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In the broad range of human diseases, thrombo-inflammation appears as a

clinical manifestation. Clinically, it is well characterized in context of superficial

thrombophlebitis that is recognized as thrombosis and inflammation of

superficial veins. However, it is more hazardous when developed in the

microvasculature of injured/inflamed/infected tissues and organs. Several

diseases like sepsis and ischemia-reperfusion can cause formation of

microvascular thrombosis subsequently leading to thrombo-inflammation.

Thrombo-inflammation can also occur in cases of antiphospholipid

syndrome, preeclampsia, sickle cell disease, bacterial and viral infection. One

of the major contributors to thrombo-inflammation is the loss of normal anti-

thrombotic and anti-inflammatory potential of the endothelial cells of

vasculature. This manifest itself in the form of dysregulation of the

coagulation pathway and complement system, pathologic platelet activation,

and increased recruitment of leukocyte within the microvasculature. The role

of platelets in hemostasis and formation of thrombi under pathologic and non-

pathologic conditions is well established. Platelets are anucleate cells known

for their essential role in primary hemostasis and the coagulation pathway. In

recent years, studies provide strong evidence for the critical involvement of

platelets in inflammatory processes like acute ischemic stroke, and viral

infections like Coronavirus disease 2019 (COVID-19). This has encouraged

the researchers to investigate the contribution of platelets in the pathology of

various thrombo-inflammatory diseases. The inhibition of platelet surface

receptors or their intracellular signaling which mediate initial platelet

activation and adhesion might prove to be suitable targets in thrombo-

inflammatory disorders. Thus, the present review summarizes the concept

and mechanism of platelet signaling and briefly discuss their role in sterile and

non-sterile thrombo-inflammation, with the emphasis on role of platelets in

COVID-19 induced thrombo-inflammation. The aim of this review is to

summarize the recent developments in deciphering the role of the platelets

in thrombo-inflammation and discuss their potential as pharmaceutical targets.
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1 Introduction

Platelets originate from megakaryocytes as anucleate cells

equipped with their own survival machinery to function in

circulation. The main hemostatic role of platelets is to form

the platelet plug at the site of vascular lesion or injury, to limit

the blood loss and thus maintain hemostasis. Importantly, under

pathological conditions, the dysregulated intravascular

activation and aggregation of platelets along with activation of

local coagulation factors lead to formation of vessel-occluding

thrombi. This series of events may result in ischemia and

infarction of affected tissues. Increasing number of reports

revealing the complexity associated with platelet signaling

pathways have encouraged researchers to dig deeper into

exploring the role of platelets beyond hemostasis. Prior to last

few decades, platelets were not studied for their role in the

pathogenesis of infectious diseases. Their key role was thought to

be limited as primary effectors of hemostasis and thrombosis,

with very few studies exploring platelets in host immune

response during various infectious diseases.

In the past two decades, platelets have been extensively

explored for their involvement in different physiological

processes including inflammation, vascular permeability, and

tissue repair (1–5). There is a growing number of evidence from

literature that emphasize on the role of platelets as main sentinel

and effector cells involved in bridging hemostasis, inflammation,

and the immune system. The role of platelets now extends

beyond their traditional role as marginal mediators of

hemostasis and thrombosis, as the contributors to diverse

immunological processes. The recent investigations provide

substantial evidence for their role against microbial threats,

modulating antigen presentation, enhancement of adaptive

immune responses, recruitment and promotion of innate

effector cell functions. Platelets until last decade were

underappreciated orchestrator of the immune system but now

emerged as crucial players during infectious diseases too, as

recent studies document the role of platelets in inflammation,

hemostasis, and maintenance of vascular integrity during

infection (3, 6–10). As platelets through different receptors can

respond to both PAMPs (Pathogen associated molecular

patterns) and DAMPs (Damage associated molecular patterns)

released during non-sterile (infection) and sterile inflammation,

it becomes pertinent to investigate their role and mechanism of

action in both kind of inflammation. Investigating the role of

platelets in both sterile and non-sterile inflammation will not

only shed the light on shared molecular mechanism but can also

reveal novel therapeutic targets.

The platelets are highly sensitive to environmental cues.

These environmental stimuli tightly regulate not only

hemostatic and immunomodulatory functions of platelets but

also their interaction with the vasculature (endothelium) and

components of innate immunity. Platelets can sense

intravascular invasion of pathogen, whether its parasitic,
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bacterial, or viral infection, either directly through receptors

namely integrin receptors and pattern recognition receptors

(PRRs), or through pathogen: immunoglobulin complexes via

Fc and complement receptors. Platelets can also respond to

pathogens indirectly via their interactions with leukocytes and

the vascular endothelium at the area of local injury or

inflammation. Recognition of the pathogen by platelets leads

to their activation. The activated platelets through various

possible mechanisms can directly kill or sequester the

pathogen or orchestrate pathogen clearance by activating

neutrophils and macrophages. Platelet neutrophil interaction

promotes the formation of neutrophil extracellular traps (NETs)

as part of the innate immune response. However, NETs can

enhance platelet activation, platelet aggregation and formation

of microthrombi. Intravascular platelet activation can occur as

an aberrant response and if unchecked may lead to the

exacerbation of inflammation, promoting the endothelial

dysfunction and thrombosis. Consequently, these events can

be injurious to the host and cause thrombo‐inflammation (11).

The term thrombo-inflammation broadly describes a

phenomenon that exhibit thrombus formation as the result of

crosstalk between inflammation including immune cells and

coagulation, which encompasses an array of diseases (deep vein

thrombosis, stroke, atherosclerosis, and infectious diseases). The

concept of thrombo‐inflammation was also used to define the

role of the platelets in inflammatory response followed by

cerebral ischemia‐reperfusion injury (12).

With the increase in the breadth of our knowledge regarding

the complexity of the platelets and their signaling during the last

decade, it is well established now that there is a crosstalk between

hemostasis, thrombosis, and inflammation and they are tightly

interconnected with each other. Importantly, platelets are also

the key effector cells that bridge and link these three processes.

Thus, this narrative review attempts to address the role of

platelets in both sterile and non-sterile thrombo-inflammation

with major focus on role of platelets signaling in viral infection

induced thrombo-inflammation including Coronavirus disease

2019 (COVID-19). Figure 1 summaries the theme of the present

review. The last section also summaries the recent developments

in deciphering the role of the main platelet receptors in

thrombo-inflammation and discuss their potential as potential

pharmacotherapeutic targets. As thromo-inflammation is

common manifestation of both sterile (deep vein thrombosis

[DVT], atherosclerosis and infectious disease [viral and bacterial

infections]), it is important to study how platelets differentially

regulates these processes.

