripheral nerve,

suggesting that there is some factor that makes the peripheral

nerves vulnerable. However, there are exceptions; GBS can be

associated with nephrotic syndrome (52) and with

papilloedema (53).

It is notable that the immune response to glycolipid antigens

requires antigen presentation by major histocompatibility

complex (MHC)-like molecules. These include cluster of

differentiation 1 (CD1) and possibly Major Histocompatibility

Complex, Class I-Related (MR1) protein (54–57). The T cells

that respond to such molecules presented by CD1 or MR1 are

sometimes referred to as “unconventional T cells” (58, 59) and

include natural killer T (NKT) cells, gd T cells, and MR1-

expressing T cells (MR1T), a subset of which are the mucosal

associated invariant T (MAIT) cells (60). Antigen presentation

by MAIT cells is potentially relevant to GBS after C.jejuni

infection since it is a gut infection. Activation of antibody

producing cells by NKT cells can occur independently of

lymphoid follicles and can lead to a transient activation of

plasmablasts (61); this would be consistent with the acute self-

limited nature of GBS.

Immune abnormalities are reported in the blood of patients

with GBS. These include alterations in levels of T cells The

percentage of CD8+ cells in the blood is increased (62) and the

proportion of Treg cells is decreased (62, 63). There are

increased levels of activated T cells (62, 63).

There are elevated circulating levels of cytokines such as

tumor necrosis factor (TNF), interferon (IFN)-g, interleukin
(IL)-1b, IL-6 and IL-17 (64), whereas levels of other

circulating factors such as brain derived neurotrophic factor

(BDNF) are reduced (65). Stimulation of peripheral blood

mononuclear cells (PBMCs) with C. jejuni results in a gdT cell
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response in patients with GBS, and patients with GBS including

those with prior C. jejuni infection have been found to have

increased numbers of circulating gdT cells (66).

In the early stages of GBS infiltrating T cells produce TNFa
which can induce demyelination by a direct cytotoxic effect on

myelin and by altering myelin protein and glycolipid synthesis

(67). Another cytokine of importance is the proinflammatory

cytokine IFNa. Th1 cells produce IFNa which activates

endothelial cells and enhances expression of major

histocompatibility complex (MHC) II leading to an increase in

antigen presentation by macrophages. IFNa also effects T cells

causing a switch to a Th1 phenotype and stimulating T cell

apoptosis. IFNa facilitates TNFa`, IL1b and IL6 production and

B cell class switching. Other cytokines implicated in the

immunopathogenesis of GBS include IL-17 and IL-23 (68).

There is also dysregulation of the IL33/ST2 immune axis (69).

A role for Th17 cells is supported by a study showing elevated

levels of cytokines of the Th17 pathway (IL17, IL-6 and Il-22) in

the cerebrospinal fluid (CSF) of patients with GBS compared to

controls (70).

GBS is not thought to be an inherited disease. Some genes

have been associated with GBS, but there is no clear HLA

association (71). Genetic evidence supports that the killer

immunoglobulin receptor (KIR) system is involved in GBS

(72); this indicates that the innate immune system is involved

in pathogenesis, since KIR molecules are expressed on NK cells

that are part of this system (73, 74).

In summary GBS appears to be a monophasic immune

mediated disease, associated with antibodies to gangliosides.

GBS can be subdivided into groups according to clinical

features. GBS patients can also be subdivided according to the

serum ganglioside antibody associated with their illness.
CIDP and variants

CIDP is a term that describes a chronic or relapsing illness,

often characterized by demyelination of peripheral nerves and

nerve roots. In some patients, CIDP is predominantly a motor

neuropathy that causes chronic or recurrent episodes of

weakness (75). However, there are variants of CIDP that can

show mainly sensory features or focal features (76) and variants

that are characterized by axonal degeneration rather than

demyelination. These variants include multifocal acquired

demyelinating sensory and motor neuropathy (MADSAM),

that is characterized by multifocal onset and proximal

inflammation of nerve roots and plexuses (77, 78) and distal

acquired demyelatinating symmetric (DADS) neuropathy that is

characterized by distal but not proximal weakness (77, 79).

Different diagnostic criteria have been developed for the

diagnosis of CIDP, with different sensitivity and specificity (76,

80, 81). One challenging issue is the distinction between GBS

with fluctuations, and CIDP presenting with an acute
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deterioration (82, 83). The widely accepted EFNS/PNS criteria

(81) provide electrodiagnostic criteria as shown in Table 2, and

state that:

“CIDP should be considered in any patient with a progressive

symmetrical or asymmetrical polyradiculoneuropathy in whom

the clinical course is relapsing and remitting or progresses for

more than 2 months, especially if there are positive sensory

symptoms, proximal weakness, areflexia without wasting, or

preferential loss of vibration or joint position sense.”

It must be noted that there are other chronic immune-

mediated neuropathies, such as multifocal motor neuropathy

(84), neuropathy associated with antibodies to myelin-associated

glycoprotein (MAG) (85) and Polyneuropathy, Organomegaly,

Endocrinopathy, Monoclonal Gammopathy, and Skin Changes

Syndrome (POEMS) (86) that are not regarded as CIDP. It is

well-known that some neuropathies are associated with

circulating paraproteins (87); these include the aforementioned

anti-MAG neuropathy and POEMS as well as other

neuropathies associated with haematological conditions (88).

However, some patients with CIDP also have circulating

paraproteins (89). For further information, the reader is

referred to more detailed studies of the classification and

frequency of CIDP and its variants (90, 91).

In contrast to GBS, there is seldom a history of an infectious

illness before the onset of CIDP. A study from Italy found that

15.5% of 435 patients had preceding infections or vaccinations

before the onset of disease, and patients with antecedent infections

were more likely to have acute onset CIDP with cranial nerve

involvement (92). Another large series of 268 patients found

preceding infection in 10.4% of subjects (93). Other series

reported a frequency of preceding infections ranging from 9.7%

of 294 patients (80) to 32% of 92 patients (75).

Findings from sural nerve biopsies indicate that typical

CIDP is characterized by paranodal interstitial oedema, and
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endoneurial cell infiltrates with prominent macrophage invasion

causing demyelination (80, 94, 95). Macrophage-mediated

damage could facilitate inflammation by exposing new

autoantigenic epitopes leading to epitope spreading (96).

In CIDP, in a minority of patients, there have been reports of

T cell and antibody reactivity to myelin antigens (43, 97–100).

