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Background: Sepsis is a heterogeneous syndrome with high morbidity and

mortality. Optimal and effective classifications are in urgent need and to

be developed.

Methods and results: A total of 1,936 patients (sepsis samples, n=1,692; normal

samples, n=244) in 7 discovery datasets were included to conduct weighted

gene co-expression network analysis (WGCNA) to filter out candidate genes

related to sepsis. Then, two subtypes of sepsis were classified in the training

sepsis set (n=1,692), the Adaptive and Inflammatory, using K-means clustering

analysis on 90 sepsis-related features. We validated these subtypes using 617

samples in 5 independent datasets and the merged 5 sets. Cibersort method

revealed the Adaptive subtype was related to high infiltration levels of T cells

and natural killer (NK) cells and a better clinical outcome. Immune features

were validated by single-cell RNA sequencing (scRNA-seq) analysis. The

Inflammatory subtype was associated with high infiltration of macrophages

and a disadvantageous prognosis. Based on functional analysis, upregulation of

the Toll-like receptor signaling pathway was obtained in Inflammatory subtype

and NK cell-mediated cytotoxicity and T cell receptor signaling pathway were

upregulated in Adaptive group. To quantify the cluster findings, a scoring

system, called, risk score, was established using four datasets (n=980) in the

discovery cohorts based on least absolute shrinkage and selection operator

(LASSO) and logistic regression and validated in external sets (n=760).

Multivariate logistic regression analysis revealed the risk score was an

independent predictor of outcomes of sepsis patients (OR [odds ratio], 2.752,

95% confidence interval [CI], 2.234-3.389, P<0.001), when adjusted by age and

gender. In addition, the validation sets confirmed the performance (OR, 1.638,

95% CI, 1.309-2.048, P<0.001). Finally, nomograms demonstrated great

discriminatory potential than that of risk score, age and gender (training set:
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AUC=0.682, 95% CI, 0.643-0.719; validation set: AUC=0.624, 95% CI, 0.576-

0.664). Decision curve analysis (DCA) demonstrated that the nomograms were

clinically useful and had better discriminative performance to recognize

patients at high risk than the age, gender and risk score, respectively.

Conclusions: In-depth analysis of a comprehensive landscape of the

transcriptome characteristics of sepsis might contribute to personalized

treatments and prediction of clinical outcomes.
KEYWORDS
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Introduction

Sepsis, a comprehensive syndrome with great heterogeneity, is

related to disappointingly high mortality and morbidity, caused by

dysregulated host systemic inflammatory and immune response

to infection (1, 2). The insights into the host immune response

have advanced remarkably, however, previous research

contributes a little to the mainstays of prevention, early

recognition and supportive care, and the development of novel

therapeutic strategies (3). The main obstacles to improvement are

the absence of a precise and accurate definition of the disorder,

which includes a large number of multi-dimensional clinical and

biological characteristics. Comprehensive analysis of features

might contribute to the discovery of undescribed subsets or

phenotypes, which help to evaluate the risk of clinical outcomes

and the response to clinical interventions (4). For example,

Scicluna et al. reported a classification system, using machine

learning analyses on blood genomic data of sepsis samples, which

posted Mars1 subset of sepsis was remarkably related to mortality

(5). Bhavani et al. developed septic sub-phenotypes based on

large-scale clinical analysis and revealed that the confirmed four

sub-phenotypes could have different landscapes of inflammation

markers and clinical outcomes (6). However, these features failed

to illustrate critical pathophysiological changes and demonstrated

underlying mechanisms and processes.

A high percentage of studies have displayed the genome-

wide expression profiling of sepsis. The availability of a large

number of genome-wide expression profiling from public

databases, such as Gene Expression Omnibus (GEO) and

ArrayExpress, supplies great opportunities to discover and

identify accurate and effective prognostic and predictive

signatures. The unsupervised analysis allows the researchers to

classify and define disease subgroups on genome-wide

expression data (7, 8). Meanwhile, recent advances in meta-

clustering and data pooling have substantially improved the

unrobust performance caused by subtle changes in the clustering
02
methods, or small datasets (9). The data-driven analysis has

successfully defined and validated clinically relevant disease

subgroups in several diseases (10, 11). In addition, clustering

analysis on whole blood gene expression confirmed the higher

mortality subgroup characterized by immune exhaustion and

the other sub-phenotype with a lower death rate has the

upregulation of proinflammatory processes (12).

The present research comprehensively analyzed publicly

available transcriptomic profiles of sepsis cohorts. A panel of

sepsis-associated candidate features were identified to classify

the septic samples into two subgroups. According to the

functionality and activity of molecules and differences in

immune cell composites, the cluster was named as Adaptive

subgroup and cluster B was named as Inflammatory subcluster.