The versatile functions performed by platelets can be

attributed to various receptors present on them. Platelets have

receptors like glycoprotein (GP) Ib-V-IX, GPVI and a2b1 that

aids in adhesion to the damaged vasculature. Platelet surface

receptors that respond to soluble agonists are P2Y12,

thromboxane receptor and protease-activated receptor (PAR)

1 and 4 (13). Together, they belong to the G-protein coupled
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receptor family and mediate the second wave of platelet

activation. Pathogen binding and the cellular activation of

platelets is mediated by receptors like integrins, lectins and

toll-like receptors (TLRs) (14, 15). Immune complexes are

recognized by Fc receptor FcgRIIA present on human platelets.

Infection-associated thrombocytopenia is due to an increase in

platelet activation (16, 17). Activated platelets bind to leukocytes

including neutrophils, monocytes, eosinophils and lymphocytes

which forms heterotypic cell aggregates. Activated platelets also

express P-selectin (CD62P) on their surface and released on

extracellular vesicles (EVs) and harbor an array of cytokines,

such as IL-1b and chemokines, such as RANTES (CCL5) (18).
2 Role of platelets in sterile and
non-sterile inflammation

2.1 Sterile inflammation

2.1.1 Atherosclerosis
In patients with atherosclerosis, which is a thrombo‐

inflammatory disorder, the inflammatory and immune

response to the endothelial dysfunction and oxidized lipids

leads to formation of atherosclerotic plaques. There is

accumulation of platelets and leukocytes at the site of

atherosclerosis, that promotes plaque growth and progression.
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This eventually leads to destabilization of the underlying

endothelial cell (EC) layer resulting in plaque instability/

rupture and exposure of extracellular matrix (ECM) and

procoagulant factors including tissue factor (TF) (19–22).

Intravascular exposure of TF leads to activation of coagulation

and thrombin generation. Platelets respond to ECM exposure

and thrombin (primary activation) generation. In addition,

platelets are also believed to be the initial regulators in the

development of atherosclerotic lesions. They bind to activated

ECs, leukocytes and initiate the transformation of the monocytes

into macrophages. Platelets promote foam cell formation and

internalize oxidized phospholipids. They also recruit progenitor

cells that, depending on conditions, can differentiate into foam

cells or ECs to the site of lesion. Hence, platelets not only

promote progression but also regulate initiation and

development of the atherosclerotic lesions (23). The platelets

are recruited through GPVI‐laminin interaction, on the intact

plaque promoting atheroprogression (24). Plaque rupture at the

site of fissured lesions triggers the recruitment of platelets via

GPVI‐collagen interaction. GPVI is the essential platelet

collagen receptor in atherothrombosis, thus inhibition of either

its extracellular domain or the downstream signaling can inhibit

thrombus formation on atherosclerotic plaque. Janina et al,

showed that anti-GPVI antibodies can inhibit atherosclerotic

plaque-induced platelet aggregation under flow and static

conditions, thus, targeting GPVI-collagen interaction along
FIGURE 1

Diagrammatic summary of Platelet hyperactivation and dysfunction in thrombo-inflammation and potential of standard and emerging anti-
platelet therapies, some of which can act as both anti-thrombotic and anti-inflammatory in their action. (Created with BioRender.com).
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with other antiplatelet therapies in patients with spontaneous

plaque rupture or intervention-associated plaque injury can be

beneficial (25).

The activation of the platelets can also contribute to the

pathogenesis of chronic-vascular inflammation and

atherosclerosis independently of atherothrombosis. Platelets

promote the uptake of oxidated low‐density lipoproteins

(OxLDLs) by monocytes and macrophages, thereby increasing

the monocyte recruitment and their adhesion to the

atherosclerotic or inflamed endothelium. They also secrete

different cytokines/chemokines contributing systemic

inflammatory responses (26). Monocyte recruitment by

activated platelets is mediated through interaction of P‐selectin

with P-selectin glycoprotein ligand-1 (PSGL‐1) and CD40L–

MAC‐1, and via deposition of platelet factor 4 (PF4, CXCL4)

and RANTES on ECs and monocytes (27–31). Moreover, there

are reports which show that PF4 downregulates the athero-

protective genes in human macrophages (32). It is also reported

PF4 increases OxLDL uptake by macrophages, thus exacerbating

atherosclerosis (33). Studies with hyperlipidemic mice and

mouse model of stroke showed that platelet PF4 forms

heterodimers with RANTES, causing increased monocyte

adhesion to ECs. Disruption of this interaction can be an

approach to reduce atherosclerotic plaque formation (34, 35).

Also, the monocyte recruitment and activation via platelets

promote plaque instability, partly by increasing matrix

metallopeptidase 9 production by monocytes (36). Factors

released from activated platelets might also enhance the

endothelial permeability, thus facilitating the accumulation of

lipids within the vessel wall. Patients with atherosclerotic

vascular disease exhibit increased number of platelet-leukocyte

aggregates (PLAs). The elevated number of heterotypic PLAs in

circulation is suggestive of their proinflammatory role in

atherosclerosis, as it is directly corelated with higher risk of

cardiovascular and cerebrovascular diseases associated with

increased ECs activation (37). Due to the crucial role played

by the platelets in thrombo-inflammatory events, the classical

antiplatelet drugs are useful in treating thrombotic

complications in arterial cerebrovascular and cardiovascular

thrombosis including atherosclerosis (38, 39). P2Y12 receptor

antagonists are widely used antiplatelet agents and have

additional anti‐inflammatory properties that are associated

with a decrease in platelet P‐selectin, circulatory PLAs, and

soluble CD40L and RANTES (37). Despite having anti-

thrombotic and anti‐inflammatory effects, these drugs fail to

prevent the progression of already established atherosclerosis in

patients. Therefore, more recently, the therapies that disrupt the

PLAs have gained interest, this includes the inhibitors of P‐

selectin, PSGL‐1, CD40L, and GPIb. The review by Rainger et al.

