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Background: CD161 has been linked to the appearance and development of

various cancers.

Methods: The mutation map and the variation of CNVs and SNVs of CD161 were

displayed according to cBioportal and GSCALite. We also evaluated the pathway

enrichment and drug sensitivity of CD161 according to GSCALite. We performed a

single-cell sequencing analysis of cancer cells and T cells in melanoma. The cell

communication patterns related to CD161 were further explored. Multiplex

immunofluorescence staining of tissue microarrays was used to detect the

association between CD161 expression and macrophages and T cells.

Results: A high CD161 level was related to neoantigens expression, pathway

enrichment, and drug sensitivity. In addition, single-cell sequencing analysis

showed that CD161 was mainly expressed in T cells, M1 and M2 Macrophages,

neoplastic, microglial cells, neurons, and cancer cells in many tumor types.

Further study on pseudotime trajectories and functional annotation of CD161

proved the critical role of CD161 in tumor progression and T cell immunity in
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melanoma. Multiplex immunofluorescence revealed that CD161 is closely

correlated with the immune infiltration of T cells and macrophages in

multiple cancers. In addition, high CD161 expression predicted a favorable

immunotherapy response.

Conclusion: CD161 is involved in the immune infiltration of T cells and

macrophages and might be a promising target for tumor immunotherapy.
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Introduction

Cancer immunotherapy has shown critical clinical benefits in

different malignancies, and more and more clinical oncologists have

turned their attention to immune-oncology (1). The molecular

characteristics of tumor cells and tumor-related cells as biomarkers

of clinical outcomes have excellent prospects for development (2).

Currently, numerous cancer patients have received immunotherapy,

in which immunotherapy drugs could inhibit immune checkpoint

molecules, the mediator that facilitates tumor cells’ immune escape.

Programmed death-1/programmed cell death ligands (PD1/PD-Ls)

have been the most important immune checkpoints (3). The

American Food and Drug Administration (FDA) has already

approved three new melanoma immune checkpoint drug

treatments (4). These treatments may be better developed in

the future.

NK receptor-P1A (NKRP1A), or killer cell lectin-like receptor

subfamily Bmember 1 (KLRB1), is a gene encoding humanCD161.

The killer cell lectin-like receptors are responsible for ligand

recognition and contain a C-type lectin-like domain in the

extracellular region. CD161 is one of this receptor family (5).

CD161 is usually expressed in monocytes, natural killer (NK)

cells, NKT cells, and 25% peripheral blood T-lymphocyte (6).

This C-type lectin receptor CD161 is expressed in all lineages of

human T lymphocytes. The high expression level of CD161 is

mainly composed of a population of mucosal-associated invariant

T (MAIT) cells (7). A study showed that the expression level of

CD161mRNA in CD4+ cells in peripheral blood of tumor patients

was significantly higher than that of healthy people, and the

frequency of CD4+CD56− cells expressing CD161 in CD4+ T

cells in peripheral blood and tumor-involved sites of cancer patients

increased. It is assumed that the increase in CD4+CD161+ cells

may be directly associatedwith the clinical status and tumor burden

of patients (8). One study described that CD161 binds LLT1 with

entropically and enthalpically driven thermodynamics, fast

kinetics, low affinity, and small heat capacity; there are typical

cell-cell recognition interactions (5). When the interaction between
02
CD161 on NK cells and LLT1 on target cells, NK-mediated

cytotoxic response will be inhibited. This interaction

phenomenon has been discovered in prostate cancer, non-small

cell lung cancer (NSCLC), and triple-negative breast cancer (9–11).

A new study suggests that KLRB1 gene inactivation or antibody-

mediated KLRB1 blockade strengthens T cell-mediated killing of

glioma cells in extracorporal and their antitumor function in vivo.

They defined the CD161-CLEC2D pathway as a latent target for

immunotherapy of glioma and other human cancers (12).