In addition, samples in Adaptive subgroup demonstrated a lower

mortality rate than the other. Then, a risk factor was established,

which might be promised in sepsis to predict prognosis and

guide clinical personalized management.
Methods and materials

Data acquisition and processing

Sepsis datasets were downloaded from the GEO database and

ArrayExpress database. Probes were annotated by the

corresponding documents and Probes with missing gene symbols

were excluded. Ensemble ID was annotated into gene symbol by R

package ‘org.Hs.eg.db’. The mean value of expression was adopted,

when there were multiple probe sets mapping to the same gene

symbol. The missing value of expression datain the sepsis samples

were dealt with R package ‘impute’. Samples were excluded if they

included absent follow-up information such as age and gender. In

addition, patients with age<18 were also excluded. Characteristics of

included samples were demonstrated in Table S1. It should be

noted, that age is the strong risk factor associated with sepsis owing
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to the fact that those over 65 years of age have a more than 10-fold

higher incidence rate of the disease compared with those between

18 and 49 years (13). In addition, it has been estimated that in half

of the aged, functional impairments occur rather than complete

recovery (14). Therefore, we grouped the patients into ≥65 and <65

years for further analysis. The raw count data of RNA-sequencing

(RNA-seq) were transformed into transcripts per million (TPM)-

quantified data. The batch effect was removed by combat function

in the ‘sva’ R package. The workflow of the study was shown

in Figure 1.
Weighted gene co-expression
network analysis

WGCNA was introduced here to explore potential genes

related to sepsis biology. Genes with top 80% highest variance in

1,936 samples were selected. The scale-free network was

constructed when the soft threshold was b=18, Subsequently,
the adjacency matrix was transformed into a topological overlap

matrix (TOM). The correlation of modules with sample traits

could be calculated to figure out sepsis-related modules. Genes

with module membership (MM)>|0.80| and gene significance

(GS)>|0.20| were included for further analysis.
K-means clustering analysis

K-means analyses were conducted based on the training

and the combined five validation sets. no age and gender

differences between the two cohorts, tested by Chi-square test
Frontiers in Immunology 03
(Table S2). Differentially expressed genes (DEGs) between

normal samples and sepsis samples were analyzed by ‘limma’

R package and genes with log2FC>|1.0| and FDR<0.05 were

considered significant. After intersecting DEGs and candidate

genes from WGCNA, the remained key candidate genes were

subjected to K-means clustering analysis. The number of

clusters was determined by the elbow method (EM) and

average silhouette method (ASM). And the principal

component analysis (PCA) plot was used to display the

clustered samples. DEGs with log2FC>|1.0| and FDR<|0.05|

between different clusters were also identified and visualized

with volcano plot.
Inference of immune infiltrates and
single cell RNA-seq analysis

Aberrant immune reprogramming exerts significant effects

on sepsis pathobiology (15). For quantification of immune

infiltrates in sepsis samples, the Cibersort algorithm was

introduced on the training cohort, with 1,000 permutations

preset. Immune infiltrates of sepsis cohorts were divided into

two groups, separately, in accordance with the clusters from k-

means analysis. Immune cell markers were obtained from

previous research (16). We got a matrix of those immunocytes

and visualized this result via an R package ‘ggplot2’. Accessible

scRNA-seq data acquisition (GSE151263) was downloaded from

the GEO database, and four sepsis samples were subject for in-

depth research (17). The scRNA-seq data was processed with the

R package ‘Seurat’ (18). Specific cell markers were obtained for

cell category annotation from the CellMarker database (19).
FIGURE 1

Workflow of the present research.
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Development of signature related to
sepsis survival

980 sepsis samples with complete survival information in 5

datasets including GSE54514, E-MTAB-4451, GSE65682,

GSE185263 and GE131761 in the discovery set were treated as a

training set to calculate the risk score. And 760 objects from E-

MTAB-4421, E-MTAB-5273, E-MTAB-7581, and GSE95233

cohorts were included as a validation set. There were no age and

gender differences between the two groups (training and validation

sets), tested by Chi-square test (Table S3). The 90 candidate

features obtained by genes from WGCNA and DEGs were

subjected to the least absolute shrinkage and selection operator

(LASSO) regularization (a=1) using the glmnet package. The

survival-related features were identified using a 10-fold stratified

cross-validation to differentiate between non-survivor and survivor

controls in the training set. Risk score was then computed for each

sepsis sample using the logistic regression model in the training

set. We applied a method to calculate the risk score for each

sample with sepsis, the formula was as follows: risk   score =

logf0:941 ∗ ∑n1 (coefi� expi)g where coef was the coefficient

calculated from logistic regression analysis. Multivariable logistic

regression models adjusted by gender and (<65 and ≥65 years) age

group were used to identify the independently predicting

performance of risk score in differentiating survivor from non-

survivor sepsis individuals. Nomograms were constructed

including age, gender and risk score, and decision curve analysis

(DCA) was used to quantify net benefits at different threshold

probabilities. The receiver operating characteristic (ROC) curves

and 95% confidence intervals (CI) were generated for assessment

of model performance.
Enrichment analysis

Gene ontology (GO) and gene set enrichment analysis

(GSEA) analyses were conducted on DEGs by ‘clusterProfiler’