summarizes the harmful and beneficial outcomes of using above

mentioned inhibitors in atherosclerosis (38). Soluble CD40L is

reported to plays an important role in regulating platelet-

dependent thrombotic and inflammatory responses (40, 41). It
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mediates stimulation-induced platelet release of reactive oxygen

species (ROS) through activation of Akt and p38 mitogen

activated protein kinase (MAPK) signaling pathways that

directs stimulation of nuclear factor kappaB and enhanced

synthesis of CD40L and MCP1 (42). Increased levels of

CD40L and MCP1 leads to adherence of CD40-positive cells,

like platelets, to the vasculature modulating atherothrombosis

(43). Along with atherosclerosis, various cardiovascular diseases

(CVDs) are associated with platelet oxidative stress, thus various

cardiovascular therapeutics explore altering oxidative-

dependent platelet function as preventive or therapeutic

measure. It has been shown that both pravastatin and aspirin

inhibit expression of lectin-like oxidized LDL receptor 1 (LOX-

1) on platelets by favorably affecting release of ROS from

activated platelets (4). Dipyridamole at therapeutically relevant

concentrations, suppresses the formation of ROS in endothelial

cells and platelets thereby improving the cellular redox status

(43). Polymeric flavonoids, alter platelet release of reactive

oxygen intermediates with increased NO release and

attenuated superoxide production, thereby leading to an

immediate attenuation of release of sCD40L an important

inflammatory mediator (44), The polyphenols catechin and

quercetin act synergistically to reduce platelet recruitment via

inhibition of PKC-dependent NAD(P)H oxidase activation,

resulting in downregulation of NO-mediated platelet GPIIb/

IIIa (45).

The use of these inhibitors is presently debatable as some of

them have shown promising results in pre-clinical models, but

clinical trials have been disappointing, and several studies are

still on going. Also, heterogeneity and multifactorial nature of

the atherosclerosis along with engagement of multiple receptors

through disease progression can be held responsible for the

differences observed between patients and experimental

models (46).

2.1.2 Deep vein thrombosis
DVT is a multifactorial disease, dictated by presence of

various genetic and environmental risk factors. It is

characterized by reduction of blood flow, endothelial and

stromal cell activation, and coagulation dysregulation that

eventually leads to thrombus formation in veins. DVT is most

prevalent in the lower proximities i.e., legs under the muscular

fascia of the limbs or in the central deep veins. Vascular

hemostasis and thrombosis are mediated by two major

mechanisms that depends on vascular damage or vessel

structure (47). These two mechanisms are intrinsic and extrinsic

pathways of coagulation mediated by collagen and TF,

respectively. The damage to EC layer during normal hemostasis

may occur which exposes the collagen from the subendothelial

space. Platelets interact with the exposed collagen and von

Willebrand factor (vWF) through their GPVI and GPIb/V/IX

and act as mediators of primary hemostasis. The collagen

exposure results in platelet adhesion and formation of the
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platelet monolayer at the site of vascular injury. The activated

platelets result in recruitment of other circulating platelets via

secreting various aggregatory mediators including thromboxane

A2, ADP, ultra-large vWF (ulvWF) multimers. Coagulation

activation leads to thrombin generation and subsequently

platelet PAR activation. Also, platelet form a 3D structure

through aggregating by their activated GPIIb/IIIa (aIIbb3)
integrins (48). In murine DVT models, initiated by the ligation

of inferior vena cava (IVC), it was reported that the platelets and

leukocytes are recruited to vessel wall prior to thrombus formation

(49, 50). Platelets are either recruited as small aggregates or as

single cells at the site of ligation and bind to the vasculature

forming heterotypic PLAs by their GPIba receptor. The

monocytes assist the DVT progression predominantly by

expressing TF that triggers the extrinsic coagulation pathway

The neutrophils on the other hand aid thrombus formation by

interacting with platelets and releasing NETs (51). The platelet‐

derived high mobility group box 1 (HMGB‐1) is proposed to be

responsible for triggering NETosis in the sterile environment

inside the blood vessel wall. There are studies that show that the

effect of HMGB‐1 is potentiated via the P‐selectin–PSGL‐1 axis

(52), as P-selectin deficient mice have better protection against

DVT (53, 54). Platelet‐originated HMGB‐1 is known to increase

the local inflammation as the result of increased increases

neutrophil and monocyte sequestration at venous wall, while

also promoting NETosis. The recent studies encompassing in

vivo murine models of DVT show that complement activation

also regulate the development of DVT with the components of

complement displaying distinct role in thrombus formation. The

activation of C3 results in platelet and fibrin deposition, whereas

C5 activation results in increased TF expression on monocytes. It

also promotes thrombo-inflammation by precipitating fibrin

generation (55). Clinical data show increased PLAs in venous

thrombosis patients (56). The high levels of platelet-neutrophil

aggregates represent a risk factor for VT, as patients with DVT

show correlation between platelet activation and increase in

circulating platelet-neutrophil aggregates (57). Increase in

platelet-monocyte aggregates were found in surgery-associated

VTE (58), which correlated with increased plasma C-reactive

protein levels, which itself is an important systemic

proinflammatory marker (59). Anticoagulants have been

keystone of contemporary therapy for thrombosis, although

mechanical thrombectomy, thrombolysis and angioplasty have

been also explored and used.With the emerging role of platelets in

DVT, the antiplatelet drugs are also being explored for their

therapeutic use to treat the disease. In particular acetylsalicylic

acid (ASA), when used after initial anticoagulant treatment as a

long-term secondary preventive strategy in patients with VTE,

were shown to reduce risk of primary thromboembolism as well as

recurrence of secondary VTE (60–62). The cardioprotective effect

of ASA are mediated through irreversible inhibition of platelet

cyclooxygenase 1 and blockade of the production of thromboxane
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A2 (TXA2). The anti-platelet effect of ASA is through reduced

production of TXA2 (63).

In conclusion, initial driver of venous thrombosis is the

activation of coagulation system, with significant contribution of

platelets interacting with the innate immune system. These

directly contribute, both systemically (in circulation) and

locally (vein vasculature), to the initiation and progression of

DVT and associated thrombo-inflammatory response.
2.2 Non-sterile inflammation driven
by infection

2.2.1 Sepsis
In the past decade, platelets have emerged as one of the

crucial players in mediating the response to infectious disease.

The ability of platelets to sense and respond to various

exogenous and endogenous infectious and inflammatory

signals to initiate an immune response is attributed to the

wide range of complement and PRRs expressed by them

including TLRs and Fc receptors (64). In response to

pathogenic challenge, the activated platelets secrete their

granules which contain variety of immunomodulatory and

antimicrobial molecules that either aids in immune cell

differentiation and activation or can directly kill pathogens. In

murine models of sepsis, the platelet depletion and

thrombocytopenia are associated with more severe response to

disease, highlighting the protective role of platelets in sepsis (65).

