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Innate immune cells in the tumor microenvironment (TME) mainly include

macrophages, neutrophils, natural killer cells, dendritic cells and bone marrow

derived suppressor cells. They play an anti-tumor or pro-tumor role by

secreting various cytokines, chemokines and other factors, and determine

the occurrence and development of tumors. Comprehending the role of

innate immune cells in tumorigenesis and progression can help improve

therapeutic approaches targeting innate immune cells in the TME, increasing

the likelihood of favorable prognosis. In this review, we discussed the cell

biology of innate immune cells, their role in tumorigenesis and development,

and the current status of innate immune cell-based immunotherapy, in order

to provide an overview for future research lines and clinical trials.
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Introduction

The tumor microenvironment (TME) is a complex environment, mainly including

tumor cells and their surrounding immune cells, tumor-related fibroblasts, vascular

endothelial cells, etc. These cellular interactions enable tumor cells to evade immune

surveillance, and are the cytological mechanism of tumor progression and metastasis.

There is accumulating evidence that innate immune cells (macrophages, neutrophils,

natural killer cells, dendritic cells and bone marrow-derived suppressor cells) and

adaptive immune cells (T cells and B cells) are important components of the TME,

which are involved in oncogenesis and tumor progression. In particular, innate immune

cells can functionally shape their microenvironment by secreting various cytokines,

chemokines, and other factors, affecting tumor survival and development. In this review,
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we summarized the origin and phenotype of innate immune cells

in the TME, their role in tumorigenesis and development, and

the immunotherapy for tumor suppression based on innate

immune cells.
Macrophages

Origin and phenotype

In humans, peripheral blood monocytes form two major

populations: CD14hi CD16lo and CD14lo CD16hi. In response to

chemokines and growth factors produced by stromal and tumor

cells in the tumor microenvironment, peripheral blood

monocytes are locally recruited and differentiate into tumor-

associated macrophages (TAMs). As a kind of innate immune

cells in TME, TAM can be polarized into two types, M1 and M2.

“M1” is induced by lipopolysaccharide (LPS) and interferon

(IFN), and plays an anti-tumor effect. While type “M2” is

induced by Interleukin-4 (IL-4) or Interleukin-13 (IL-13), and

has a tumor-promoting effect (1). During carcinogenesis,

macrophages initially exhibit antitumor M1-like polarization

to eliminate more tumor cells. However, with tumor

progression, macrophages polarize towards M2-like,

promoting tumor development. Studies have shown that well-

differentiated TAMs are associated with poor prognosis and

decreased overall survival (2).
The role of TAMs in the process of
tumor development

TAMs in the TME promote tumor progression in different

ways, such as stimulating angiogenesis and lymphangiogenesis,

inducing proliferation and epithelial-mesenchymal transition

(EMT) of cancer cells, promoting destruction of basement

membrane and remodeling of extracellular matrix (ECM),

and inducing immunosuppression of immune cells with anti-

tumor effects. For instance, M2-derived vascular endothelial

g r ow t h f a c t o r -A (VEGF -A ) c on t r i b u t e s t o t h e

neovascularization and inflammatory cell recruitment at

tumor sites in a mouse model of skin cancer (3). Reports

about Merkel cell carcinoma, a highly malignant cutaneous

neuroendocrine tumor, indicated that M2 expresses high levels

of vascular endothelial growth factor-C (VEGF-C), which can

promote lymphangiogenesis (4). Moreover, STAT3 and STAT6

cooperating with cathepsins secreted by macrophages, can

disrupt the basement membrane and reshape the

extracellular matrix (ECM), thereby enhancing tumor

invasion and metastasis (5). In addition, macrophages can

also inhibit the function of anti-tumor immune cells. For

example, macrophages with the expression of PD-L1/PD-L2

and CD80/CD86, bind to PD-1 and CTLA4, leading to
Frontiers in Immunology 02
impairment of TCR signaling and suppression of cytotoxic

functions of T cells, and promoting tumor evolution (6).