R package (20) and the enrichment terms were considered

significant with a strict cutoff false discovery rate (FDR) of less

than 0.05. Meanwhile, gene set variation analysis (GSVA) (21)

was performed to estimate variations of pathway activity over a

sample population in an unsupervised manner, with

‘h.all.v7.5.1.entrez.gmt’ as a reference set. To explore the

correlation between the sepsis signature and other relevant

biological processes, 14 gene sets were curated including CD8

T-effector signature; antigen processing machinery; immune-

checkpoint; pan-fibroblast TGFb response signature (Pan-F-

TBRS); DNA replication-dependent histones and etc. (22). The

markers of the corresponding biological processes were

deposited in Table S4.
Frontiers in Immunology 04
Statistical analysis

For comparisons of two groups, statistical significance for

normally distributed variables was estimated by student t-test.

The categorical variables were analyzed on the root of chi-square

test. Correlation coefficients were computed by Pearson

correlation analyses. To identify significant genes in the

differential gene analysis, Bonferroni-Hochberg (B-H) method

was introduced to calculate false discovery rate (FDR). Heatmap

was visualized by the R package ‘pheatmap’. R package

‘forestplot’ was employed to display the findings of survival

analysis of candidate genes in training dataset. The predicting

accuracy of the established risk signature, area under the curve

(AUC) and 95% confidence interval (CI) were computed based

on the ‘pROC’ package. All statistical analyses were conducted

using R (v4.1.0) and SPSS software (version 25.0). Two-sided

P<0.05 were considered statistically significant.
Results

Weighted gene co-expression network
analysis and gene selection

PCA demonstrated the 1,936 samples (sepsis samples,

n=1,692; normal samples, n=244) in 7 datasets had tremendous

batch effect, including GSE54514, GSE57065, GSE65682,

GSE131761, E-MTAB-4451, GSE185263, and GSE134347

(Figure S1A). And by ‘sva’ R package, we could observe that the

batch effect was significantly removed (Figure S1B). Genes with

top 80% highest variance, that is, 5,052 genes were selected to

carry out WGCNA. Then sample clustering was conducted to

detect outliers, with average parameters in hclust function. 1,778

sepsis samples were left for subsequent analysis, which were

displayed in Figures S2A and 2A. With soft-threshold power

value set as 18 (Figure S2B), the corresponding R2 reached up to

0.99, meeting the standard of scale-free topology (Figure S2C).

Modules with similarity>0.8 were combined, and 9 modules were

saved out of 13 modules (Figure S2D). Module-trait correlation

degree was calculated, in which the blue and black modules

demonstrated great correlation with type trait (blue module:

cor=-0.55, p=1e-138; black module: cor=0.50, p=2e-111,

Figure 2B). The average gene significance in each module was

computed, and modules black and blue had the higher the mean

gene significance values than those in the other 7 modules

(Figure 2C). Finally, 250 genes with |GS|>0.20 and |MM|>0.80

were filtered out in the both modules (Figure 2D). After

intersection of module genes and DEGs between normal and

sepsis samples, 90 DEGs associated with sepsis were filtered out

(Figure 2E). Among them, CD3D, CD247, CD96 and G Protein-
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Coupled Receptor 18 (GPR18) were found to be relatively

overexpressed in normal blood samples and BMX Non-

Receptor Tyrosine Kinase (BMX), Mitogen-Activated Protein

Kinase 14 (MAPK14), Complement C3b/C4b Receptor 1 (CR1),

and C-Type Lectin Domain Family 4 Member D (CLEC4D) were

found to be upregulated in sepsis samples (Figure 2F).
K-means clustering analysis

In the training set, 1,692 sepsis samples were selected for K-

means cluster analysis. A total of representative 90 genes were

obtained in the combined 7 cohorts. Clustering analysis was

performed on the 90 candidate features. The optimal numbers

of clusters were determined to be two by measuring the total

within sum of square and average silhouette width (Figures 3A, B).

The two classes could be well separated in the first two major

dimensions (Figure 3C). There were 703 patients in cluster A

(41.5%) and 989 patients in cluster B (58.5%). In the training set,
Frontiers in Immunology 05
there were 980 samples had complete survival information, and

then the association between prognosis and cluster findings was

calculated. Patients divided into class B demonstrated remarkably

disadvantageous clinical outcomes, in comparison with that in

cluster A (60.7% [145/239] vs. 39.3% [94/364]; p=0.044, Chi-

square test) (Table S5). Meanwhile, there was a significant increase

of number of sepsis patients with age≥65, when compared with

patients in cluster B (59.9% [276/461] vs. 40.1% [185/461];

p=0.004, Chi-square test) (Table S5). However, no difference of

gender distribution was observed between the two subgroups

(Female: 47.1% [193/410] vs. 52.9% [217/410]; Male: 43.7%

[249/570] vs. 56.3% [321/570], p=0.299, Chi-square test) (Table

S5). As shown in Figure S3, the heatmap demonstrated that

distinct molecule features between cluster A and cluster B.