Early platelet transfusion has been reported to be protective in

the mouse model of bacterial peritonitis (66). Platelet

transfusion to reduce thrombocytopenia, was found to

decrease the plasma levels of various inflammatory cytokines

such as IL-6 and TNF‐a, and thus improving survival (66). The

proposed underlying mechanism is macrophage polarization

towards the pro‐inflammatory phenotype and subsequent

increase in survival of septic mice (67). The plausible

mechanism of bacterial clearance by platelets is thought to be

via GPIb-CD11b interaction. In addition, platelet transfusion

also dampens the systemic inflammation reaction by

sequestering cytokines released from activation of immune

cells (67). Lipopolysaccharide (LPS)-induced endotoxemia has

sepsis-like features. LPS activate platelet TLR4 which enhances

the release of NETs (68). NET release is mediated by P-selectins

(52), release of HMGB‐1 (69) and b1‐defensins (70). Platelets

also release IL‐1b-rich EVs in response to LPS-dependent TLR4

activation, which enhances ECs activation and propagation of

the inflammatory response (71).

NETs and platelets are also reported to induce disseminated

intravascular coagulation (DIC) which deteriorates the organ

function (71). Additionally, platelets also contribute to the

innate immune surveillance system of the liver as they

transiently interact with the Kupffer cells that lines the walls of
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1039843
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sharma et al. 10.3389/fimmu.2022.1039843
sinusoids in the liver through GPIba‐vWF interaction (72). The

interaction of Kupffer cells and platelets is stabilised via GPIIb-

IIIa‐mediated platelet adhesion in presence of bacteria like

Bacillus cereus and methicillin‐resistant Staphylococcus aureus.

This stable adhesion leads to increased infiltration of neutrophils

to the liver sinusoids and evoke host response against the

pathogen (73).

Studies show that, platelets through TLR4 act as inflammatory

sentinels and thus surrounds and isolate an infection, along with

modulating release of proinflammatory cytokine (74). Thus,

therapeutics that affect platelet-TLR signaling are being

explored. Eritoran, is one such example. It competitively binds

and antagonize TLR4 as mimics lipid A portion of LPS and acts as

a synthetic analogue (75, 76). Therefore, it has been extensively

explored as a therapeutic intervention for rampant endotoxin-

mediated inflammation.

During infection, the platelets’ interactions with neutrophils

or macrophages are mediated through the platelet

immunoreceptor tyrosine-based activation motif (ITAM)

receptors C-type lectin-like receptor 2 (CLEC‐2) and GPVI (77–

79). Platelet receptors involved in PLA formation during sepsis

depends on the time course of infection and the organs involved.

The increase in PLAs in septic patients is inversely correlated with

survival, and patients develop multiple organ failure most likely

due to an increase in sequestration (80). Though during the early

phases of sepsis there are elevated levels of platelet-neutrophil

aggregates, but they decrease significantly with the disease

progression (80). Also, the association of platelet‐monocyte

aggregates with mortality depends upon age of patients, with

higher mortality in older patients but not in young patients (81).

Moreover, platelet depletion resulted in markedly reduced

leukocyte infiltration into tissues in animal models of sepsis or

ischemia reperfusion (IR) (81). Thus, in septic patients, whether

targeting the platelet-immune cell interaction is beneficial or

detrimental, it depends upon various other factors like disease

stage and associated comorbidities.

The data from various preclinical studies support the

hypothesis that the antiplatelet agents, integrin aIIbb3
antagonists or ASA, may reduce sepsis-associated mortality

(82). The aIIbb3 antagonists were shown to be beneficial in

animal models of sepsis as they inhibit platelet aggregation by

blocking fibrinogen binding to integrin aIIbb3. In LPS-induced

rat sepsis model the administration of abciximab, a Fab fragment

which inhibitsaIIbb3 activation, reduced tissue edema and

vascular leakage (83, 84). The use of aIIbb3 antagonists also

reduced EC damage and mortality in septic mice (85). Lastly, the

blockade of integrin aIIbb3 preserved red blood cell (RBC) and

white blood cell (WBC) count and resulted in delayed

thrombocytopenia and reduced renal damage in a baboon

model of sepsis (86). Even with the success in animal models,

these inhibitors have not been tested in sepsis patients. The

crucial role of platelets in accelerating the septic complications is

further emphasized by the study of triggering receptor expressed
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in myeloid cells (TREM) gene cluster. TREM-like transcript-1

(TLT-1) receptor is highly expressed in platelets and remain

sequestered within platelet alpha-granules in resting platelets

and is translocated to the surface after activation such as with

LPS or thrombin (87, 88). Platelet TLT-1 binds to fibrinogen and

facilitate platelet aggregation, and the soluble form of TLT-1

(sTLT-1) acts as a potent endogenous regulator of sepsis-

associated inflammation (89). Sepsis patients exhibit elevated

levels of sTLT-1, that strongly correlates with DIC score and

high levels of D-dimer (89), suggestive of role of platelet-derived

TLT-1 in pathology of diseases manifested as acute lung injury

and acute respiratory distress syndrome (ARDS) (89).

Considering all the studies stated above, platelets play a

crucial role at various stages of sepsis contributing to the

thrombo-inflammatory pathophysiology and the potential use

of platelet activation inhibitors as potential therapeutic approach

should be explored more.

2.2.2 Influenza A virus infection
Seasonal influenza infection is one of the leading causes of

death by infectious disease in the United States (90). IAV is a

common respiratory tract infection, that during pandemic of

1918-1919, caused 50-100 million deaths and still infects 10-

20% population every year (91). In addition, IAV can cause

reoccurring pandemic as seen in 2009 (92). Though adaptive

immunity is required for later clearance of IAV, innate

immunity plays a key role in recognition of the viral

infection and initiation of immune response. It is important

for viral control and clearance, but aberrant immune response

can also lead to collateral damage and subsequent organ

dysfunction/failure (92, 93). Severe cases of IAV infection

are marked by tissue pathology and excessive inflammation

and coagulation activation within the lungs (94–96). Platelets

play a significant role in host defense against influenza viruses

as they express various immune receptors and immune

effectors upon activation by the viral invasion (97, 98).

Human platelets can endocytose IAV in vitro and IAV viral

particles have been seen within platelets in infected patients

(99). In the murine model of pulmonary viral infection, a

direct correlation of platelet accumulation in the lungs with

the progression of disease has been reported (100, 101). Soon

after IAV infection, platelets form aggregates with monocytes

(102). Platelets also form PLAs with neutrophils and these

PLAs transmigrate from circulation to the lung airspace of

IAV infected mice (100). During viral infections, platelet-

neutrophil interactions are often needed for neutrophil

recruitment to site of infection, and studies demonstrates

that these interactions were crucial for NET releases (101).