Although TAMs mainly play tumorigenic roles, they can

exert anti-tumor effects at times. For instance, non-classically

patrolled monocytes are actively recruited to lung metastases in a

CX3CR 1-dependent manner, where they eliminate tumor

substances, recruit and activate natural killer (NK) cells,

thereby preventing tumor cell metastasis (7). Therefore, only

by comprehending the role of macrophages in the TME on

tumor progression, can it be better utilized in clinical

treatment (Figure 1).
The role of macrophages in
tumor immunotherapy

At present, the researches on macrophage immunotherapy

mainly include: immune checkpoint inhibitors, monoclonal

antibodies, cell adoptive therapy, small molecule inhibitors,

etc, aiming to directly reduce the numbers, prevent TAMs

recruitment, enhance the phagocytic killing ability or target

the surface molecule of TAMs.

Studies have found that certain drugs such as emactuzumab

and IMC-CS4 can inhibit tumor development by reducing the

number of macrophages (8, 9). In addition, primary tumors

express CCL2 and CCR2, recruiting TAM. Therefore, blocking

CCL2-CCR2 could inhibit TAM recruitment. CCR2 inhibitor

(PF-04136309) and Dual CCR2/CCR5 antagonists (BMS-

813160) have shown efficacy in preclinical data, but the results

of clinical studies are dismal (10, 11). In addition, it was found

that the phagocytosis of TAM was enhanced by immune

checkpoint inhibitors such as PD-1/PD-L1 inhibitors, CD47

inhibitor (Hu5F9-G4), CD40 antibody (selicrelumab), and

trastuzumab, reduced tumor burden (12–15). Furthermore,

small molecule inhibitors inhibit tumors by targeting

molecules associated with macrophages. For example,

inhibitors targeting the indoleamine 2, 3-dioxygenase (IDO)

molecule on the surface of macrophages have been tested in

clinical trials with promising results (16). Finally, adoptive

therapy can inhibit tumor progression as well. Klichinsky et al.

discovered that single infusion of human chimeric antigen

receptor-macrophages (CAR-Ms) reduces tumor burden and

prolongs overall survival in two xenograft mouse models of solid

tumors (17).
Neutrophils

Origin and phenotype

Neutrophils originate from hematopoietic stem cells and

can be released from the bone marrow into the circulation after

maturation. They are the most abundant leukocytes in the
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human circulation. In response to tissue injury and infection,

neutrophils overflow from the circulation into tissues under

the guidance of several cytokines. They can secrete

inflammatory cytokines, release neutrophil extracellular traps

(NETs), and phagocytose invading pathogenic microorganisms

at the site of damage tissue (18). In the context of cancer,
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neutrophil migration to tumor tissue is regulated by the

combined effects of granulocyte colony-stimulating factor (G-

CSF), interleukin-17 (IL-17), and neutrophil chemokines.

Neutrophils are transformed into tumor-associated

neutrophils (TANs) after migrating into tumor tissues. TANs

were identified as Ly6G+CD11b+ cells (19), classifing as either
FIGURE 1

Macrophages in the tumor microenvironment. Other cells in the tumor microenvironment can affect the polarization and function of
macrophages. Under the action of some cytokines, macrophages are polarized into two types, M1 and M2. M1 plays an anti-tumor role, and M2
plays a pro-tumor role. Ab, denotes antibodies; IC, denotes immune complexes; and LT, stands for leukotrienes.
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an N1 (tumor suppressing) or N2 (tumor promoting)

phenotype (20).
The role of TANs in the process of
tumor development

Stimulated by various factors in the TME, TANs can secrete

a large number of growth factors, chemokines and cytokines to

promote carcinogenesis and enhance the tumor invasion. For

instance, in human pancreatic ductal adenocarcinoma (PDAC)

tissues, TANs-derived transforming growth factor-beta (TGF-b)
induces EMT in human lung cancer tissues through the

transforming growth factor-beta (TGF-b)/Smad pathway,

contributing to carcinogenesis (21, 22). In addition, in human

breast cancer cell lines, neutrophils can secrete the cytokine

oncostatin-M (OSM) under the induction of granulocyte-

macrophage colony stimulating factor (GM-CSF), and OSM

promotes vascular endothelial growth factor (VEGF)

expression and increases the invasive ability of tumor cells (23,

24). On the other hand, in addition to the production of various

factors, neutrophils can also release certain substances from their

own stores, such as myeloperoxidase (MPO), neutrophil elastase

(NE) and matrix metalloproteinases (MMPs), which affect the

development of tumors. It has been reported that neutrophil-

derived MPO can produce hypochlorous acid in large quantities,

and induce mutations in adjacent epithelial cells by enhancing

the M1dG pathway (25). Furthermore, TANs-derived MMPs,

especially MMP-9, enhance tumor angiogenesis and tumor cell

infiltration (26, 27).