Involvement of cell-mediated immunity in the pathogenesis of

CIDP is supported by evidence that activated T cells cross the

blood-nerve barrier and that various T cell associated cytokines

such as TNFa, IFNa and IL-2 are expressed in abundance in the

perineurium, endoneurium and endoneurial blood vessels in

patients with CIDP (101). T cells are also found in bopsy samples

of nerves from patients with CIDP, and evidence of restricted

clonality of CD8+ cells suggests that these cells play a role (96).

Both CD4+ and CD8+ T cells have been found in nerve biopsies

from CIDP patients, as have gd-T cells and NK T cells (34). One

study showed that CD8+ cells were more common than CD4+

cells (102). There is also deposition of complement in

nerves (103).

In a small minority of patients there are reports of

circulating antibodies to periperal nerve, peripheral nerve

myelin and peripheral nerve proteins (104). There are rare

instances of antibodies to gangliosides GM1 (105) and also

LM1, a lacto series ganglioside, in a minority of patients with

CIDP (106).

More recently there have been reports of immune reactivity

to nodal antigens in a subset of patients with CIDP (44, 107–

109). Antibodies targeting these nodal antigens are

predominantly of the IgG4 type (107) and the associated

syndromes are characterized by poor response to treatment

with intravenous immunoglobulin (IVIG). The specific

antibody targets in these patients include neurofascin 155, a

glial cell paranodal protein, and NF140 and NF186, proteins

expressed at nodes and the initial segments of axons (110), and
TABLE 2 EFNS/PNS electrodiagnostic criteria for CIDP.

(1) Definite: at least one of the following

(a) Motor distal latency prolongation >50% above ULN in two nerves (excluding median neuropathy at the wrist from carpal tunnel syndrome), or

(b) Reduction of motor conduction velocity >30% below LLN in two nerves, or

(c) Prolongation of F-wave latency >30% above ULN in two nerves (>50% if amplitude of distal negative peak CMAP <80% LLN values or

(d) Absence of F-waves in two nerves if these nerves have distal negative peak CMAP amplitudes >20% of LLN + >1 other demyelinating parametera in >1 other nerve,
or

(e) Partial motor conduction block: >50% amplitude reduction of the proximal negative peak CMAP relative to distal, if distal negative peak CMAP > 20% of LLN, in
two nerves, or in one nerve + >1 other demyelinating parametera in >1 other nerve, or

(f) Abnormal temporal dispersion (>30% duration increase between the proximal and distal negative peak CMAP) in >2 nerves, or

(g) Distal CMAP duration (interval between onset of the first negative peak and return to baseline of the last negative peak) increase in >1 nerve (median >6.6 ms, ulnar
> 6.7 ms, peroneal > 7.6 ms, tibial > 8.8 ms) + >1 other demyelinating parametera in >1 other nerve

(2) Probable

>30% amplitude reduction of the proximal negative peak CMAP relative to distal, excluding the posterior tibial nerve, if distal negative peak CMAP >20% of LLN, in two
nerves, or in one nerve + >1 other demyelinating parametera in >1 other nerve

(3) Possible

As in (1) but in only one nerve
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contactin antigens such as contactin-1 (CNTN1) and contactin-

associated protein 1 (CASPR1) (111). A comprehensive study of

the presence of antibodies in 65 CIDP patients found that 8 had

antibodies to nodal/paranodal proteins, 11 had ganglioside

antibodies and one had antibody to myelin P2 protein (112).

The mechanism of nerve damage from antibodies to nodal/

paranodal antigens could involve disruption of axonal-glial

junctions (113).

Pathological findings in patients with nodal antibodies are

different from those of classical CIDP, without prominent

macrophage-mediated demyelination or axonal damage, and

this might indicate that nodal/paranodal antibody associated

forms of disease have a different pathogenesis to that of classical

CIDP. Patients with antibodies to nodal/paranodal antigens are

resistant to treatment with IVIG (treatment-resistant CIDP),

likely because these antibodies are of the IgG4 type, and are best

regarded as having a different disease, called autoimmune

nodopathy (AN) (114, 115).

There are some reports of associations of different genes with

CIDP, and some reports of human leukocyte antigen (HLA)

associations but these have not been replicated in large series

(71). There is one report that associations with HLA DR2 are sex

dependent, being present in females (116). As with GBS, genetic

studies indicated that NK cells of the innate immune system are

involved in pathogenesis (117).

In summary CIDP is a chronic or chronic relapsing disease

that is immune mediated and associated with a variety of

antibodies including gangliosides and nodal and paranodal

proteins. Patients with CIDP can be divided into different

groups on clinical grounds and also be subdivided according

to the antibody they carry.
Animal models of GBS and CIDP

Animal models of autoimmune disease have been developed

since the first description of experimental allergic encephalitis

(an animal model of multiple sclerosis) by inoculation with

central nervous system tissue and later with the addition of

adjuvant, which stimulates the innate immune system (118,

119). The first description of experimental allergic neuritis

(EAN), as an animal model of GBS, was provided by

Waksman and Adams who set out to produce a disease where

inflammation was confined to the peripheral nervous system,

and achieved this in rabbits, guinea pigs and mice by inoculation

with homogenized nerve (119, 120). EAN was also induced in

chickens by inoculation with sciatic nerve (121). EAN can now

be induced in many different animal strains with a variety of

purified antigens including peripheral myelin proteins, with the

use of adjuvants. Table 3 shows the first descriptions of these

models, showing the evolution of types of active EAN and these

are discussed below.
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After induction of EAN by inoculation with peripheral nerve

tissue, studies were performed to investigate whether

sensitization to myelin could produce disease. EAN was

induced with peripheral nerve myelin in rats and monkeys

(122, 123, 126) and with bovine peripheral myelin in SJL/J

mice (142). These studies were followed by attempts to

identify the “ neuritogen” — the component of nerve or

myelin that caused the sensitization that led to disease. Myelin

P2 protein was the first purified “neuritogen” to be identified

(127, 143). Myelin P0 protein can also induce EAN in Lewis rats

(128). EAN has also been induced in Lewis rats by inoculation

with peripheral myelin protein 22 (PMP22) (129).

Once myelin proteins has been identified as neuritogenic,

studies were performed to identify the epitopes of the proteins

that caused disease. EAN can be induced by inoculation of P2

peptides in Lewis rats (130, 131). EAN can also be induced in

Lewis rats and C57/BL6 mice by inoculation with myelin P0

peptides (132–134). EAN can also be passively transferred by

sensitized T cells (144, 145).

These are generally acute forms of EAN. After recovery,

animals are resistant to re-induction of disease by inoculation

with the same antigen. This acquired tolerance is related to

active tolerance by Treg cells. It has been shown that transfer of

CD4+CD25+ Treg cells from animals that have recovered from

EAN inhibits the induction of EAN (146).