Koupenova et al. recently showed that IAV engulfment via

platelets causes TLR7-dependent release of complement factor

C3 and subsequent activation of neutrophils and their

NETosis (99). Though several recent studies validate that

platelet and neutrophil recruitment to lungs drive
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pathogenesis of IAV, but the specific mechanisms involved

have not been deciphered. The release of NETs along with

their constituent neutrophil proteases, histone proteins and

DNA act as primary driving forces in initiation of both

thrombosis and fibrinolysis simultaneously, which form the

hallmarks of associated DIC pathology (103, 104). NET

generation can also act as part of antiviral immune response

(105). These findings are suggestive of a vicious cycle

including NET release, formation microvascular thrombosis

and thrombin-induced platelet activation that together can

further leads to platelet hyperactivation amplifying thrombo-

inflammation and tissue damage. The recent findings by Kim

et al. showed that inhibition of platelet aggregation in CD41-

deficient mice or platelet-neutrophil interactions by using

CD18 blocking antibodies prevents the formation of NETs

and subsequent lung tissue damage in IAV infected mice

(105). After IAV infection, thrombin activates platelets that

promotes coagulation along with the release of inflammatory

cytokines from platelets (106). The early thrombin signal

generated just after the severe IAV infection is speculated to

link coagulation and inflammation, further enhancing

platelet-mediated thrombo-inflammatory responses (106).

Different PRRs present on platelets can bind IAV virions,

further illustrating the importance of platelets in host response

to influenza. These PRRs include TLR7 and TLR3 which induce

prothrombotic responses by altering platelet-leukocyte

interactions independent of aggregation mediated by thrombin

(107). Stimulation of TLR7 on the platelet leads to surface

expression of P-selectin and CD154, causing a-granule release.
However, TLR3 upon stimulation, potentiates arachidonic acid-,

ADP- or collagen-mediated platelet aggregation at high

concentration of agonist that possibly represent late stages of

infection (108, 109).

In addition, PAR1 and PAR4 are reported to be involved in

progression of IAV pathogenesis (102, 110, 111). Mouse platelets

lack PAR1, therefore, thrombin-mediated platelet activation

occurs through PAR4 in mice (112, 113). The work by

Tatsumi et al. (114) showed that global deficiency of PAR4 in

mice worsens the disease outcome in the context of mild to

moderate IAV infection suggestive of protective role of PAR4

during influenza infection. However, the authors were not able

to separate the contribution of PAR4 on the different cell-types

including platelets to IAV pathology. In line with the findings by

Tatsumi et al (114),, a more recent study showed that PAR4

inhibition in wildtype mice caused more IAV-induced pathology

during mild infection (105). However, during severe IAV

infection PAR4 inhibition in wildtype mice seemed to mediate

protection (105), which was suggested before by observations of

Riteau’s group (101). The dual infection severity-dependent role

of platelet PAR4 in at least IAV infection is intriguing and needs

further investigation.

These studies, therefore, suggest that platelets contribute to

lung injury in IAV infection likely by increasing inflammation,
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neutrophil recruitment/activation, and NET formation by

various mechanisms. Therefore, platelet receptors can be

explored for identifying reliable therapeutic targets. P2Y12

receptor antagonists are commonly used as antiplatelet agents

that reduce platelet–leukocyte interactions and alter

inflammatory biomarkers, associated with improved lung

function in mouse models of pneumonia (80, 115). Studies

showed that P2Y12 inhibition as well as ASA treatment

reduced IAV pathology in mice (101, 116). Preliminary

findings with P2Y12 receptor antagonists also exhibited

improved lung function in humans with pneumonia (117–119).

The non-coding miR-223 regulate platelet expression of the

P2Y12 receptor (120) and has been also implicated in negatively

regulating TLR-NFkB signaling (121). The studies show that

overexpression of miR-223 remarkably decreases pro-

inflammatory cytokine production in TLR-stimulated

macrophages (122, 123) and reduces neutrophi l ic

inflammation (124). In human studies, lower plasma levels of

miR-223 in patients with both stable (125) and acute (123, 126)

CVD are associated with high platelet reactivity (126). In

addition, ASA treatment was shown to reduce ARDS onset but

did not reduce ARDS severity which may be due to the small

patient numbers in those trials. These preliminary but

underpowered observations underscore the need of larger

multicentral clinical trials to finally test the usefulness of anti-

platelet drugs in viral ARDS. The leap in knowledge for defining

new pathways accelerating thrombo-inflammation warrants the

study of platelet receptors belonging to the ITAM family as

potential alternative therapeutic targets. For instance, the role of

the ITAM receptors in IAV are not fully understood. While Fc

gamma receptor (FcgRIIA) involvement in platelet activation

during IAV infection was shown, the contribution of other

receptors such as CLEC-2 or GPVI was unclear until recently,

Boilard et al. showed Influenza virus activates platelets through

FcgRIIA signaling and thrombin generation (107). Deficiency of

either receptor not posing a major bleeding risk, make them

potential attractive therapeutic targets in severe IAV

infection (107).

Thus, the platelet-neutrophil interaction promotes acute

thrombo-inflammatory responses. Also, formation of platelet-

neutrophil aggregates leads to microvascular obstruction and

inflammation in various thrombo-inflammatory disorders,

including the acute coronary syndromes, lung injury as in

infections, and ischemic stroke (119, 127, 128). The receptors

involved in these interactions can be explored for their

therapeutic potential. Preclinical studies have confirmed that

targeting adhesion molecules on platelets like P-selectin, GPIb,

aIIbb3 and on neutrophils like PSGL-1, Mac-1, inhibits the

formation of neutrophil–platelet aggregates and thereby

improves inflammation response and curtails microvascular

dysfunction. Inclacumab, a monoclonal antibody against P-

selectin in phase 1 trial has confirmed the safety and dosing as

it does not increase bleeding time (128).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1039843
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sharma et al. 10.3389/fimmu.2022.1039843
As the studies with new age anti-platelet drugs are still in

clinical trials, it remains unclear whether emerging strategies,

that primarily have cytoprotective and anti-inflammatory

properties with less impact on hemostasis, will be effective.

This is because previous therapeutic approaches that do not

alter coagulation and tissue perfusion have not successfully

improved survival or reduced organ injury. Therefore,

effective, and safe therapies based on targeting platelet

receptors, remains a challenge for researchers.