Neutrophils also play a certain tumor suppressor in some

cases. It has been shown that neutrophils can exert cytotoxic

effects and inhibit tumor growth by producing H2O2 in mouse

breast cancer models (28). In addition, neutrophils express Fcg
receptors that mediate the elimination of cancer cells via the

antibody-dependent cell cytotoxicity (ADCC) mechanism (29,

30). For example, in the study of lymphoma treatment in mice, it

was found that the neutrophil depletion reduces the efficacy of

anti-CD52 monoclonal antibody (mAb) and anti-CD20 mAb

(31). In addition, natural killer (NK) cells and macrophages have

also been identified as potential effector cells in anti-CD20 mAb

mediated tumor regression (32–34) (Figure 2).
The role of TANs in
tumor immunotherapy

TANs are one of the cellular targets of immunotherapy.

Current research about targeted TANs mainly focuses on

reducing the number of neutrophils, inhibiting the

accumulation of neutrophils at tumor sites and changing the

functional phenotype of neutrophils.
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This idea of depleting neutrophil numbers has been

implemented in preclinical models. However, this method will

reduce the circulating neutrophils, which makes the host

susceptible to infection, so it is limited in clinical application

(35–37). Moreover, neutrophils will migrate toward the tumor in

response to chemokines, especially CXCR2, CXCR4 and G-CSF/

IL-17 axes. Therefore, targeting these molecules can reduce the

accumulation of TANs at tumor sites and inhibit tumor

progression. Studies indicate that inhibition of CXCR2

decreases TAN accumulation, reduces lung tumorigenesis, and

inhibits PDAC metastasis in mouse models (38, 39). In addition,

considering the plasticity of TAN, such as tumorigenic N2-like

and antitumoral N1-like phenotypes, modification of TAN

phenotype might be a more desirable anticancer therapy. This

hypothesis has been supported by a mathematical model that

achieves the phenotypic conversion of TANs from N2 to N1

through the use of TGF-b inhibitors for antitumor purposes

(40). Finally, the suppressive effects of certain drugs targeting

neutrophils, such as INCB001158 (Incyte Corporation) and

IPH5401 (Innate Pharma), were found to reduce tumor

burden (41, 42).
Natural killer cells

Origin and phenotype

Natural killer (NK) cells, derived from pluripotent

hematopoietic stem cells in the bone marrow and developed

from lymphoid progenitor cells and NK/T cell precursors,

belong to the innate lymphoid cell family and play a key role

in defense against viruses and tumors. NK cells can be found

both in the blood and in various lymphoid and non-lymphoid

organs. Traditionally, NK cells in peripheral blood can be

subdivided into two main subsets: CD56brightCD16dim and

CD56dimCD16bright. The former is considered immature and

cytokine producers, while the latter shows more maturity and is

the most cytotoxic (43).
The role of NK cells in the process of
tumor development

The effect of NK cells on tumors is mainly depends on the

receptors expressed on their surface. These receptors fall into

two main categories: activating receptors (such as NKRs) and

inhibitory receptors (such as KIRs), which control the activation

of NK. In healthy cells, there is no or low expression of ligands

for NK cell activating receptors, and NK cells are inhibited (44).