This study integrated and analyzed the CD161 profiles,

including expression, survival analysis, and single-cell

sequencing. Therefore, a comprehensive analysis of the

distribution of CD161 in human cancers helps comprehend the

immune cell’s inherent role of CD161 in tumor immunization

and its application prospect inmalignant tumor-targeted therapy.
Materials and methods

Datasets collecting and preprocessing

Single-cell sequencing dataset of BLCA, GSE145137, Single-

COAD, GSE81861, Single-cell sequencing dataset of HNSCC,

GSE103322, Single-cell sequencing dataset of LIHC, GSE125449,

Single-cell sequencing dataset of OV, GSE118828, Single-cell

sequencing dataset of PRAD, GSE137829, Single-cell

sequencing dataset of SKCM, GSE72056, Single-cell sequencing

dataset of STAD, GSE183904, were downloaded from Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/). Single-cell sequencing datasets of GBM, SCP50,

and SCP393 were downloaded from Single Cell Portal platform

(http://singlecell.broadinstitute.org). In addition, the Genome

Sequence Archive (GSA) database was used to collect the

Single-cell sequencing dataset of PAAD (CRA001160, https://

ngdc.cncb.ac.cn/gsa/browse/CRA001160). The NCBI BioProject

was used to collect the single-cell sequencing dataset of

LUAD (#PRJNA591860).
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Expression analysis

Human cancer cell lines were downloaded from the Human

Protein Atlas (https://www.proteinatlas.org) to explore the

expression of CD161 in cancer cell lines and different cancer

types . The OPENTARGET plat form (https : / /www.

targetvalidation.org/) combines genetics, chemical, and omics

data to identify genes involved in disease and assist in systematic

drug targeting and prioritization (13). The protein-protein

interaction network of CD161 was downloaded from the

STRING database (https://string-db.org/cgi/input.pl).
Survival analysis

First, the critical value of CD161 was calculated from the R

package survminer, the pan-cancer samples of 33 cancer types

were divided into CD161-high and CD161-low groups. We

investigated overall survival (OS) and disease-specific survival

(DSS) differences between the CD161-high and CD161-low

groups in 33 cancer types. Univariate cox regression analysis

was used to explore the prognostic value of CD161 regarding OS

and DSS in 33 cancer types.
Single-cell sequencing analysis

Integration of Single-cell sequencing datasets GSE118389

and GSE75688 for BRCA was performed using the Anchors

function from the R package Seurat. The quality of the ERCC

genes and mitochondrial was controlled through the use of the R

package Seurat (14). After scaling the data, dimensionality was

reduced via principal component analysis (PCA). Cell clusters

were identified using the FindClusters function. We identified

tumor cells using the R package infercnv and copykat. The

annotation of immune and tumor cells was based on specific

markers. The UMAP function was used for dimensionality

reduction of the visualization. The expression of CD161 was

visualized using Vinplot, Dimplot and Featureplot. Analysis of

cell-cell communication between the expression of CD161 and T

cells was performed using the R package cellchat. To mine the

relationship between CD161 expression and tumor cell

transcription factors using the R package SCENIC.
Multiplex immunofluorescence staining

Multiorgan cancer tissue microarray HOrg-C110PT-01 was

purchased from the Outdo Biotech company (Shanghai, China).

The tissue microarray has a total score of 110 and a total number of

69 cases. The Ethics Committee approved the sample collection

used for the tissue microarray. We first used the Abs, including
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CD161 (Mouse, 1:100, ab197979, Abcam, UK), CD68 (Rabbit,