2.2.3 SARS-corona Virus-2 infection
Initial COVID-19 patients’ autopsy studies had confirmed

thrombosis occurring particularly within small vessels (platelet

rich thrombotic microangiopathy) in lungs, with or without

hemorrhage, which is a feature of the typical ARDS pathology of

diffusely edematous lungs (129–131). As pandemic progressed,

COVID-19 associated thrombo-embolic episodes included both

microvascular and macrovascular thrombotic events including

in situ-pulmonary thrombosis, and in liver and other sites (132–

134), were associated with mortality. This indicated a

hypercoagulable state in COVID-19 patients which involved

endothelial and platelet dysfunction (135). The COVID-19

associated platelet dysfunction included reports of platelet

hyperreactivity, platelet destruction and platelet-immune

complex formation in patients regardless in cases of mild or

severe disease progression.
3 Multidimensional effects of SARS-
CoV-2 on platelets

The platelets can be affected by SARS-CoV-2 infection

directly or indirectly. As platelets are known to have ability to

interact with viruses, the reports about SARS-CoV-2 (a single

stranded RNA virus) interaction with platelets were not

surprising. The known receptors for SARS-CoV-2 entry in

human cells include angiotensin-converting enzyme 2 (ACE-2)

and transmembrane protease serine 2 (TMPRSS-2). The

conflicting reports on ACE-2 expression in platelets imply that

ACE-2 presence in platelets is arguable and may only be present,

if at all, in very low amounts in a fraction of patients (136).

TMPRSS2 is another receptor, which has also been suggested to

be possible mediator for SARS-CoV-2 interaction with platelets

(137). Besides ACE-2, SARS-CoV-2 spike protein can interact

with integrin a5b1, the fibronectin receptor, on ECs inducing a

proinflammatory phenotype (138). Moreover, a5b1 mediates

SARS-CoV-2 infection in an ACE2-independent way (139).

Importantly, platelets express a5b1 and a direct interaction of

SARS-CoV-2 spike protein with platelet a5b1 is therefore

possible. Indeed, the a5b1 binding peptide ATN-161 can block

SAR-CoV-2 infection and was further showed to reduce platelet
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activation (140, 141). While mechanism of entry of SARS-CoV-2

in platelets may not be confirmed, its presence (Viral RNA

traces, proteins, and whole virus) in patient platelets has been

reported by several studies (136, 142). A remarkable study

demonstrated the SARS-CoV-2 induced programmed cell

death and necroptosis of platelets in which the virions were

shown by transmission electron microscopy, to get internalized

in platelets by being bound to EVs (120).

Besides, directly binding to viral particles, In COVID-19,

platelets may also be influenced indirectly. As one of the

hallmarks of COVID-19 pathology is ‘cytokine storm’ or

‘hypercytokinemia’ characterised by immune dysfunction

involving systemic inflammation which spreads to multiple

organs of patient and can lead to fatal multi organ failure

(142). Such a systemic inflammation milieu resulting from a

disproportionate immune system activation can activate platelet

either through individual cytokines or by immune complexes

formed in COVID-19 patients. Presence of autoantibodies in

COVID-19 patients can also trigger platelet dysfunction.

COVID-19 platelets have exhibited heparin-induced

thrombocytopenia (HIT)-like features which are thought to be

because of anti-PF4-heparin complex antibody generation (143,

144). However, such HIT-like features were also seen in patients

without exposure to heparin (145), which indicates a complex

mechanism behind this observation Other pathological factors

such as hypoxemia have also been proposed to promote platelet

hyperreactivity in COVID-19, as hypoxia has been known to

induce platelet hyperactivation (146). Very recently, platelets

were found partly desensitised along with presence of

autophagosomes and even with visible traces of viral particles

in COVID-19 patient samples (147). Interestingly, a platelet

lipidome study found altered lipid composition of platelets in

COVID-19 patients and linked it to platelet activation (148).

Thus, platelets are affected at multiple levels in COVID-19.
4 Consequences of COVID-19
associated platelet dysfunction

The dysfunctional platelets in COVID-19, whether its

hyperactivation of platelets or related to platelet death,

consumption, or all of these, can complicate clinical

management of COVID-19 patient in form of increased risk of

thrombo-embolism, DIC or haemorrhage. Emerging platelet

studies have provided some insights into intricacies of platelet

dysfunction in COVID-19.

In context of haemostatic roles, several studies found

platelets to be hyperreactive in COVID-19 in response to

agonists. An altered transcriptional profile with enrichment

in the pathways of antigen presentation, and mitochondrial

dysfunction was observed by RNA sequencing of platelets in
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COVID-19 patients (142). Platelet surface markers for

activation were also increased in a unique pattern in

COVID-19 patients (149) along with platelet proteomic

changes (150). Apart from themselves being hyperreactive,

they were also reported to induce TF expression in

monocytes from patients (151). Platelets’ contribution to

plasma vWF, fibrinogen and FXII was also found to be

higher in COVID-19 patients (152). More recently, a large-

scale single cell platelet imaging by intelligent platelet

morphometry, the investigators analyzed whole blood

samples to identify platelet aggregates in nearly 90% of all

COVID-19 patients (153). Interestingly, in this study, the

platelet aggregates were also observed in some patients even

after full recovery from COVID-19 symptoms, which indicate a

long-lasting effect of COVID-19 on platelet physiology. As a

large fraction of COVID-19 patients also show mild

thrombocytopenia, platelet apoptosis was studied. The

patients’ platelets showed more signs of apoptosis than

healthy donors and even SARS-CoV-2 was demonstrated to

directly cause apoptosis and necroptosis ex vivo (136, 150).

COVID-19 associated platelet apoptosis was also found

mediated by circulating immune complexes in patient’s sera

(154). There are only limited data available from animal studies

with SARS-CoV-2 or the related murine coronavirus (MHV,

murine hepatitis virus) which can cause SARS-like symptoms

and its effect on platelets. The recent study by Andrade et al.

found that MHV infection caused early thrombocytopenia,

hypercytokinemia and multiorgan failure and thereby

mirroring some clinical features observed in moderate and

severe cases of COVID-19 (155). Importantly, local lung and

systemic changes trigged by the MHV infection could be

prevented by inhibition of the TNF signaling pathway (156).

Lack of TNFR1 or the use of the TNF inhibitor etanercept

reduced thrombocytopenia, cytokine expression, lung injury

and improved survival of MHV-infected mice. In support of

the murine study, etanercept also reduced SARS-CoV-2

replication in human lung epithelial cells (156, 157).

Activated or dysfunctional platelets can release multiple

cytokines including IL-1b, IL-7, IL-8, MCP-1, MIP-1a, HGF,

MCP-3 (158, 159). An initial study on platelets from mild and

severe disease COVID-19 patients, found platelets prone to

release certain cytokines including IL-1b and CD40L, while

many others including IFN-a, TNF-a and TNF-b, Eotaxin,
and others were reduced. Interestingly, the same study also

reported increase in EVs from COVID-19 platelets in non-

severe cases but reduction in severe disease patients (160).