In contrast, tumorigenic or virus-infected cells express high

levels of ligands for NK cell activating receptors, and NK cells

are activated (45).
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In the TME, activated NK cells play a killing role on tumor

cells, mainly through two mechanisms: direct killing effect

(natural cytotoxicity) and ADCC pathway. In the former, NK

cells can recognize activating ligands on the surface of tumor

cells. In the ADCC pathway, NK cell receptors bind the Fc
Frontiers in Immunology 05
portion of IgG antibodies to antigenic molecules on the surface

of target cells. Both of these approaches lead to phosphorylation

of immunoreceptor tyrosine activation moieties (ITAMs) in the

cytoplasm domain of receptors, which initiates NK cell

activation. Activated NK cells can kill tumor cells by directly
FIGURE 2

TANs in the tumor microenvironment. TANs are polarized into N1 and N2, in which N1 plays an anti-tumor role and N2 plays a pro-tumor role.
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releasing cytotoxic granules containing granzymes and perforin

or by inducing death receptor-mediated apoptosis via the

expression of Fas ligand or tumor necrosis factor-related

apoptosis-inducing ligand (45, 46). In addition to the ITAM

pathway, there is also the PI3K pathway associated with its

killing ability (47, 48). In addition to killing tumor cells in the

above two ways, NK cells secrete chemokines and cytokines to

play an immunomodulatory function as well. studies indicated

that NK cells can also produce chemokines, C-C-motif ligands

such as CCL3, CCL4, CCL5, X-C-motif chemokine ligand 1

(XCL1) and C-X-C-motif chemokine ligand 8 (CXCL8), which

attract a variety of immune cells to transformed tissues and

inhibit tumor progression (49). However, in addition to playing

an anti-tumor role, certain subtypes of NK cells may contribute

to tumor development. For example , IL6- induced

overexpression of CD39 on NK cells is associated with poor

prognosis in ESCC (50). In addition, some studies have shown

that the poor prognosis of some cancers such as lymphoma,

breast cancer and gastric cancer is related to natural killer cells,

which may be related to the limited killing ability of NK cells.

The detailed mechanism needs to be further explored (51–

53) (Figure 3).
Frontiers in Immunology 06
The role of NK cells in
tumor immunotherapy

In recent years, the research on NK cell immunotherapy has

flourished, and the latest progress mainly focuses on cytokine

supplementation, monoclonal antibodies, modification of

internal signaling pathways, adoptive transfer of NK cells and

genetic engineering, etc.

Supplementation of cytokines such as IL-2, IL-15, IL-18 and

IL-21 can improve the activity of NK cells and enhance their

killing ability on tumors. For example, recombinant human IL-

15 and its agonist ALT803 have great therapeutic efficacy in

metastatic lung cancer (54, 55). ALT-803 combined with anti-

PD-1 monoclonal antibody shows better therapeutic potential

than ALT803 alone (56, 57). Furthermore, in one study, NK-cell

dysregulation and cytotoxicity were restored in patients with

mesothelial carcinoma treated with the monoclonal antibody

against CTLA4, telemumab, indicating that blockade of CTLA4

prevents NK-cell dysfunction, slows tumor growth, and

improves overall survival among patients with tumors (58). In

addition, as an option to enhance autoimmunity, adoptive

transfer of NK cells has been used for the treatment of certain
FIGURE 3

Natural killer cells in the tumor microenvironment. Natural killer cells interact with other immune cells to exert anti-tumor effects.
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types of cancers, such as medulloblastoma and ependymoma in

children. In this study, medulloblastoma upregulates ligands of

NK cell-activating receptors such as NKG2D and natural

cytotoxic receptors (NCRs), thereby inducing NK cell-

mediated cytotoxicity and medulloblastoma cell apoptosis,

demonstrating the feasibility and safety of intraventricular

infusion of autologous NK cells. It also provides a theoretical

basis for local-regional delivery of NK cells (59). Finally, CAR-

NK, which is genetically modified by chimeric antigen receptors

(CARs) on immune cells, directly targets tumor-specific

antigens, and has shown promising results in preclinical

studies in ovarian, breast, prostate, and colon cancers (60).
Dendritic cells

Origin and phenotype

Dendritic cells (DCs) are typical antigen-presenting cells

(APC) in the immune system, which connect the adaptive and

innate immune systems to initiate and maintain T cell-mediated

antitumor immune responses. DCs originate from common

myeloid progenitor cells (CMPs). Driven by the expression of

the transcription factor Nur77, CMPs differentiate into

monocytic dendritic cells (moDCs) under inflammatory

conditions (61–63). In the absence of Nur77, CMPs

differentiate into common dendritic cell progenitors (CDPs),

resulting in plasmacytoid dendritic cells (pDCs) and

conventional dendritic cells (cDCs) (61). In addition, cDCs

can be further divided into two subsets termed type I (cDC1)