1:3000, GB113150, Servicebio, China), CD163 (Rabbit, 1:3000,

16646-1-AP, Proteintech, China), CD8 (Mouse, 1:3000, 66868-1-

Ig, Proteintech, China) for immunofluorescence staining, and

incubated with horseradish peroxidase-coupled secondary

antibodies (GB23301, GB23303, China). The next step was

tyramine signal amplification (TSA)(Servicebio, China), and the

amplification reagents were CY3-TSA, FITC-TSA, 594-TSA and

647-TSA. After human antigen marking, the nucleus was coated

with an anti-fading fixative containing 4', 6-diamino-2-

phenylindole hydrochloride (DAPI). The Pannoramic Scanner

(3D HISTECH, Hungary) was used to scan the stained slides and

obtain multispectral images. DAPI emits blue light in fluorescence

analysis, which is excited by UV at 330-380 nm and emitted at 420

nm. In fluorescence analysis, DAPI emits blue light through

ultraviolet excitation wavelength of 330-380 nm and emission

wavelength of 420 nm. CY3 has an excitation wavelength of 510

to 560 nm and an emission wavelength of 590 nm, emitting red

light and labeling CD68. 594 has an excitation wavelength of 594

nm and an emission wavelength of 615 nm, emitting fuchsia light

and labeling CD161. FITC has an excitation wavelength of 465 to

495 nm and an emission wavelength of 515 to 555 nm, emitting

green light and labeling CD163. 647 has an excitation wavelength of

608 to 648 nm and an emission wavelength of 672 to 712 nm,

emitting pink light and labeling CD8. The positive cells were

quantified at the single-cell level in the multispectral images, and

were analyzed using pan luminosity viewer (P.v 1.15.3) and the

caseviewer (C.V 2.3, C.V 2.0) image analysis software.
Statistical analysis

Student’ t-test was utilized to compare the difference of normal

distribution variables between two groups, and one-way analysis of

variance (ANOVA) was utilized to compare the difference of

normal distribution variables between multiple groups. The

Wilcoxon test was used to compare the differences of non-

normally distributed variables between two groups, and the

Kruskal-Wallis test was used to compare the differences of non-

normally distributed variables between multiple groups. Pearson

correlation analysis was utilized to calculate correlation coefficients.

Heatmaps were generated using the R package pheatmap. P < 0.05

was considered statistically significant.
Results

Pan-cancer expression and methylation
analysis of CD161

The studying structure are designed as follows, Most of our

studies were based on 33 The Cancer Genome Atlas (TCGA)
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tumors, including the relationship between CD161 expression

and tumor prognosis, the interactive body map of CD161 using

the Gene Expression Profiling Interactive Analysis (GEPIA), the

mutation of CD161 using cBioportal, gene set analysis of CD161

using GSCALite, neoantigens of CD161, gene set variation

analysis (GSVA) of CD161, single-cell sequencing analysis,

scRNA-seq in Skin Cutaneous Melanoma (SKCM), cell-cell

communication and immunofluorescence of pan-cancer tissue

sections. In addition, we analyzed the expression of CD161 in

human cancer cell lines, clinical response to immunotherapies,

and prediction for cellular transcription factors.

We analyzed the expression levels of CD161 in multiple human

cancers using TCGA (Figure 1A) and the interactive body map of

CD161 using GEPIA (Figure 1B). As shown in Figures 1A, B, the

Expression of CD161 was higher in various cancers, including

Kidney renal papillary cell carcinoma (KIRP), Brain Lower Grade

Glioma (LGG), Glioblastoma multiforme (GBM), Pancreatic

adenocarcinoma (PAAD), Stomach adenocarcinoma (STAD),

Ovarian serous cystadenocarcinoma (OV), Acute Myeloid

Leukemia (LAML), Kidney renal clear cell carcinoma (KIRC),

Esophageal carcinoma (ESCA), Cervical squamous cell carcinoma

and endocervical adenocarcinoma (CESC), SKCM, Adrenocortical

carcinoma (ACC), Testicular Germ Cell Tumors (TGCT),

Thymoma (THYM) and Rectum adenocarcinoma (READ) than

normal tissues. However, the expression of CD161 in Head and

Neck squamous cell carcinoma (HNSC), Lung adenocarcinoma

(LUAD), Uterine Carcinosarcoma (UCS), Lung squamous cell

carcinoma (LUSC), Bladder Urothelial Carcinoma (BLCA) was

lower than normal tissues. The protein protein interaction network

related to CD161 based on STRING (http://string-db.org/cgi/input.

pl) is shown in (Figure 1C). We downloaded human cancer cell

lines from the human protein atlas (HPA). CD161 was highly

expressed in human erythroleukemia cell line HEL, chronic

myeloid leukemia (CML)-derived cell line HAP1, human

placental choriocarcinoma cell line BeWo, human plasmacytoma

cell line Karpas-707, glioblastoma cell line U-138 MG, human

hematopoietic cell line U-937 and other cell lines (Figure 1D). A

disease network interaction analysis exhibited that KLRB1 has

multiple gene functional partners associated with immune system

disease, measurement, musculoskeletal or connective tissue disease,

genetic, familial or congenital disease, urinary system disease,

infectious disease or post-infectious disorder (Figure 1E).

Many studies indicated that abnormal DNA methylation is

closely related to human cancers (15). Therefore, we used the

GSCALite platform to evaluate the methylation characteristics of

KLRB1 and marker genes of T cells and macrophages in TCGA

cancers (Figures 1F, G). First, we searched for DNA methylation

differences between normal and tumor tissues in 14 cancer types.