The pathology of EAN is of inflammation and

demyelination similar to that of GBS with myelin removal by

macrophages (147, 148). There is also deposition of antibody

and complement in peripheral nerves (149, 150). Studies of

passively transferred EAE suggest a role for T cells in the

pathogenesis of disease.

There are few models of CIDP, however immune

suppression can convert monophasic EAN induced by

peripheral nerve myelin into a chronic form of disease

suggesting that in this model, active immune suppression

controls the immunity to nerves (151, 152). Chronic EAN can

also be induced in Lewis rats by high doses of P0 peptides (132).

It can also be induced in Lewis rats by palmitoylated P0

peptides (153).

There is also a model of spontaneous EAN in non-obese

diabetic (NOD) mice that are deficient in the co-stimulatory B7-

2 molecule (154). In this model there is inflammation and

demyelination of peripheral nerves, with a chronic course.

However, C57/BL6 mice that overexpress B7-2 also develop

spontaneous autoimmune polyneuropathy with a chronic

course (155).

Lipids are also major components of myelin. Early studies

focused on the possibility that a combination of lipid and protein

was required to produce EAN and found that EAN could be

induced in rabbits and Lewis rats by inoculation with a complex

of lipids and P2 protein (122, 127, 135). Stimulus to finding

animal models of disease induced by glycolipids was increased

by the finding of antibodies to gangliosides in patients with
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neuropathy (see above). The first such disease was produced in

New Zea land a lb ino rabb i t s by inocu la t ion wi th

galactocerebroside C (GalC), and is a demyelinating disease

(136). Disease induced by GD1a was a flaccid paralysis (137).

The disease induced in rabbits by inoculation with GM1 is a

severe motor axonal neuropathy (138). The experimental disease

produced by GD1b in rabbits is a usually sensory/ataxic

neuropathy (136, 139–141) and is associated with apoptosis of

cells in the dorsal root ganglion (141).
Summary of likely pathogenesis of GBS,
CIDP and EAN

We now present our views on the pathogenesis of these

diseases; we have previously published our views on GBS (156).

These diseases are associated with immune changes in peripheral

nerve and we take the view that the pathogenesis involves

antigen-specific autoimmunity, even though the target antigen

is unknown in many cases.
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In GBS and CIDP these immune changes can arise after a

preceding event, such as an infection, or after a stressful event

such as surgery, or can arise without apparent trigger. In the case

of the animal models, the immune process is initiated by

inoculation. It is likely that host factors play a role in the

susceptibility to disease, since not all patients develop GBS

after infection, since there are some limited suggestions of

genetic associations with GBS and CIDP, and since animal

strains vary in susceptibility. It is also notable that there is

heterogeneity of GBS and CIDP, both in clinical features

and pathology.

It is likely that there is a phase of initiation of disease, when

the innate immune system is responsible for activation of the

adaptive immune system that leads to an antigen specific process

in peripheral nerves and especially the nerve roots. During this

phase there is considerable heterogeneity. In GBS after C. jejuni

infection, the site of initation of innate immunity would be the

gut, after respiratory infections antigen would interact with cells

in the respiratory mucosa and in EAN, the antigen would be

engulfed by dendritic cells in the skin. In EAN, activation of the

innate immune system is achieved by the use of adjuvant.
TABLE 3 Development of models of actively induced EAN.

Antigen Animal studied Reference

Tissue homogenates

Rabbit, bovine, dog, human, guinea pig sciatic nerve, rabbit ganglia Rabbits (119, 120)

Guinea pig sciatic nerve White Leghorn chickens (121)

Mouse, rabbit, dog, human nerve White Swiss mice (119)

Bovine, human, dog nerve Guinea pigs (119)

Peripheral myelin

Rabbit peripheral myelin Rhesus monkeys (122)

Rat, rabbit, bovine, human, guinea pig peripheral myelin Lewis rats (123)

Bovine peripheral myelin Lewis rats (124, 125)

Bovine peripheral myelin Dark Agouti rats (126)

Myelin proteins

P2 protein Lewis rats (127)

P0 protein Lewis rats (128)

Peripheral myelin protein 22 Lewis rats (129)

Peptides

Peptides of P2 protein Lewis rats (130, 131)

Peptides of P0 protein Lewis rats (132)

Peptides of P0 protein C57/BL6 mice (133, 134)

Protein/lipid complexes

P2 protein/phosphatidyl serine complex Rhesus monkeys (122)

P2 protein/phosphatidyl serine complex Lewis rats (127)

P2 protein/ganglioside complexes Rabbit (135)

Glycolipids

Galactocerebroside Rabbit (136)

GD1a Rabbit (137)

GM1 Rabbit (138)

GD1b Rabbit (136, 139–141)
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In all cases it is expected that these antigen presenting cells

would travel to the regional lymph nodes. In the lymph nodes

there would be activation of T cells and B cells. For protein

antigens, the interaction between antigen presenting cells and

effector cells would require antigen presentation in association

with MHC class I and class II molecules (157). For glycolipid

antigens, antigen presentation would require CD1 molecules

(158). In most cases, activation of T cells and B cells would occur

in association with lymph node follicles, but we speculate that in

GBS, unconventional extra-follicular activation could occur,

since this leads to short term, self-limited immune activation.

The activated cells and antibody then travel though the

blood and through the tissues of the body as part of normal

immune surveillance and accumulate at the sites where their

target antigen is expressed. Antibody also binds to target

epitopes and in some cases triggers complement activation.

In the effector phase of disease, demyelination is caused by

myelin stripping and other mechanisms other mechanisms. In

the axonal disorders, the mechanism of axonal loss includes

other mechanisms. There seems to be a role for complement in

GBS, CIDP and EAN since complement deposition is seen in

biopsies of patients. The role of complement could be to form

the membrane attack complex, resulting in damage.

In GBS and acute EAN here is termination of the immune

attack- either because the activation was itself limited, such as

the transient activation that can occur after infection (159) or

because of development of tolerance mechanisms such as Treg

cells. In CIDP there is ongoing inflammation/immune processes

due to failure of tolerance mechanisms. In the recovery stage of

GBS and EAN and during periods of remission of CIDP there is

remyelination (seen as thinly myelinated fibers). There is limited

capacity for axonal regeneration in GBS and CIDP.
Sex differences in GBS, CIDP
and EAN

Sex differences in GBS

Differences in prevalence: There is evidence that GBS is

more common in males than females, and that the incidence

increases with age. A systematic review of 63 papers found the

incidence of GBS increased with age and was estimated to be

between 1.1/100,000 per year to 1.8 per 100,000 per year (17).