Particularly, T cell-related markers such as CD3D and CD3E

were relatively overexpressed in the cluster A subgroup. CLEC4D,

critical in mediating the infiltration of myeloid cells, was

comparatively upregulated in cluster B (Figure S3). External

validation is a key component of any exercise in clustering.
A B

D

E

F

C

FIGURE 2

Candidate genes detection. (A) Clustering dendrogram of the saved 1,778 sepsis samples in WGCNA and clinical features. (B) Heatmap of
Pearson correlation analysis of modules and clinical traits. Rows represent modules and columns represent traits. The values in the squares
represent correlation degree and p values. Color red represents positive correlation and color blue represents negative correlation. (C) Boxplots
of GS among 9 modules. Module blue and module black demonstrated higher values gene significance, than that of the 7 modules, tested by t-
test. (D) Scatter plots of Correlation of GS within MM. Genes with |GS |>0.2 and |MM |>0.8 were considered significant. (E) Venn plot of the
intersections between DEGs and genes filtered from WGCNA. (F) Heatmap of the candidate genes. The expression values were normalized
from -2 to 2. Color red represents relatively increased expression and color blue represents relatively deceased expression.
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Therefore, we carried out the K-means clustering analysis on 617

samples in 5 independent datasets and the combined five cohorts

from GEO and ArrayExpress databases. The clear batch effect

among the 5 cohorts were corrected by ‘sva’ package Figures S4A,

B. Clustering analysis on each new dataset produced 2 robust

clusters, as shown in Figure S5A.
Differential expression analysis

Differential expression analysis in the training set revealed

99 genes were expression-dysregulated between the two classes

(FDR<0.05 and log2|FC|>1.0, Figure 3D). In addition, there were
Frontiers in Immunology 06
56 DEGs overexpressed in cluster A and 43 DEGs expression-

upregulated in cluster B. Among them, we found CD3D, CD3G,

and CD3E displayed increased expression levels in cluster A and

Interleukin 18 Receptor Accessory Protein (IL18RAP),

Interleukin 1 Receptor Associated Kinase 3 (IRAK3), and

BMX demonstrated elevated expression levels in cluster B

(Figure 3D). The correlation of DEGs with sample subtypes

were calculated by Pearson correlation analysis. As shown in

Figure 3E, the correlation degrees>0 were defined positive and

degrees<0 were considered negative. Then, differential

expression analysis was also conducted on the 5 independent

sets. IL7R, ITK, CD247 and CD3G were found to be relatively

overexpressed in cluster A (FDR<0.05 and log2|FC|>1.0, Figure
A B

D E

F G

C

FIGURE 3

K-means clustering analysis and cluster annotation. (A) Total within sum of square (WSS) plotted against the number of clusters. The WSS
dropped rapidly from 1 to 2 classes and slowly after k = 2. (B) Average silhouette width plotted against the number of clusters, demonstrating
the 2-subclass was the ideal choice. (C) Scatter plot of distribution of sepsis samples in the two principal dimensions. (D) Volcano plot of DEGs
of cluster B vs. cluster A. (E) Heatmap of DEGs between cluster A and cluster B. The expression values were normalized from -3 to 3. Color red
represents relatively increased expression and color blue represents relatively deceased expression. (F) Gene Ontology (GO) analysis on DEGs
overexpressed in cluster A. (G) Gene Ontology (GO) analysis on DEGs overexpressed in cluster B.
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S5B). SORT1, GADD45A, PFKFB2 and IL18R1 were relatively

expression-upregulated in cluster B (FDR<0.05 and log2|

FC|>1.0, Figure S5C).
Functional annotation of the two clusters

Enrichment analysis on the overexpressed DEGs in cluster

B revealed that NAD+ nucleosidase receptor, ADP-ribose,

sugar-phosphatase kinase, and UDP-glucosyltransferase were

significantly enriched (Figure 3F). Moreover, GO analysis of

the overexpressed DEGs in cluster A demonstrated MHC

antigen class II, cell non-membrane adaptor kinase, cytokine

co-receptor growth activity, serine-type endopeptidase

hydrolase peptidase, and scavenger receptor activity were

remarkably enriched (Figure 3G). These findings were also

detected in the independent validation datasets (Table S6).