This result indicated that the methylation of KLRB1 was a most

pronounced decrease in Liver hepatocellular carcinoma (LIHC),

Colon adenocarcinoma (COAD), and Prostate adenocarcinoma

(PRAD) (Figure 1F). Afterward, we estimated the relationship

between the expression of KLRB1 and DNA methylation in 33
Frontiers in Immunology 04
cancers; the findings indicated that the expression of KLRB1 and

marker genes of T cells and macrophages were principally

negatively correlated with DNA methylation, and only

minority positive correlations (Figure 1G).
Correlation between CD161 expression
and prognosis of TCGA tumor patients

We explored the survival differences between CD161-high

and CD161-low groups in terms of OS and DSS across 33 cancer

types in TCGA. Univariate cox regression analysis was used to

explore the prognostic value of CD161 regarding OS and DSS in

33 cancer types. High expression of CD161 in patients with

ESCA, LGG and UVM was significantly associated with shorter

OS. On the contrary, patients with low levels of CD161

expression associated with shorter OS in ACC, Breast invasive

carcinoma (BRCA), BLCA, CESC, Cholangiocarcinoma

(CHOL), KIRC, HNSC, KIRP, LUAD, LIHC, Mesothelioma

(MESO), PAAD, OV, READ, Pheochromocytoma and

Paraganglioma (PCPG), PRAD, Sarcoma (SARC), Uterine

Corpus Endometrial Carcinoma (UCEC), SKCM, Thyroid

carcinoma (THCA, Figures 2A, B, S1).

High expression of CD161 in patients with ESCA, LGG and

UVM was significantly associated with shorter DSS, which was

similar to the results of OS analysis. In contrast, low CD161

expression was associated with poor DSS in BLCA, ACC, BRCA,

CHOL, CESC, GBM, KIRP, HNSC, LIHC, MESO, LUAD, OV,

PRAD, PAAD, SARC, READ, SKCM, UCEC, THCA

(Figures 2C, D, S2). These results indicated that CD161

expression levels were significantly associated with the

prognosis of patients with multiple TCGA cancer types. High

CD161 expression forecasts poor clinical outcomes in various

cancer types.
The Landscape of CD161 mutation
profile in different tissues

The cBioPortal platform enables the analysis of different

gene types in the TCGA database, and we used this platform to

analyze the mutation frequency of CD161. We used cBioPortal

to detect the mutation frequency of CD161 in the TCGA

database (Figure 3). In addition, cBioPortal provides a

different visual analysis of a single gene (Figures 3A, B). Figure

3A shows the relationship between KLRB1 mRNA expression

and its putative copynumber alterations (CNAs), and Figure 3B

shows the relationship between KLRB1 mRNA expression and

its origin. A total of 42 mutation siteswere located between

amino acids 0 and 225 (including 29 missenses, 7 truncating, 5

splices, and 1 fusion mutation). R28Q was the most frequent

mutation site; it shows 3 of the 42 mutations in 3 patients/

samples (Figure 3C).
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FIGURE 1

Pan-cancer Expression and Methylation Analysis of CD161. The expression of CD161 in various human cancers from TCGA dataset (A). Median
expression of CD161 in tissue samples in bodymap(red: tumor; green: regular) (B). The protein protein interaction network related to CD161 (C).
The expression of CD161 in different cell lines (D). A disease network interaction analysis of CD161 (E). Tumor and normal tissues show
differential methylation of KLRB1 and marker genes of T cells and macrophages in 14 cancer types (F). Bubble map showing the correlation
between the expression of KLRB1 and marker genes of T cells and macrophages and methylation across different cancer types (G). ns, not
statistically significant; *P < 0.05; **P < 0.01; ***P < 0.001.
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CD161 CNVs and SNVs in different
cancer types

Copy number variation (CNV) and single-nucleotide variant

(SNV)were performed using theGSCALite platform.Wepredicted

different types of CNA of the target genes, most CNVs are

heterozygous amplification or deletion (Figures 4A–C). Figure 4C

showed each cancer’s heterozygous or homozygous CNVs of

CD161 and T cell and macrophage marker genes. TGCT, ACC,

LUSC, OV, BLCA, USC, ESCA, LUAD, SKSM, SARC, and KICH

were estimated to exhibit heterozygous amplification or deletion
Frontiers in Immunology 06
type CNA. In the correlation betweenmRNA expression andCNV,