A meta-analysis found that the incidence of GBS increases

with age and ranges from 0.90 per 100,000 person years in age

20-29 years to 2.66 per 100,000 person years in ages 80-89 years

and that at all ages the incidence was greater in males (160); the

authors acknowledged that “the reason for the higher risk of GBS

in males is unknown”. A large survey of 150,095 GBS patients,

part of the global burden of disease (GBD) 2019 project,

conducted by the Institute for Health Metrics and Evaluation
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(IHME), found that the prevalence increased with age until age

75 years and then declined (18) and the prevalence was greater in

males than females at all ages up to 75 years.

Table 4 lists a selection of studies of GBS, since 2010, with

more than 100 patients, that show the percentage of male

patients. In most reports, the number of males was greater

than the number of females. Figure 1 shows a meta-analysis of

the data from Table 4. The overall odds ratio was 2.7; the overall

relative risk was 1.7.

There have been reports of childhood GBS and a selection of

these with more than 20 cases are shown in Table 5. In most

cases the upper age limit was 18 years, so these series included

pre- and post-pubertal subjects. This is important because sex

differences due to the effects of gonadal hormones become

apparent after puberty. Figure 2 shows a meta-analysis of the

data in Table 5. The overall odds ratio was 1.7; the overall

relative risk was 1.3.

Sex differences in outcome: The usual treatment for GBS is

intravenous infusion of immunoglobulin (IVIG). IVIG was

shown to be at least as effective as (if not superior to) plasma

exchange in a randomized controlled trial (196). Plasma

exchange also appears to be effective, and may be used as an

alternative, but tends to be less well tolerated to completion by

patients, and is less straightforward to administer (197).

Corticosteroids are no of clear benefit and may even be

harmful in GBS (198). In GBS, criteria for admission to the

intensive care unit include rapidly progressive respiratory

muscle weakness, respiratory distress, severe dysautonomia or

dysphagia, or a score >4 on the Erasmus GBS respiratory

insufficiency score (EGRIS) (199). EGRIS is a composite score

that incorporates time from symptom onset to hospitalization,

facial and bulbar weakness, and the severity of muscle weakness

at hospital admission (200).

A retrospective study of 121 patients from Austria extending

back 20 years calculated that sex was not a predictor of prognosis

(201). In addition, there was no difference in the odds of receiving

more treatment for GBS according to sex. In a large Japanese

study of 4132 patients, multivariate regression indicated that

males with GBS were less likely than females to require

mechanical ventilation (OR 0.76) (169). Once intubated, male

patients with GBS tend to have a poorer outcome than females

due to ICU-related complications including pneumonia (202).
Sex differences in CIDP

Difference in Prevalence: An early study found the prevalence

of CIDP to be 1/100,000 in South East England (203). In Australia,

the prevalence was 1.9 per 100,000 (204)[80]. A higher prevalence

of 7.7 per 100,000 was found in Norway (205)[81]. Later studies

found prevalence of 4.77 per 100,000 using EFNS/PNS criteria and

1.97 per 100,000 using AAN criteria (206).
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FIGURE 1

Meta-analysis of sex differences in GBS. This shows a meta-analysis of the data from Table 4. Comprehensive Meta-analysis software v 3.31
(Biotech, USA, 2022) was used. Sex differences are displayed using a log odds ratio. The overall odds ratio was 2.7. The overall relative risk was 1.6.
TABLE 4 Percentage of males in GBS series with 100 or more cases since 2010.

Location year Number of subjects % Male Reference

Australia 2013 335 62% (16)

UK 2013 1906 56% (161)

Italy 2013 176 57% (162)

Global 2013 479 55% (163)

Europe 2014 303 56% (164)

Germany 2014 676 55% (165)

China 2014 441 56% (166)

Norway 2016 410 55% (167)

France 2017 9391 58% (168)

Japan 2017 4132 59% (169)

Netherlands 2018 144 54% (170)

Iran 2018 388 62% (171)

India 2020 100 79% (172)

France 2020 3523 58.4% (173)

Korea 2020 533 52% (174)

Brazil 2021 111 55% (175)

Korea 2021 5287 58% (176)

Austria 2021 110 62% (177)

Brazil 2022 51 65% (178)

Mexico 2022 248 68% (179)

Denmark 2022 2414 58% (180)

Iran 2022 174 60% (181)

India 2022 388 71% (182)

Italy (COVID-19 -ve 2022 149 62% (183)

World 2022 2075 51% (184)
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As in GBS, the incidence and prevalence of CIDP appears to

increase with older age. In a Japanese study, the crude incidence

rate of CIDP was 0.06 per 100 000 person years in the age group

0-15 years; 0.40 per 100 000 person years in the age group 15-55

years and 0.73 40 per 100 000 person years among those older

than 55 years (207). In a Dutch study, incidence was 17 times as

high in those with ages greater than 50 years compared to less

than 50 years (208). A systematic review and meta-analysis

showed that the age specific prevalence increased steadily from

childhood through to old age across 5 different studies (209).

Table 6 lists studies of CIDP that show the prevalence inmales

and females, with nearly all studies showing a male predominance.

Figure 3 shows a meta-analysis of the data in Table 6. The overall

odds ratio was 2.9; the overall relative risk was 1.7.

In childhood CIDP, a review of a series of patients combined

with a review of previous series found no sex differences (239).
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Sex difference in outcome: Patients with CIDP can be

treated with oral corticosteroids, IVIG or plasma exchange

(240). Chronic immune suppressing therapies, such as

azathioprine, cyclophosphamide and rituximab are also widely

used as part of a combination immune intervention strategy, but

quality evidence for efficacy is lacking (241). In the randomized,

controlled FORCIDP trial, fingolimod was not of benefit in

CIDP (222).

Currently there are trials underway investigating agents that

block the neonatal Fc receptor (FcRn) and therefore lead to a

decrease in circulating levels of immunoglobulin (Ig) and Ig

immune complexes. The results of the first of these trials, which

was a phase 2 placebo-controlled trial of rozanoliximab, a

monoclonal antibody that antagonizes the FcRn, were

disappointing, being negative for an improvement in a patient

reported scale of activity and social participation (242).
FIGURE 2

Meta-analysis of sex differences in childhood GBS. This shows a meta-analysis of the data from Table 5. Comprehensive Meta-analysis software v 3.31
(Biotech, USA, 2022) was used. Sex differences are displayed using a log odds ratio. The overall odds ratio was 1.6. The overall relative risk was 1.3.
TABLE 5 Percentage of males in childhood GBS series of 20 or more cases since 2010.