Then, the DEGs in the training set between the two clusters
Frontiers in Immunology 07
were ordered by the corresponding log2FC values. The GSEA

was conducted using gseKEGG function in R package

‘clusterProfiler’, which demonstrated that cluster A was

characterized by relatively upregulated immune activity, such

as the upregulated natural killer cell mediated cytotoxicity,

PD-L1 expression and PD-1 checkpoint pathway, and T cell

receptor signaling pathway (Figure 4A, upper). In addition, Fc

gamma R-mediated phagocytosis, and Toll-like receptor

signaling pathway were significantly enriched in the cluster

B (Figure 4A, lower). To validate the above findings, GSVA

was carried out, with ‘h.all.v7.5.1.entrez.gmt’ as the reference.

Biological processes such as interferon gamma response, and

DNA repair were relatively in cluster A. And pathways such as

TNFA signaling via NFkB, and IL6/JAK/STAT3 signaling

were significantly enriched in cluster B (Figure 4B).

Meanwhile, the log2FC values of the relative marker further

validated the changed processes and pathways in GSVA

step (Figure 4C).
A B

C

FIGURE 4

GSEA and GSVA. (A) GSEA of genesets for cluster A (top) and cluster B (bottom). (B) Heatmap of GSVA on sepsis samples grouped by K-means
clusters. (C) Scatterplot of the changed pathway-related signatures.
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Immune infiltrates characteristics

Immune cell-infiltrating patterns and signatures were

systematically evaluated. After grouped by the clustered

subtypes, we found CD8+ T cells, activated NK cells, memory

B cells, monocytes, activated dendritic cells (aDCs), and

activated T cells CD4 memory demonstrated increased

infiltrating levels in cluster A (Figure 5A). In contrast,

neutrophils, M0, M1, and M2 macrophages, naive CD4+ T

cells, gamma delta (gd) T cells, and resting NK cells were

significant infiltrated in samples classified into cluster B

(Figure 5A). Then, the immune-related signatures of T cells,

DCs, macrophages, monocytes, neutrophils, NK cell, follicular

helper T cells (Tfh) further validated that the infiltrating changes
Frontiers in Immunology 08
(Figure 5B). In the step of scRNA-seq analysis, we first used

markers from CellMarker database to annotate the cells, and the

markers were as follows: T cell (CD3E, and CD3D), macrophage

(Lysozyme [LYZ] and CD68), NK cell (Granzyme A and H

[GZMA and GZMH]), and B cell (CD79B and Major

Histocompatibility Complex, Class II, DQ Beta 1 [HLA-

DQB1]) (Figure 5C). The four cell clusters were displayed with

the UMAP algorithm (Figure 5D). Then, we achieved two

clusters based on the K-means clustering method, and

significant differences of immune infiltrates could be observed.

The cluster A was characterized by high infiltration of T cells and

NK cells and the macrophages were specifically highly infiltrated

in cluster B subgroup (Figure 5E). In addition, the divided two

clusters had B cell infiltrations, to some degree (Figure 5E). In
A B

D EC

FIGURE 5

Immune reprogramming analysis. (A) Complex heatmap of immune cell fractions between cluster A and cluster B. (B) Scatter plot of log2FC values
of immune cell markers. Color red represented the genes were relatively overexpressed in cluster B and color blue represented markers were
comparatively upregulated in cluster A. (C) Scatter plot of markers expressed in single cell RNA-sequencing samples. (D) Cell annotation analysis
identified four types of cells. (E) The distribution of four types of cells between the two clusters. **p < 0.01; ***p < 0.001; ****p < 0.0001;
ns, not significant.
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order to analyze the cytokine and chemokine milieu

characterizing each cluster, we analyzed the expression of

selected cytokine and chemokine mRNAs in the sepsis

samples. Cluster B was associated with high expression of

TGFb pathway-relevant markers, a higher innate immune/

decreased adaptive immune signal, which might indicate the

cluster A could be defined as Inflammatory subtype. Expression

of T lymphocytes-related mRNAs were relatively higher in

cluster A and a reduced innate immune/higher adaptive

immune signal, which suggested that this cluster may be

classified as the Adaptive subphenotype (Figure S6).
Feature selection

In order to ever have any relevance to clinical outcomes, we

need some way to determine cluster membership for any given

new patient. Firstly, 90 sepsis-related DEGs were subjected to
Frontiers in Immunology 09
LASSO regression step with 10-fold cross validation. In the