and type II (cDC2) conventional DCs (64). CD123, CD303,

CD304, and CD45RA are expressed in pDCs. cDC1 and cDC2

express CD141, DEC205,Clec9A, XCR1 and CD1c,CD1a,

CD103, respectively (65).
The role of DCs in the process of
tumor development

DCs can continuously take up antigens within the TME and

sense danger signals through pattern recognition receptors

(PRRs) to recognize damage-related molecular patterns

(DAMPs) from malignant cells. These signals enable DCs to

initiate tolerance and immunogenicity properties in a

coordinated, and subset-specific manner in general (66).

Therefore, in order to better understand the role of DCs in the

TME, further exploration is needed on the function of

DC subsets.

As the most extensively studied subset of DCs, cDC1 can

phagocytose exogenous antigens and other cellular debris released

by tumors, and cross-present on major histocompatibility complex

class I (MHC-I) to prime tumor-specific CD8+T cells (67). In

addition, cDC1 can interact with natural killer (NK) cells to exert
Frontiers in Immunology 07
anti-tumor effects. For example, IL-12 and IL-15 produced by cDC1

can enhance the killing ability of NK cells (68). While natural killer

cells produce cytokines and chemokines, such as XCL1 and CCR5,

to recruit more cDC1 to TME (69). The subset of cDC2 have strong

heterogeneity and functional diversity, thus their role in cancer has

not been clarified. However, several researches have also indicated

that cDC2 are involved in cross-presenting antigens and driving T-

cell responses (70, 71). The subset of pDCs is mainly involved in

antiviral responses. However, it has been found that pDCs can

induce the expression of programmed cell death protein 1 ligand 1

(PD-L1) or granzyme B in malignant tumors, regulating Treg cells

to drive immune tolerance (72–74). The role of MoDC in tumors is

not well characterized, and may be related to cross-presentation of

relevant antigens and initiation of CD8+T cell responses. In the

melanoma mouse study, tumor-derived MoDCs can efficiently

cross-present tumor antigens and are able to induce significant

CTL proliferation (75) (Figure 4).
The role of DCs in
tumor immunotherapy

With accumulating evidence that DCs play a critical role in

initiating antitumor immunity, there has been increasing

interest in improving the status and numbers of DCs to

suppress tumor progression. Currently, the following immune-

related methods are mainly being applied: activation of DCs in

vivo, blocking inhibitory signals, in vivo expansion, DC vaccines

and so on.

Activation in vivo is achieved by providing exogenous

activation signals, suggesting that DCs can be activated with

specific agonists to shape the optimal antitumor response.

Furthermore, blocking the inhibitory signals of cDCs is similar

to activation in vivo. One of the most common examples is the

application of VEGF inhibitors, which have been demonstrated

to enhance DC maturation in patients (76, 77). In addition,

tumors can be suppressed by increasing the number of DCs. For

instance, systemic injection of the growth factor fms-like

tyrosine kinase 3 ligand (Flt3L) has been shown in preclinical

studies to cause expansion and activation of the cDC1

population, dramatically enhancing the clinical response to

checkpoint and BRAF blockade and significantly delaying

tumor growth (78). Alternatively, targeting DC by vaccines is

another therapeutic option. The most common one is the whole-

cell vaccines. For example, DCVax-L, a DC vaccine against

glioblastoma, which has been tested in phase III clinical trials

and has shown prolonged overall survival in patients (79). In

addition, another example is that a neoantigen dendritic cell

vaccine combined with anti-CD38 and CpG can produce anti-

tumor immunity against immune checkpoint therapy resistant

mouse lung cancer cell lines, which further develops DC vaccine

therapy (80). DC vaccine is a promising immunotherapy

method, and relevant clinical trials are ongoing (Table 1).
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Myeloid-derived suppressor cells

Origin and phenotype

Myeloid derived suppressor cells (MDSCs) are a major

regulatory cell population originating from myeloid progenitor

cells that can be activated by tumor-derived factors in the TME.