Location Year Number of subjects % Male Reference

Brazil 2010 61 46% (185)

India 2011 139 69% (186)

Italy (upper age 14) 2012 20 65% (187)

Taiwan (up to 18 years) 2012 40 60% (188)

Netherlands (upper age 16 years) 2017 67 52% (189)

Turkey (upper age unknown) 2018 236 57% (190)

South Africa (up to 12 years) 2018 119 48% (191)

Iran (upper age unknown) 2020 324 54% (192)

China (upper age 18) 2020 103 60% (193)

Iran (less than 12 years) 2021 29 45% (181)

India (upper age 12) 2021 30 70% (194)

India (upper age 12) 2022 43 56% (195)
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Sex was not found to be a predictor of severe disability in a

multivariate analysis in 165 patients with CIDP (80). A Japanese

study found that factors which predict poor responsiveness to

IVIG in CIDP patients include male sex, longer disease duration,

and slower progression (243).
Sex differences in animal models of
GBS and CIDP

The role of sex differences has not been a focus of studies of

EAN. In early studies there was little recognition of the possible

importance of sex differences, and the sex of the animal was not

reported, only one sex was used or there was no study of sex
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differences. Table 3 shows the sex of the animals used in the

initial studies of various forms of EAN.

In the original paper, female rabbits were inoculated with

CNS tissue and adjuvants (120). In an early paper about EAN in

Lewis rats, both sexes were used for inoculation with myelin

from guinea pig, frog, rat and rabbit and there was no reported

difference between the sexes (123). In another early paper that

reported passive transfer of EAN to rabbits, the sex of the donors

and the recipients was not stated (244). EAN could be induced in

SJL mice by inoculation with myelin but the sex of the mice was

not stated (142). In a study of EAN induced in chickens with

guinea pig sciatic nerve, both sexes were studied (121). In studies

of inoculation of Lewis rats with bovine myelin, male (124) and

female Lewis (125) rats have been used.
TABLE 6 Percentage of males in a selection of studies of CIDP of 80 or more cases since 2010.

Location Year Number of subjects Percent male Reference

Italy 2010 267 63% (210)

France 2010 146 64% (76)

World 2010 106 53% (211)

Italy 2011 110 62% (212)

UK/France 2012 110 49% (213)

Spain 2013 86 52% (214)

England 2014 101 65% (215)

Netherlands 2015 281 64% (216)

Japan 2015 94 61% (217)

Canada 2016 305 70% (218)

South Africa 2016 84 52% (219)

Europe 2018 106 62% (220)

Europe 2018 125 68% (221)

World 2018 106 63% (222)

USA 2018 790 54% (223)

France 2019 134 63% (224)

World 2019 235 63% (225)

Italy 2019 460 64% (90)

USA 2019 525 58% (226)

World 2019 82 61% (227)

Italy 2020 130 65% (228)

Germany 2020 127 61% (229)

Italy 2020 323 66% (92)

Netherlands/Austria 2021 126 69% (230)

Italy 2021 535 65% (231)

USA 2021 138 61% (232)

Germany 2021 203 69% (233)

UK 2021 268 69% (93)

Germany 2021 167 63% (234)

Germany 2022 95 73% (235)

Spain 2022 2805 65% (236)

World 2022 119 52% (237)

Germany 2022 84 76% (238)
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In the early studies of disease induced in Lewis rats with P2

protein, males were used (127). EAN can be induced in male

(130) and female (130, 131) Lewis rats by peptides of myelin P2

protein. Recently there are numbers of studies of EAE induced in

female Lewis rats (245–250) by P2 peptides, and occasional

studies of males (251) but no studies comparing the sexes.

EAN was induced by myelin P0 protein in male Lewis rats

(128). EAN was induced by peptides of P0 protein in male Lewis

rats (132). With this model, males have been used in recent

studies (252). EAN was induced also with peptides of P0 and in

male (133) and female C57/BL6 mice (134), and recent studies

have used male Lewis rats (253). PMP22 EAN has been induced

in male Lewis rats (129) but there are no recent studies.

Similarly, there is little information about the diseases

induced by glycolipids. EAN after GalC sensitization was

produced in male New Zealand rabbits (136). GM1 disease

and GD1a disease was first induced in male Japanese white

rabbits (138, 254, 255). The sex of the rabbits used for induction

of GD1 disease was not specified (140).

It must be noted that in experimental autoimmune

encephalomyelitis, which has been more thoroughly studied

than EAN, and where sex differences have been explored, the

effects of sex are complex and vary with animal species/strain

and with the inoculating antigen (256).
Discussion

There are sex differences (sexual dimorphism) in many

aspects of physiology and pathophysiology. These have
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developed since the evolution of the sex chromosomes and

sexual reproduction (257–259). Sex differences can be

attributed to the effects of the sex chromosomes and to the

effects of gonadal hormones. There are widespread examples of

sexual dimorphism in morphology, physiology and biochemistry

(260). There is marked sexual dimorphism of the immune

system (261, 262). Across the animal kingdom, females have a

more active immune system (sometimes referred to as having

greater immunocompetence) than males (263, 264). Tables 7, 8

show some sex differences in the immune system.

In this review we have studied sex differences in GBS and

CIDP. GBS and CIDP are consistently more common in males

than females. The sex association was less obvious in childhood

GBS, where some of the subjects would have been pre-pubertal.

Sex differences that appear after puberty can be due to the effects

of gonadal hormones. It can be noted that in multiple sclerosis,

where there is a strong influence of sex on the prevalence of

disease in adults, there is no sex difference in childhood before

puberty (286). There is little evidence of an effect of sex on the

outcome of disease. It must be noted that the majority of studies

were cohort studies rather than population based studies, which

is a limitation.

The male predominance would be unusual if GBS and CIDP

were like other autoimmune diseases, which are usually more

common in females (260, 287). For these other autoimmune

diseases, the female predominance is often attributed to the

stronger immune system of females, Tables 7, 8 provide lists of

the effects of sex on different immune cells and functions, and

shows that, for many functions, the female immune system has

stronger responses. Females have greater resistance to infection,
FIGURE 3

Meta-analysis of sex differences in CIDP.This shows a meta-analysis of the data from Table 6. Comprehensive Meta-analysis software v 3.31
(Biotech, USA, 2022) was used. Sex differences are displayed using a log odds ratio. The overall odds ratio was 2.9. The overall relative risk was 1.7.
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greater resistance to the induction of immune tolerance, greater

in vitro response to mitogens, greater response to vaccination,

greater IgM levels and greater Th1 responses (262). The stronger

immune responses are thought to have arisen through

evolutionary mechanisms allowing females to live longer to

protect their offspring (264).