training set, following feature selection, 28 features were saved

(Figures 6A, B). The filtered signatures were used to calculate

risk score, including ASPH, ATP9A, CD247, CNIH4, DACH1,

DOCK10, GADD45A, HK3, IL1R2, ITK, LIN7A, MAPK14,

MGAM, MTR, NAIP, NLRC4, PEBP1, PLEKHA1, SAMD3,

SIDT1, SIPA1L2, SLC7A6, SORT1, ST6GALNAC3, TXK,

UBASH3A, UGCG, and NSUN7. Inclusion of these 28

variables in a logistic regression model resulted in 7 variables

that were independently statistically significant predictors of

clinical outcomes of sepsis patients (P<0.05, respectively) and

were included in risk score. These variables included ASPH (OR,

1.564; 95% CI, 1.188-2.066; P=0.002), IL1R2 (OR, 1.369, 95% CI,

1.139-1.647, P=0.001), ITK (OR, 1.423, 95% CI, 1.085-1.875,

P=0.011), LIN7A (OR, 1.360, 95% CI, 1.030-1.801, P=0.031),

NLRC4 (OR, 0.524, 95% CI, 0.382-0.717, P<0.001), NSUN7

(OR, 0.620, 95% CI, 0.478-0.800, P<0.001), PLEKHA1 (OR,

0.414, 95% CI, 0.256-0.660, P<0.001) (Figure 6C).
A B

D

C

FIGURE 6

Feature selection and association of risk score with sepsis outcomes. (A) The ten-fold cross-validation results. The line on the left indicated the
value of the parameter log(l) for the error-minimized model. 28 variables were filtered out when log(l) = −4.74. (B) LASSO coefficient profiles
of the 28 features. (C) Forest plot of features significant in logistic regression analysis. (D) Violin plot of distribution of risk score between cluster
A and cluster B in the training (upper) and validation (lower) sets.
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Risk score construction and
performance evaluation

The risk score was computed rooted on the coefficients from

the logistic model and the corresponding expression values of the 7

candidates (Table S7). By comparison of the risk score values

between alive and dead sepsis samples, there was a significant

increase of the calculated score in non-survivor objects in training

and validation sets (P<0.001, respectively, Figure 6D). These

findings demonstrated the risk score might act as an indicator to

predict the clinical outcomes of septic patients. Furthermore, by

multivariate logistic regression analysis, the risk score was

confirmed as an independent predictor for clinical outcomes of

sepsis when adjusted by clinical characteristics such age and gender

in training and validation sets (training set: OR, 2.704, 95% CI,

2.098-3.514, P<0.001; validation set: OR, 2.007, 95% CI, 1.469-

2.759, P<0.001, Table S8). Then, the nomogram, including age,

gender and risk score was constructed (Figures 7A and S7A). The

ROC analysis demonstrated that the nomogram had great

discriminative capacity than that computed based on risk score,

or age, and or gender of sepsis patients (training set: AUC=0.682,

95% CI, 0.643-0.719; validation set: AUC=0.624, 95% CI, 0.576-
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0.664, Figures 7B and S7B). The risk scores calculated rooted on the

7 mRNAs demonstrated the great capacity in differentiating

survivors from non-survivors with sepsis (training set:

AUC=0.666, 95% CI, 0.626-0.704; validation set: AUC=0.608,

95% CI, 0.566-0.655). Calibration plots of the nomograms

demonstrated that there were no untoward deviations of

predicted risk from observed risk of sepsis outcomes over the

entire range (Figures 7C and S7C). In DCA curves, the

nomogram had a higher net benefit in terms of accurately

detecting sepsis survival status, compared with that of age and

gender and risk score (Figures 7D and S7D). The established sepsis

response signatures (SRS) system which classify the sepsis patients

into immunosuppressed, and immunocompetent subtypes and

stratify clinical outcomes of sepsis patients (23). We tested the

performance of such system in predicting sepsis prognosis and

there was a relatively lower discriminative capacity in differentiating

alive and dead sepsis patients (AUC=0.534, 95% CI, 0.451-0.617), in

comparison with that of risk score in the training and validation

sets. Additionally, in the training set, E-MTAB-4451, GSE65682

and GSE95233 included the survival information with a cutoff of

28d. Therefore, the three were treated as a whole for analysis.

GSE185263 set defined survival status as whether in-hospital death
A B

DC

FIGURE 7

Nomogram establishment and performance assessment. (A) A nomogram established by multivariate logistic regression for predicting the risk of
sepsis survival outcomes. (B) ROC curves demonstrated the capability of nomogram, risk score, age and gender in predicting prognosis of sepsis
patients. (C) Calibration plot with a binary fringe plot of nomogram in the training set. (D) Decision curve analysis for the sepsis nomogram and
age, gender and risk score.
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occurred and uncertain cutoff values were introduced. Due to the

differences in the time cut-off point of the four sets, we carried out

ROC analysis for the specific cohort. The AUC demonstrated the

risk score could predict the prognosis of sepsis (28d cutpoint: AUC:

0.681, 95%CI: 0.648-0.732; uncertain cutpoint: AUC: 0.616, 95%CI:

0.539-0.692, Figure S8A). In the validation set, E-MTAB-5273, E-

MTAB-7581 and E-MTAB-4421 included the survival information

with a cutoff of 28d. Similar to the above method. However,

GSE95233 set had uncertain survival cutoff values. The AUC

demonstrated the risk score could predict the prognosis of sepsis

(28d cutpoint: AUC: 0.603, 95%CI: 0.550-0.657; uncertain cutpoint:

AUC: 0.626, 95%CI: 0.504-0.727, Figure S8B).
Interactions of risk score with clinical
features and response to therapy