However, thrombin induced platelet aggregation was found

enhanced in both non-severe and severe disease (160).

According to one report, the sCD40L was found to increase in

early phase in COVID-19 patients while it decreased in the later

phase of disease while sP-Selectin, the other platelet soluble

marker showed opposite pattern (161). This suggests platelet

response may be very dynamic as COVID-19 progresses.
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In addition to cytokine release, platelet-leukocyte crosstalk

has also been seen in COVID-19. The neutrophil recruitment to

the pulmonary vasculature is an important event shared by

ARDS and COVID-19 pathologies (162). NETs can trigger

thrombo-inflammation leading to vascular thrombosis and

significant mortality (163). The secondary capture’ event

defined by activated platelet-neutrophil binding and rolling on

endothelium, plays a key role in initiating immune-thrombosis

(119). The secondary capture facilitates their transmigration to

alveolar lumen and contributes to formation of edematous lungs,

which can cause further platelet activation in turn. Platelets from

COVID-19 patients have been reported by multiple studies to

form increased PLAs which includes neutrophils or monocytes

(151, 152). Platelet-Monocyte aggregates were present in higher

numbers in critically ill COVID-19 patients than in those with

non-severe symptoms (151). Thus, besides promoting increased

prothrombotic tendency in COVID-19, platelets can also

contribute to immune dysregulation in COVID-19 through

soluble factors and direct cellular crosstalk with other

immune cells.
5 Emerging therapeutic targets
in COVID-19 associated
platelet dysfunction

The COVID-19 patients were reported to contain increased

titters of neutralizing antibodies, against SARS-CoV-2

components, the levels of which rise with severity of disease.

The sera and IgG fractions from COVID-19 patients was able to

induce procoagulant platelets. The study of these immune

complexes revealed that aberrant glycosylation of Fc domain

of these antibodies could activate platelets (164). The

afucosylated IgG were higher in severe disease patients and

found to activate platelets through platelet surface FcRIIA (165).

In another study, the signalling mediators behind this activation

was proposed to be PI3K-AKT pathway downstream of activated

FcgRIIA receptor on platelet surface (166). Blocking the FcgRIIA
could prevent IgG mediated platelet activation in COVID-19

platelets by preventing AKT and PI3K phosphorylation. The

investigators also demonstrated that the pharmacological

inhibition of AKT and PI3K phosphorylation by BAY1125976

or BYL719 could revert the induction of procoagulant platelets

(166). PI3K-AKT signalling pathway has been shown earlier to

mediate platelet activation by alpha-IIb mediated induction by

agonists (167).

Another extensive study of FcgRIIA and complement

pathway in platelets recently uncovered novel anti-platelet

drug targets in COVID-19. The FcgRIIA signalling is also

mediated by a protein tyrosine kinase Syk, whose inhibition by

a pharmacological inhibitor drug fostamatinib could rescue

FcgRIIA mediated platelet hyperactivation ex vivo (168).
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Fostamatinib is an FDA approved drug for first-line treatment

for chronic ITP (169), and thus present a potentially safer

therapeutic candidate against COVID-19 induced platelet

dysfunction. Platelets express complement receptors C3aR

(170) and C5aR (171) and complement components such as

anaphylatoxins. Complement components have role in

inflammatory cascade during COVID-19 infection (172, 173).

A murine study with SARS-CoV indicated C3 as driver of

disease. In line with this, blockade of C5a and/or C3a by

neutralizing antibodies was reduce COVID-19 plasma induced

platelet activation in vitro; the effect was more robust when each

or both were combined with FcgRIIA blockade (168). As

substantial complement activation is seen in autopsies studies

in lung and kidney from COVID-19 patients (174, 175), the

complement blockade strategy could offer a dual advantage of

anti-platelet as well as immunotherapeutic against COVID-

19 infection.

A related form of pathological platelet activation is also seen

in small fraction of vaccinated COVID-19 patients who manifest

Vaccinated Immune Thrombotic Thrombocytopenia (VITT).

VITT is also seen to present features of HIT where

autoantibodies against PF4 or viral spike protein can trigger

platelet activation (176). The platelet immune complex

formation in response to VITT antibodies respond in similar

manner as that in case of HIT associated anti-PF4 antibodies

(177). VITT associated platelet dysfunction also involves platelet

FcgRIIA activation (178, 179). Intravenous IVIG could was able

to limit the VITT (180). Platelet activation induced by plasma

from VITT patients was also reverted by action of antiplatelet

drugs – indomethacin and ticagrelor, and tyrosine kinase

inhibitors, in the ex vivo settings (181).

The drug screening for in search of effective therapeutic

against SARS-CoV-2 infection led to identification of Mpro

inhibitors. Mpro is a cysteine protease in host cells which is

also used by invading viruses including SARS-CoV-2 for its

multiplication and propagation. One of the agents which

inhibited Mpro was a Calpain VI inhibitor and Calpain II and

XII inhibitors. One of the calpain inhibitors has been shown

previously to inhibit the previous coronavirus SARS-CoV

replication (182). Calpain is also important for platelets, where

it acts by proteolysing structural platelet proteins and thus

facilitating both early and late events of platelet activation and

spreading (183). Calpain is also involved in endocytosis and

apoptosis (146). Calpain inhibition has also been shown to

restrict venous thrombosis in rat models (184). A recently

manufactured A‐705053, small molecule calpain inhibitor can

be orally administrated with enhanced pharmacokinetics (185).

BLD-2660 is a new, artificial, orally active, small-molecule taken

selective inhibitor of Calpain 1, 2, and 9 which is metabolically

stable and permeable. It has been developed for the therapy of

COVID-19 and is under trial (ClinicalTrials.gov Identifier:

NCT04334460). Such a drug, if successfully tested for both

anti-platelet and anti-viral functions and safety, can become
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one dual action drug against COVID-19 to treat both viral

growth and associated platelet dysfunction.

Another drug target which can serve dual purpose of anti-

platelet and anti-inflammatory actions in COVID-19 are

leukotrienes. LTE4, a cysteinyl leukotriene has recently been

found to induce platelet activation in vitro (186). The targeting

of LTE4 by an approved clinical use drug – Monteleukast, has

been shown to have anti-platelet activity. The mechanism was

proposed to be preventing the surface expression of TF and P-

selectin, reducing the formation of circulating monocyte– and

granulocyte–platelet aggregates, and, finally, in completely

inhibiting the release of TF positive-circulating EVs (186). The

antiplatelet mechanism can also be indirect as this LTE4

antagonist reduces IL6 levels or other inflammatory cytokines

which thereby may cause reduction of platelet activation.