We have considered what is known about the pathogenesis

of GBS and CIDP and now speculate on some possible reasons

for the sex differences. The pathogenesis involves macrophages,

monocytes, CD4+ T cells, B cells, Th17 cells, antibody,

complement and cytokines. As outlined in Tables 7, 8, for

most of these elements of the immune system, females are

thought to have stonger responses. Exceptions are CD8+ cells

and NK cells which have increased levels in males and have a

possible role in GBS and CIDP (72, 117, 288). Therefore, we have

looked for other explanations for the sex differences in GBS

and CIDP.

We consider that GBS and CIDP are autoimmune diseases,

likely to be due to an antigen-specific immune response, athough
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for many patients the antigen remains unknown. However, GBS

and CIDP have some features that are unusual for autoimmune

diseases. Criteria for accepting an autoimmune aetiology for

disease were first put forward in 1957 (289) and later updated in

1993 (290). These criteria include direct proof (transmission to

another human or experimental animal), indirect proof

(induction of disease by autoantigen, pathological features)

and circumstantial evidence (MHC association). GBS and

CIDP have features that differ from these criteria. There is no

clear target antigen – although it could be argued that each of the

syndromes associated with the known targets of autoantibodies

could be regarded as separate diseases. For some of the known

antigen, namely the glycolipid antigens, disease transfer has been

more difficult than with more classical autoimmune diseases.

Finally, there is no clear HLA association (71); this could be

related primarily to the fact that, in GBS, and some CIDP

patients, as opposed to the case in well-recognized

autoimmune diseases, the target antigens are not proteins but

glycolipids, which are not presented by HLA molecules. There is

more limited polymorphism in the CD1 and MR1 molecules

than for HLA molecules, but nothing is currently known about

whether there are any sex-related effects in their expression.

GBS differs from autoimmune diseases in being self-limited.

This suggests a transient activation of the immune system. This

can occur through activation of plasmablasts by pathways that

do not include the lymphoid follicle or through non-canonical

pathways of activation (291). There are some suggestions that

sex influences the activation of plasmablasts and plasma cells

(292). Further exploration of the role of plasmablast activation

could be useful in understanding GBS and exploring

sex differences.

Genome wide gene expression analysis of peripheral

leukocytes has indicated differences between male and female

patients with GBS. In one study, male GBS patients were

enriched for twenty genes involved in a range of

immunological processes, including macrophage and leukocyte

migration, and female GBS patients were enriched for 62 genes

including those for viral infection and defense (293). Genes

involved in the production of matrix metaloproteinase-9

(MMP9), which has previously been shown to be associated

with disease severity in GBS, were highly expressed in males

implicating MMP9 as being potentially relevant to the higher

prevalence of GBS in males.

In most cases of GBS, and some patients with CIDP,

gangliosides are the target antigen. Gangliosides are small

glycolipid molecules that react with unconventional T cells

including gd T cells, NKT cells and MR1T/MAIT cells (58–60)

after antigen presentation in association with CD1 (158). Little is

known about sex differences in these pathways.

However , one study measured the numbers of

unconventional T cells and showed females had more iNKT

cells, fewer gd T cells and the same number of MAIT cells as

males (294). Another study showed that there are sex differences
TABLE 7 Sexual dimorphism in immune processes.

Immune functions Difference between males and
females

Immunosenescence Greater in human males (265)

IgM levels Greater in human females (266, 267)

Allograft rejection Greater in females (268)

In vitro response to mitogens Greater in females (269, 270)

Resistance to the induction of
immune tolerance

Greater in females (271)

Ability to combat infection Greater in females (272, 273)

Response to vaccination Greater in human females (274)

Th1 responses Greater in females (275)

Antigen presentation of peptides More efficient in female mice (270)

Phagocytosis by neutrophils and
macrophages

Greater in female rats (276)
TABLE 8 Sex differences in immune cell numbers and functions.

Immune cell Difference between males and
females

Percentage of lymphocytes in total
leukocyte population

Higher in females (277)

CD4+:CD8+ ratio Greater in females (278, 279)

Percentage of CD4+ T cells Greater in females (280)

Percentage of CD8+ cells Greater in males (280)

NK cell numbers Higher in males (281)

Neutrophils More activated in females (282)

Macrophage polarization More M2 polarization in females (283)

Monocyte Females show greater transcription of
inflammatory genes (284)

Treg cell numbers Increased in males (285)
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in the function of NKT cells, with male cells having a Th1 bias

(295). However, a third study found that women have greater

numbers of NKT cells than men, and that stimulation with

alpha-galactosylceramide leads to higher production of IFNg, IL-
4, IL-17 and TNF by CD4+ and double negative NKT cells (296).

Further studies of the mechanisms of development of reactivity

to gangliosides could also be helpful in the understanding of GBS

and CIDP and possible sex differences.

In CIDP, studies suggest a role for CD8 cells, that interact with

MHC class I. A recent study found that HLA-associated shaping of

T cell receptor B variable (TCRBV) usage in CD8+ T cells differed

between the sexes, with male cells showing greater expansion of

TCRBV usage than females (297); this is evidence that there could

be sex differences in the capacity of these cells to interact with self

antigens. It remains to be determined if this occurs in CIDP.

Patients with “treatment resistant CIDP” can be placed in a

separate group of autoimmune nodopathies (AN), which are

emediated by IgG4 antibodies. There are other autoimmune

diseases associated with IgG4 antibodies, and some of these are

neurological, including anti-muscle specific tyrosine kinease

(MUSK) myasthenia gravis, leucine-rich glioma-inactivated

(LGI)-1 and CASPR2 autoimmune syndromes, and anti-

immunoglobulin LSAMP, OBCAM, Neurotrimin 5 (IgLON5)

disorder disorder (298). It must be noted, that in contrast to the

findings in CIDP, MUSKMG is reported to be more common in

females. A switch to IgG4 antibody production is triggered by

chronic antigen exposure, and an environment enriched by T

cell-produced cytokines, in particular IL-4, IL-10, IL-12, IL-13

and IL-21 (299).There are many sex differences in T cells, for

example the ratio of Th1 to Th2 cells is greater for females than

males (300)and there are sex differences in the regulation of TfH

cells, which are needed for antibody production (301).

Interestingly, a group of systemic immune-mediated disorders

that are all characterized by infiltration of IgG4-expressing

plasma cells into involved organs have now been consolidated

into a grouping known as IgG4-related disease, and one of the

predominant clinical features is the male predominance of these

disorders (302).