Association of risk score with age and gender demonstrated the

aged patients had comparatively increased risk score, in comparison

with patients with age<65 years (Figure 8A). There were no

differences of risk score between male and female patients

(Figure 8B). Pearson correlation analysis demonstrated the

positive relation of risk score and sequential organ failure

assessment (SOFA) score (r=0.2, P=0.002, Figure 8C). SOFA
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score and acute physiology and chronic health evaluation

(APACHE) II score are the most widely used and authoritative

critical illness evaluation system. Therefore, the association of SOFA

score, APACHE II score and risk score was calculated. By ROC

analysis, we found SOFA score and APACHE II score performed

better than risk score in the GSE185263 and GSE54514 sets

(GSE185263: SOFA: AUC=0.699, 95%CI: 0.618-0.778; GSE54514:

APACHE II: AUC=0.789, 95%CI: 0.706-0.856, Figures S8C, D).

Given the risk score demonstrated great accuracy than age and

gender of sepsis patients in predicting clinical outcomes, therefore,

we integrated the risk score and clinicopathological features into a

comprehensive model. After combining with risk score, age, gender,

APACHE II score, the risk model outperformed the individual

covariate (GSE185263: AUC=0.725, 95%CI: 0.631-0.793, Figure

S8C). Similar findings were also obtained in the combination of

risk score, age, gender, and SOFA score (GSE54514: AUC=0.823,

95%CI: 0.732-0.903, Figure S8D). The dataset GSE110487 includes

the information related to the clinical response of septic shock

patients to early supportive therapy (24). We examined whether

there were interactions between risk score and the binary

therapeutic responsive status. As shown in Figure 8D, increased

risk scores were obtained in the patients responded to early

supportive therapy (P=0.027). In addition, the ROC analysis was

performed and revealed that risk score might be an effective tool to
A B

D
E
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FIGURE 8

Association of risk score with clinical features and therapeutic response. (A, B) Violin plot of association of risk score with age and gender of
sepsis patients. (C) Scatter plot of Pearson correlation analysis of risk score and sequential organ failure assessment (SOFA) score. (D) Box
density plot of risk score with clinical therapeutic response. (E) ROC curve of performance of risk score in predicting early supportive therapy.
*p < 0.05; ns, not significant.
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predict the response to clinical interventions (AUC=0.663, 95% CI,

0.516-0.789, Figure 8E).
Discussion

Sepsis represents a variety of distinct disease states and displays

in a number of different manners, such as fever, decreased vascular

resistance (VR) and even multiple organ dysfunction and failure

(25). Eventually, an imbalanced host response could lead to death in

an individual who is suffering from sepsis, even with timely

traditional interventions (26). Transcriptomic features that classify

the host immune response will contribute to the development of

novel therapeutic treatments the improvement of personalized

management for sepsis (27). Prediction of clinical outcomes could

be well accomplished by establishing the specific classifiers, which

have been validated with transcriptomic data (28–30). Therefore,

the purposes of the research were to reveal the clinical subtypes

using large-scale samples with sepsis.

In the present study, K-means clustering analysis was carried

out on transcriptomic profiles of sepsis (training set, n=1,692;

validation set, n=617) from 12 sepsis datasets, revealing two

robust sepsis subtypes. Previous research has confirmed the

reliability of such machine-learning methods (27). The

Inflammatory subphenotype was characterized by high expression

of genes involved in pro-inflammatory (e.g., upregulation of

inflammatory response) and innate immune reactions,

demonstrating such type of sepsis might be involved in activation

of innate immune response (31, 32). For example, overactivation of

TNFA signaling viaNFkB signaling, and IL6/JAK/STAT3 signaling

has been identified to be associated with M1 macrophage

polarization (31, 32). Upregulation of PI3K/AKT/MTOR

signaling, and angiogenesis related to M2 macrophage

polarization were also obtained in cluster B (33). A clear

difference in cellular metabolism could be observed between the

subclusters, for example, the increased activity of HIF signaling

pathway in cluster B. Recent research demonstrates,

hyperinflammatory status could increase glycolysis metabolism

which elevates lactate production through activation of HIF

signaling and promotes the production of proinflammatory

molecules such as IL-1b and IL-6 (34, 35), which were consistent

with our findings. In addition, compared to young patients, elderly

patients undergo significant defects in humoral immune function

(36), and declined expression of HLA-DR has been considered as a

marker for on septic monocytes, resulting in the increase of clinical

complications and poor outcomes (37), which might underlie the

elderly patients with higher mortality rate in this cluster. In contrast,

activation of adaptive immune response was relatively upregulated

such as T cell receptor signaling pathway. Meanwhile, the samples

in the Adaptive subcluster tended to be younger and demonstrated

advantageous outcomes based on their clinical characteristics (38).