The diversity of phenotypic characteristics of MDSC subsets is

determined by the differences in soluble factors that mobilize

MDSCs. MDSCs can be roughly divided into three subgroups:

polymorphonuclear MDSCs (PMN-MDSCs), monocyte MDSCs

(Mo-MDSCs), and early MDSCs(E-MDSCs). The phenotypes of

Mo-MDSCs were CD11b+, LY6Chi, and LY6G-; PMN-MDSCs

showed CD11b+, LY6Clo, and LY6G+ phenotypes; while E-

MDSCs expressed CD13-, CD14-, and CD33+ phenotypes (89).

Notably, both of Mo-MDSCs and PMN-MDSCs present in the

TME have enhanced inhibitory phenotypes compared with

MDSCs present in peripheral lymphoid organs, which is due
Frontiers in Immunology 08
to the increased expression of inhibitory molecules by MDSCs in

the TME.
The role of MDSCs in the process of
tumor development

As one of the components of the TME, MDSCs have strong

immunosuppressive potential. On the one hand, MDSCs

establish an immunosuppressive TME through the production

of various metabolites such as ROS and nitric oxide, which

inhibit the antitumor function of T cells and NK cells. For

example, MDSCs induce the production of IDO and

immunosuppressive cytokines that promote tumor evolution

by suppressing cytotoxic T lymphocytes, DCs and NK cells,

and enhancing the effects of Tregs (90). For example, MDSC

inhibits effector T cell proliferation and antitumor activity by

producing ROS, arginase, and NO (91–93). MDSC inhibits the
FIGURE 4

Dendritic cells in the tumor microenvironment. Interactions between dendritic cells and other immune cells in the tumor microenvironment,
where yellow arrows represent anti-tumor effects and blue arrows represent pro-tumor effects.
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TABLE 1 Drugs and clinical therapies targeting innate immune cells.

Innate immune
cell types Mechanism Drugs or therapeutics in

immunotherapy ClinicalTrails.gov Identifier

Macrophages Reducing the numbers Emactuzumab (RG7155)(8) NCT02323191

IMC-CS4 (9) LY3022855

Preventing recruitment CCR2 inhibitor
(PF-04136309)(10)

NCT01413022

Dual CCR2/CCR5 antagonists
(BMS-813160)(11)

NCT03496662, NCT03767582, NCT04123379,
NCT02996110

Enhancing the phagocytic killing
ability

PD-1/PD-L1 inhibitors(14) Marketed

CD47 inhibitor (Hu5F9-G4)(12) NCT04541017, NCT02953782

CD40 antibody (Selicrelumab)(13) NCT02304393, NCT03424005, NCT03193190,
NCT03555149

Trastuzumab(15) Marketed

Targeting the surface molecules IDO inhibitors(16) NCT02073123

Others CAR-M(17) Preclinical studies

Neutrophils Reducing the numbers Ly6G(35, 36) Preclinical studies

TARIL-R2 (DS-8273a)(37) NCT02991196

Inhibiting the accumulation at
tumor sites

Reparixin(38) NCT02001974

CD47-SIRPa antibody(39) NCT02216409, NCT03717103, NCT02367196…

Changing the functional
phenotype

Galunisertib (LY2157299)(40) NCT02452008, NCT02688712, NCT04605562

Fresolimumab (GC1008)(40) NCT01472731, NCT01112293

Targeting the inhibitory effect INCB001158 (Incyte Corporation)
(41)

NCT02903914, NCT03314935

IPH5401 (Innate Pharma)(42) NCT03665129

NK cells Enhancing killing ability ALT803(54, 55) NCT01885897, NCT01885897

CTLA-4(58) NCT01843374

Others NK cell adoptive immunotherapy
(59)

NCT02271711

CAR-NK(60) NCT00995137, NCT01974479, NCT02742727,
NCT02944162, NCT02892695, NCT02839954

DCs Activation in vivo VEGF inhibitors(73, 74) Preclinical studies

Expansion in vivo Flt3L(75) Preclinical studies

DC vaccines DCVax-L(76, 77) NCT00045968

MDSCs Inducing the differentiation into
mature myeloid cells

ATRA(81, 82) NCT00617409

Reducing/Consuming the numbers 5-Fu, paclitaxel, cisplatin and
gemcitabine(83–85)