In CIDP, another distinguishing feature that could suggest

unusual immunological features, is the lack of response to

therapies that were expected to be of benefit. This could be

due to the acknowledged challenges of trials in CIDP, for

example the difficulty in identifying patients with active

disease who deteriorate after withdrawal of IVIG. However,

some of the pathological features of CIDP are similar to those

of multiple sclerosis (MS), but fingolimod, which is of benefit in

MS, was not helpful in CIDP. In antibody mediated diseases,

such as myasthenia gravis (MG), blockade of the neonatal Fc

receptor is of benefit. However, the results of the first trial in

CIDP showed no benefit (242). There is no information about

what these failures reveal about the underlying pathogenesis of

CIDP. However, this could be a further indicator that CIDP

differs from other immune and inflammatory diseases.
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The sex differences in GBS and CIDP could relate to sex

differences in the underlying immunopathogenetic mechanisms.

However, our understandng of the pathogenesis of GBS and

CIDP is incomplete. Going forward, it will be beneficial to

perform further studies of the immunological basis of GBS

and CIDP, with attention to the heterogeneity of these

diseases. There is marked clinical heterogeneity and also

heterogeneity in the immunological targets that have been

identified. Once the immunological basis of the subtypes of

disease is clear, then further attention can be given to the sex

differences in these mechanisms.

It must be noted that the prevalence of GBS and CIDP

increases with age. In myasthenia gravis, which shows a late peak

of disease (late-onset MG), studies, including our own, have also

shown that there is an increased proportion of males in the late

onset disease (303, 304). This could suggest that older males are

more susceptible to immune disease and this could contribute to

the male predominance. It is known that there are changes in the

immune system with aging (immunosenescence) (305). We have

shown sex differences in immunosenescence, with males

showing greater decline (265). Above we have speculated on a

role for unconventional T cells; there is no information about the

effect of ageing on these cells, or any sex differences in these cells

with aging. It is possible that the sex differences in

immunosenescence could make males more susceptible-

possibly by waning of immunoregulation.

Another possible issue is sex differences in the susceptibility

of nerves to immunological attack. In autoimmunity, this can be

referred to as “target organ resistance”. Little has been written

about this, but some of the earliest studies come from the model

of autoimmune thyroiditis that arises in obese strain chickens,

and is a model of human Hashimoto’s thyroiditis (306). In this

disorder, inherited alterations of thyroid function predispose to

spontaneous autoimmune thyroiditis (307, 308). This has been

related to viral infection and aberrant expression of MHC class II

molecules (309). In experimental autoimmune oophoritis, a

model of autoimmune ovarian failure (310), it has been shown

that after recovery from oophoritis, animals are resistant to

further episodes of disease and that this resistance is a property

of the recovered ovaries. When normal ovarian tissue was

transplanted under the capsule of recovered ovaries, disease

developed only in the transplanted tissue. In experimental

autoimmune encephalomyelitis, lack of apoptosis in target

tissue leads to increased EAE (311). We have previously

suggested that sex differences in target organ resistance could

contribute to sex differences in autoimmunity (260).

There is some evidence that alterations in peripheral nerve

myelin can lead to inflammation of nerves. This is seen in the

reports of inflammation typical of CIDP, or the onset of clinical

features of CIDP in people with various types of Charcot Marie

Tooth (CMT) disease (312–314). This is highly suggestive that

variation in the structure of nerves could possibly lead to

vulnerability to inflammation.
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The underlying mechanism for putative sex differences in

target organ resistance of peripheral nerves would be expected to

be due to the biological properties of nerves. There are some

reports of sex differences in the peripheral nerves and in the

response of peripheral nerve to injury. Gene expression profiles

from the dorsal root ganglia (DRG) of rats show that 6% of

expressed genes differ according to sex with more genes involved

in immunological mechanisms expressed in females than males,

and that after injury to the DRG, neural pathways linked to pain

also show considerable differences between males and females

(315). Furthermore, following sciatic nerve axotomy in mice,

males exhibited greater expression of structural cytoskeletal

proteins in the regenerating nerve than females. In addition

there were sex differences in coding and non-coding mRNAs

responsible for other neurotrophic, metabolic and sex

chromosome-linked molecular programs (316). It is possible

that these sex differences in the biology of peripheral nerves

could also contribute to the differences in susceptibility to GBS

and CIDP. However, there is still much that needs to

be determined.

Our conclusion is that there is evidence that unlike other

autoimmune diseases, GBS and CIDP are more common in

males. This difference is not likely to have any single cause, and

could relate to differnces in the immune system or in the target

organ. There are no studies of sex differences in EAN and in

future it would be very helpful if such studies were to be

performed, although we note that in experimental

autoimmune encephalomyelitis (EAE), there are many sex

differences that are specific for the strain of animal and the

type of disease that is studied (256). Therefore it will be

necessary to report all these details. It will also be necessary to

report the age of the animal, given that sex differences change

over time- becoming more apparent with puberty and showing

differences in older age. It has also been found that, in some

experiments, the sex of the researcher can influence the results of

the study (317, 318), so this should also be recorded.

Going forward we suggest that there is a need to investigate

sex differences in GBS and CIDP. For males compared to females

the odds ratio for developing GBS and CIDP are 2.7 and 2. 9,

respectively. This is a substantial increase in risk, and
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understanding the mechanisms for this could help understand

what is important in pathogenesis. We recommend that all

epidemiological studies stratify for age and sex, and that all

investigations into the biology of GBS and CIDP also take

account of the sex of the subjects. We also recommened that

all clinical trials should be stratified according to sex, in case

there are sex differences in the response to therapy.

There are some challenges. Studies will need to be increased

in size, to provide sufficient power to detect sex differences, and

investigators need to consider the effects of sex at different stages

of investigation such as recruitment, randomization and analysis

(319). However, despite the challenges, research into sex

differences has the potential to be rewarding. Sex differences

are pervasive in all aspects of biology, and the finding that GBS

and CIDP are more common in males deserves further enquiry.
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controversies. Lancet Neurol (2013) 12(12):1180–8. doi: 10.1016/s1474-4422(13)
70215-1

41. Griffin JW, Li CY, Macko C, Ho TW, Hsieh ST, Xue P, et al. Early nodal
changes in the acute motor axonal neuropathy pattern of the Guillain-Barré
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in Guillain-Barré syndrome, friend or foe? Expert Opin Ther Targets (2017) 21
(1):103–12. doi: 10.1080/14728222.2017.1258402

68. Debnath M, Nagappa M, Murari G, Taly AB. Il-23/Il-17 immune axis in
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Stanislawski B. Risk of Guillain-Barré syndrome following pandemic influenza a
(H1n1) 2009 vaccination in Germany. Pharmacoepidemiol Drug Saf (2014) 23
(11):1192–204. doi: 10.1002/pds.3638