Monteleukast is in clinical use against bronchoconstriction and

other inflammatory conditions which makes this a safer drug

candidate for testing as anti-platelet and anti-inflammatory drug

in COVID-19 (187). Among approved drugs, Nitric oxide (NO)

promote vascular smooth muscle cell relaxation (vasodilation),

inhibition of platelet activation, and reducing leukocyte

adhesion and inflammation (188). Thus, inhaled NO may be a

promising strategy for treatment of COVID-19 and an anti-

platelet agent, and multiple trials of inhaled NO are in progress

(189). Very recently, platelet GPIIb/IIIa receptor blockers

eptifibatide or tirofiban have been reported to have reduced

thrombus formation in blood from COVID-19 patients, in

response to ex vivo shear stress (190).

Another possible antiplatelet target in COVID-19 could be

platelet ITAM signaling including podoplanin-CLEC-2 axis.

Podoplanin is expressed by lung epithelial cells and on tissue

macrophages and could be released from the injured lung. The

tyrosine kinase linked receptor CLEC-2 is expressed on platelets

and has been reported play a critical role in thrombo-

inflammation in mice (88). Recently, it is shown that targeting

a non-receptor signaling kinase – Btk which is downstream of

CLEC-2 has very effective anti-platelet effect in mice (191). In

humans, Btk inhibitors - ibrutinib and dasatinib have recently

been approved for use in B-cell malignancies and chronic

myeloid leukemia/prostate cancer respectively (191, 192). Post-

hoc analysis of these trials has shown that both ibrutinib and

dasatinib significantly reduce venous thrombosis and that

ibrutinib also reduces arterial thrombosis in B-cell lymphoma

patients (193). Btk inhibitors including Ibrutinib have also been

proposed to inhibit GPVI dependent platelet activation and

thrombosis (194). Apart from its anti-thrombotic action, Btk

inhibition has also been shown to reduce hyperinflammation

based on myeloid cell cytokine release as demonstrated in mice

model of brain ischemia/reperfusion injury (195). Thus, Btk

inihibitors can also be potential drug candidates which can meet

the need of new anti and anti-inflammatory therapies against

COVID-19. Table 1 summaries detail of emerging major

pharmacological agents/antibodies (and their molecular
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targets) having anti-platelet/anti-thrombotic action to combat

thrombo-inflammation being tested in COVID-19.

Therefore, SARS-CoV-2 infection associated platelet

dysfunction and thrombo-inflammation are tightly interlinked.

The growing knowledge of platelet signaling and their

interactions with immune cells has helped to understand

platelet dysfunction and thrombo-inflammation in COVID-19.

Understanding the complex multiple layers of COVID-19

associated effects on platelets and their response to affect

hemostatic and immune events is the key towards

development of novel effective and safer therapies.
6 Conclusion and future directions

The major therapeutic challenge in the field of

cardiovascular and associated diseases is to reduce the

deleterious impact of microvascular thrombosis and

inflammation. Even with the advent progress in therapeutics

and better understanding of disease, the successful clinical

management remains a formidable challenge in these

disorders. This is mainly because of multifactorial and

complex nature of innate immunity and hemostatic responses

that directs various stages of thrombo-inflammatory process.

Therefore, it is difficult to get a single “Holy Grail” that can be

used to address and treat the thrombo-inflammatory

complications. There are various factors that are critical for

optimizing the treatment including diverse genetic background

of patients, environmental cues, pathogenic heterogeneity, time

of therapeutic interventions etc. Platelets are effective sentinels
Frontiers in Immunology 11
for sensing and responding to infection by pathogens thereby

bridging hemostatic, inflammatory, and immune continuums

(196, 197). The activated platelet express integrin aIIbb3, P-
selectin and other receptors on the surface which play key roles

in platelet activation. The activation of platelets also leads to

formation of platelet aggregates and micro-thrombi, their

adherence to the endothelium causing endothelial damage,

increased interactions with macrophages and neutrophils,

increased NETs formation, and ultimately release of cytokines.

All these bridging factors added to the evolution of concept of

thrombo-inflammation in various diseases. Though, studies

have expanded the armamentarium of platelet functions

during infectious diseases, there is lot more to be done.

Specially, exploring the platelet receptors and downstream

signaling for safer and effective therapeutic development. The

various anti-platelet drugs depending upon the receptor they act

on are summarized in Figure 2 along with the different diseases

they can prevent/manage/treat. Even with the emerging role of

platelets in infectious diseases, most of clinically approved anti-

platelet drugs are approved for CVDs and related complications

only. In future, emerging technological innovations are likely to

facilitate use of these receptors as either biomarker or

therapeutic targets for infectious-inflammatory diseases as

well. Developing the antiplatelet therapies which can serve

dual purpose of treating unwanted hyperinflammation and

thrombosis would be most effective in clinical management of

thrombo-inflammatory diseases such as arterial and venous

thrombosis, sepsis, influenza and COVID-19.

Though, the incredible progress in the understanding of

anucleate platelet function, beyond just primary hemostasis, has

been exciting journey, further discoveries will not only continue
TABLE 1 Summarized detail of emerging major pharmacological agents/antibodies (and their molecular targets) having anti-platelet/anti-
thrombotic action to combat thrombo-inflammation being tested in Covid-19.

S. No. Class of Agent/Drug Target receptor/pathway Additional Standard Therapeutic Action References

1. FcRIIA signaling inhibitors
(BAY1125976, BYL719 etc.

PI3K/AKT pathway Unknown (166)

Fostamatinib Tyrosine Kinase Syk ITP treatment (168, 169)

2. Complement blocker/Inhibitors
(Neutralizing antibodies)

C5a, C3a Anti-inflammatory (168)

3. Mpro inhibitors
(A‐705053, BLD-2660

Mpro,
Calpain VI, II, III
Calpain I, II, IX

Anti-viral (SARS-CoV-2) (182, 185)

4. Leukotriene inhibitor drug
(Monteleukast)

LTE-4 Anti-inflammatory (186, 187)

5. Vasodialator
(Inhaled NO)

cGMP generation Vasodilatation, Pulmonary diseases & CVD treatment (188, 189)

6. Btk Inhibitors
(Ibrutinib, Dasatinib etc.)

CLEC-2, ITAM signaling
Btk Kinase, GPVI

B-cell malignancy, Anti-thrombotic (193–195)

7. Receptor Blockers
(Eptifibatide, Tirofiban)

GPIIb/IIIa Anti-thrombotic (190)
fr
(This is not an exclusive list).
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decipher role of platelets in infectious diseases but open new

doors for better management and treatment of thrombo-

inflammatory diseases.
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