Marketed

tyrosine kinase inhibitors(86, 87) NCT02868255

Inhibiting the immunosuppressive
activity

COX-2/PGE2 inhibitors(88) Preclinical studies
F
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cytotoxicity of natural killer (NK) cells by inhibiting IL-2-

mediated activation of NK cells or direct secretion of IL-10

(81, 82, 94). MDSC can also induce Treg differentiation and

promote tumor development by secreting IL-10 and TGF-b (83).
On the other hand, MDSCs contribute to tumor development by

creating a premetastatic niche that promotes neovascular

invasion and tumor cell growth. For instance, MDSCs can

secrete an important pro-angiogenic factor (Bv8) at the tumor

sites to promote tumor angiogenesis (84). In addition, in a

mouse melanoma model, PMN-MDSCs were found to

infiltrate primary tumors and induce epithelial-mesenchymal

transition (EMT) through EGF and HGF signaling pathways to

promote cancer cell spread under the induction of chemokine

CXCL5 (85) (Figure 5).
The role of MDSCs in
tumor immunotherapy

Since MDSCs have immune-suppressing effects in a variety

of cancers, altering these cellular inhibitory effects is considered

a promising approach for cancer treatment. Several strategies are

being developed that can be broadly classified into four

categories: inducing the differentiation of MDSCs into mature

myeloid cells; reducing/consuming the number of MDSCs;

blocking the development of MDSCs; inhibiting the

immunosuppressive activity of MDSCs.
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All-trans retinoic acid (ATRA) has been identified as a drug

that induces the differentiation of MDSCs into mature myeloid

cells. ATRA can bind to retinoic acid receptors and block signal

transduction, leading to the differentiation and maturation of

MDSCs. For example, in patients with metastatic renal cancer,

ATRA combined with IL-2 resulted in significantly lower MDSCs

and improved immune responses compared with untreated

patients (86, 97). In addition, several chemotherapeutic agents

such as 5-fluorouracil (5FU), paclitaxel, cisplatin and gemcitabine

can deplete MDSCs and enhance the antitumor immune activity

of T cells (87, 88, 98). Alternatively, it has also been reported that

tyrosine kinase inhibitors reduce the number of MDSCs in renal

cell carcinoma (RCC) patients and hepatocellular carcinoma

(HCC) by blocking VEGF, c-KIT, and STAT-3 (99–101).

Finally, inhibiting the immunosuppressive activity of MDSCs.

For instance, cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2)

axis signaling antagonism has effectively reduced MDSCs

recruitment and differentiation, and inhibited the production of

MDSCs related inhibitors such as arginase 1 and ROS, thereby

controlling tumor progression (102).
Conclusion and prospects

Innate immune cells in TME play an important role in the

occurrence and development of tumors, and even show dual

effects of tumor promotion and tumor inhibition under different
FIGURE 5

MDSCs in the tumor microenvironment. Interaction of MDSC with other immune cells. Yellow arrows represent anti-tumor effects and blue
arrows represent pro-tumor effects. (95, 96).
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microenvironments and stimulators. The tumor-promoting

effect shows that they can increase the stemness of tumor cells,

promote angiogenesis, induce drug resistance, inhibit immunity

and promote tumor growth through phenotypic changes and

secretion of certain substances. Each link may become the target

for clinical treatment. We summarize some drugs and

treatments that target innate immune cells. (Table 1). An in-

depth comprehending on the role of innate immune cells and

related molecules will not only provide important insights into

the biological behavior of different types of tumors, but also

provide a necessary foundation for the development of new

innate immune cell-based therapies to manage and control the

cancers. Although the current immunotherapy has achieved vast

strides both in improving patients’ survival and their quality of

life, more and more problems have emerged, such as the narrow

anti-tumor spectrum, increased adverse reactions, and easy drug

resistance, etc. These defects limit the practical application of

immunotherapy in the clinic. Meanwhile, the complex

components and heterogeneity of the TME also pose great

challenges for immunotherapy. In the future, the mechanism

of immune cells on tumor development should be further

explored, the heterogeneity of TME should be deeply

understood and studied, more accurate tumor markers should

be sought, new methods of combination therapy should be

explored. Thereby, formulating the more accurate and effective

individualized strategies for treatment.
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