166. Chen Y, Ma F, Zhang J, Chu X, Xu Y. Population incidence of Guillain-
barre syndrome in parts of China: Three Large populations in jiangsu province,
2008-2010. Eur J Neurol (2014) 21(1):124–9. doi: 10.1111/ene.12265

167. Ghaderi S, Gunnes N, Bakken IJ, Magnus P, Trogstad L, Håberg SE. Risk of
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Garcıá-Grimshaw M, Vargas-Cañas ES. Guillain-Barre syndrome in Mexico:
Clinical features and validation of Brighton collaboration group criteria. Rev
Neurol (2022) 74(8):258–64. doi: 10.33588/rn.7408.2021437

180. Levison LS, Thomsen RW, Andersen H. Increased mortality following
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of Guillain-Barré syndrome in tertiary care hospital at kolkata. J Nat Sci Biol Med
(2011) 2(2):211–5. doi: 10.4103/0976-9668.92320

187. Pavone P, Praticò AD, Ruggieri M, Verrotti A, Castellano-Chiodo D, Greco
F, et al. Acquired peripheral neuropathy: A report on 20 children. Int J
Immunopathol Pharmacol (2012) 25(2):513–7. doi: 10.1177/039463201202500222

188. Hu MH, Chen CM, Lin KL, Wang HS, Hsia SH, Chou ML, et al. Risk
factors of respiratory failure in children with Guillain-Barré syndrome. Pediatr
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(supplement):80–6. doi: 10.1002/ana.410090713

239. McMillan HJ, Kang PB, Jones HR, Darras BT. Childhood chronic
inflammatory demyelinating polyradiculoneuropathy: Combined analysis of a
Large cohort and eleven published series. Neuromuscular Disord NMD (2013) 23
(2):103–11. doi: 10.1016/j.nmd.2012.09.008

240. Van den Bergh PY, Hadden RD, Bouche P, Cornblath DR, Hahn A, Illa I,
et al. European Federation of neurological Societies/Peripheral nerve society
guideline on management of chronic inflammatory demyelinating
polyradiculoneuropathy: Report of a joint task force of the European federation
of neurological societies and the peripheral nerve society - first revision. Eur J
Neurol (2010) 17(3):356–63. doi: 10.1111/j.1468-1331.2009.02930.x

241. Mahdi-Rogers M, Brassington R, Gunn AA, van Doorn PA, Hughes RA.
Immunomodulatory treatment other than corticosteroids, immunoglobulin and
p l a sm a e x c h a n g e f o r c h r o n i c i n fl amma t o r y d emy e l i n a t i n g
polyradiculoneuropathy. Cochrane Database systematic Rev (2017) 5(5):
Cd003280. doi: 10.1002/14651858.CD003280.pub5
Frontiers in Immunology 21
242. Querol L, DeSeze LD,T, Rao H, Rivner M, Hartung PK,P, Shimzu S, et al.
Rosanolixizumab in chronic inflammatroy demyelinating polyradiculoneuropathy;
a randomized , subject-blind, investigator-blind, placebo controlled phase 2a trial. J
Peripheral Nervous system (2022) 27(53):S110–S1.

243. Iijima M, Yamamoto M, Hirayama M, Tanaka F, Katsuno M, Mori K, et al.
Clinical and electrophysiologic correlates of ivig responsiveness in cidp. Neurology
(2005) 64(8):1471–5. doi: 10.1212/01.Wnl.0000158680.89323.F8

244. Astrom K-E, Waksman BH. The passive transfer of experimental allergic
encephalomyelitis and neuritis with living lymphoid cells. J Pathol Bacteriol (1962)
83:89–106. doi: 10.1002/path.1700830112

245. Mao M, Fan W, Zheng Y, Qi P, Xi M, Yao Y. Upregulation of n-type
voltage-gated calcium channels induces neuropathic pain in experimental
autoimmune neuritis. Evid Based Complement Alternat Med (2022)
2022:8547095. doi: 10.1155/2022/8547095

246. Szepanowski F, Winkelhausen M, Steubing RD, Mausberg AK,
Kleinschnitz C, Stettner M. Lpa(1) signaling drives schwann cell dedifferentiation
in experimental autoimmune neuritis. J Neuroinflamm (2021) 18(1):293.
doi: 10.1186/s12974-021-02350-5

247. Klimas R, Sgodzai M, Motte J, Mohamad N, Renk P, Blusch A, et al. Dose-
dependent immunomodulatory effects of bortezomib in experimental autoimmune
neuritis. Brain Commun (2021) 3(4):fcab238. doi: 10.1093/braincomms/fcab238

248. Pitarokoili K, Bachir H, Sgodzai M, Grüter T, Haupeltshofer S, Duscha A,
et al. Induction of regulatory properties in the intestinal immune system by
dimethyl fumarate in Lewis rat experimental autoimmune neuritis. Front
Immunol (2019) 10:2132. doi: 10.3389/fimmu.2019.02132

249. Liu S, Liu Y, Xiao Z, Pan S, Gong Q, Lu Z. Th17 cells and their cytokines
serve as potential therapeutic target in experimental autoimmune neuritis. Brain
Behav (2019) 9(12):e01478. doi: 10.1002/brb3.1478

250. Xue Y, Yin P, Li G, Zhong D. Transcriptomes in rat sciatic nerves at
different stages of experimental autoimmune neuritis determined by rna
sequencing. Clin Exp Immunol (2019) 198(2):184–97. doi: 10.1111/cei.13354

251. Xu L, Li L, Zhang CY, Schluesener H, Zhang ZY. Natural diterpenoid
oridonin ameliorates experimental autoimmune neuritis by promoting anti-
inflammatory macrophages through blocking notch pathway. Front Neurosci
(2019) 13:272. doi: 10.3389/fnins.2019.00272

252. Jin T, Yu H, Wang D, Zhang H, Zhang B, Quezada HC, et al. Bowman-birk
inhibitor concentrate suppresses experimental autoimmune neuritis Via shifting
macrophages from M1 to M2 subtype. Immunol Lett (2016) 171:15–25.
doi: 10.1016/j.imlet.2016.01.004

253. Shen D, Chu F, Lang Y, Zheng C, Li C, Liu K, et al. Nuclear factor kappa b
inhibitor suppresses experimental autoimmune neuritis in mice Via declining
macrophages polarization to M1 type. Clin Exp Immunol (2021) 206(1):110–7.
doi: 10.1111/cei.13637
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