Furthermore, pathways associated with both clusters suggested that

these pathways were modulated in opposite directions, which
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further suggested by the strong inverse correlation between the

subclusters in K-means and PCA analyses. The biological insights

might contribute to the development of clinical treatment strategies

for different subtypes. It has been shown that upregulation of innate

immunity in early stages of sepsis is related to a higher mortality

rate, however, the comparative absence of those changes and the

expansion of adaptive immunity may have a positive effect on

clinical outcomes (39). And our research further supported the

previous findings. Uncovering sepsis heterogeneity might

contribute to the improvement in development of therapies

which might be beneficial to the specific subtype. There has been

considerable attention paid to the role of the PD-1 pathway in the

exhaustion of T cells and the suppression of anti-tumor immunity

(40). In the field of severe infection, recent research reports that an

increased percentage of PD-L1+ NK cells could support disease

development and act as a hazardous factor for prognosis of sepsis

patients (41). In addition, in sepsis-associated acute renal injury

(ARI), the overexpressed PD-L1 in kidney could lead to

immunosuppression due to the elevated level of lactate (42).

Anti-PD-L1 therapeutic regimens have been tested in sepsis

objects that are known to modulate the adaptive immune systems

(43). A relevant study reported by Zhang et al. demonstrated that

immune checkpoint blockade (ICB) could improve survival in

experimental sepsis through inhibition of lymphocytic apoptosis

and reversion of monocytic dysfunction (44). In the present

research, immune checkpoint such as PD-L1 and relevant

pathway were upregulated in the Adaptive cluster, which

demonstrated that the ICB treatments might be more applicable

to the Adaptive cluster. And the upregulation of PD-L1 expression

and PD-1 checkpoint pathway might further explain the newly

developed classification system for the application of anti-PD-L1

treatments, further research on which might illustrate the potential

clinical utility.

It provides a basis for sophisticated methods and algorithms to

better analyze high-dimensional data, especially these associated

with clinicopathological characteristics, with the advancement and

progression in multi-omics data (45). In disordered populations,

subclusters could be explored and validated, based on the K-means

clustering analysis. It has been observed that different patient

endotypes are associated with different severity levels and varying

mortality rates. Our research demonstrated a relation of the

Inflammatory endotype with low adaptive immunity and high

mortality in the training set, which was consistent with previous

findings (46, 47). Previous studies on sepsis heterogeneity using

clustering analysis have successfully demonstrated the subclasses of

sepsis, and reveal the association of subphenotypes with clinical

outcomes based onMARS, UK-based and US-based datasets (5, 12,

48). Although, the different outcomes among the for clusters have

been identified by machine-learning, however, further

quantification of cluster finding for sepsis patients and clinical

application of the classification system has not been investigated. In

our research, 7-gene survival model was computed using LASSO-

logistic regression analysis in the discovery set (n=980) and
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validated in external datasets (n=760). The model displayed the

prognostic value and positive correlations with SOFA score and

aging, which was also identified as an independent predictor for

clinical outcomes of sepsis patients (P<0.05, respectively).

Additionally, Sepsis patients with low risk might benefit more

from early supportive treatments, in comparison with the

counterparts with low risk. Meanwhile, our risk model had better

prognosis-predicting performance than the SRS classification

system (SRS: AUC=0.534, 95% CI, 0.451-0.617; risk score in

training set, AUC=0.666, 95% CI, 0.626-0.704; risk score in

validation set: AUC=0.608, 95% CI, 0.566-0.655). In addition, the

established nomogram included age, gender and risk score

demonstrated higher prognosis-predicting performance than the

individual covariate. These findings might provide evidence for

clinical management of sepsis patients.

Our study has several limitations. Firstly, a wide range of

public datasets associated with sepsis were included in the

present research. Potential batch bias might be introduced,

even with the help of algorithm in R package ‘sva’. Secondly,

after merging the datasets, a great percentage of genes were not

included, which might make several crucial molecules related to

sepsis pathology lost during the processes. And even more, the

missed key molecules might influence the accuracy and stability

of K-means clustering findings. Thirdly, there were a small

number of samples available in the public database used to

investigate the association of risk score and treatment strategies

in this study. An increase in sample size would elevate the

statistical power of the predictive performance of risk model.

Finally, in view of the incomplete information concerning other

disorders and/or comorbidities in the included data sets,

reproductivity of cluster findings and overall predictive

performance of the risk model might not be confirmed with

enough certainty. Further investigations are needed for

validation of the prognostic model and K-means cluster analysis.

In conclusion, our study explored and validated two clusters

of sepsis, which demonstrated distinctive mortality rate and

response to early supportive therapy. Subcluster A was

characterized by upregulation of innate immune response with

disadvantageous clinical outcomes, whereas subphenotype B was

demonstrated overactivation of adaptive immunity. In addition,

a 7-gene risk model to predict sepsis survival was constructed,

demonstrating great accuracy than SRS system. A nomogram

was established for risk calculation in clinical practice.
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