TCGA, OV, ESCA, HNSC, LUSC, and SKCM were negatively

related to the expression of KLRB1 (Figure 4D). At least one

mutation was detected in 430 samples across all analyzed tumor

types. The SNV frequency of CD163 was the highest among the

tumors analyzed (70%), followed byCD8B (10%). ForKLRB1, SNV

frequency was 7% in various cancers. In addition, the number of

mutations in KLRB1-related SKCM was the largest, followed by

LUSC, UCEC, and LUAD. In pan-cancer analysis, the most

common DNA alterations of CD161 and the marker genes of T

cells and macrophages were missense mutations (Figure 4E).
A B

DC

FIGURE 2

Correlation of CD161 expression with OS in 33 types of cancer (A). Kaplan-Meier analysis of OS in patients with high and low expression of
CD161 in SARC, SKCM, LGG, THCA, CESC, HNSC, LUAD, LIHC, and UVM (B). CD161 expression with DSS in TCGA cancers (C). Kaplan-Meier
analysis of DSS in patients with high and low expression of CD161 in ACC, CESC, LGG, LUAD, SARC, SKCM, THCA, HNSC, and UVM (D).
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The relationship between CD161
and the number of neoantigens in
human cancers

Neoantigen loading may form biomarkers in cancer

immunotherapy and provide the impetus for developing novel

treatments that selectively enhance the reactivity of T cells to

such antigens (16). Consequently, we explored the relationship

between CD161 and the number of neoantigens in human

TCGA cancers. Our data showed that the number of

neoantigens based on SangerBox (http://sangerbox.com) was

significantly related to the increase of CD161 in GBM, LUSC,

COAD, and CESC (P < 0.05) (Figure S3).

Drug sensitivity analysis and pathway
enrichment of CD161

We used GSCALite for drug sensitivity analysis and pathway

enrichment of CD161 and marker genes of T cells and

macrophages in 33 tumors. These gene pathways are mainly

related to the epithelial-mesenchymal transition (EMT), the

activation of apoptosis and the inhibition of hormones AR and

ER (Figures 5A, B). Pathway enrichment analysis based on Gene

Set Variation Analysis (GSVA) algorithm showed that CD161

was active in various immune-related pathways of BRCA, BLCA,

CESC, GBM, COAD, KIRC, HNSC, LIHC, KIRP, LGG, LUSC,

LUAD, OV, READ, PRAD, STAD, SKCM, THYM, THCA, and
Frontiers in Immunology 07
UCEC (Figure 5C). In addition, drug sensitivity analysis showed

that low-expressed CD161 exhibited resistance to 4 and 3 drugs

in CTRP and GDSC, respectively (Figure S4).
Single cell sequencing to reveal the
expression of CD161 in tumor and
immune cells

Based on the R-package copykat, we studied the expression

level of CD161 in tumor and immune cells in several tumor

types. In LIHC, CD161 was mainly expressed in various cell

types, including T cells, Thymic Epithelial Cell (TEC), B cells,

Tumor-Associated Macrophage (TAM), fibroblasts ,

hematopoietic progenitor cell (HPC-like) and cancer cells

(Figure S5A). Various cell types also express CD161 in LUAD

and PAAD, including B cells, T cells, cancer cells, fibroblasts,

macrophages, and endothelial cells (Figures S5B, D).

Additionally, CD161 was highly expressed in NK cells in

LUAD. In GBM, CD161 was highly expressed in T cells, M1

and M2 Macrophages, neoplastic, microglial cells, neurons,

Astrocyte, Oligodendrocyte, Oligodendrocyte Progenitor cells,

and Neural Stem cells (Figure S5C). In prostate cancer (PC), The

expression of CD161 was the highest in T cells (Figure S5E). In

GHOL, CD161 was mainly expressed in T cells, TEC, B cells,

TAM, fibroblasts, HPC-like, and cancer cells (Figure S5F).

CD161 was highly expressed in various cancer cells, T cells
A B

C

FIGURE 3

CD161 mutation landscape. The putative copy-number alterations from GISTIC of CD161 in many TCGA cancers by the cBioPortal database (A).
The study of the origin of CD161 in many TCGA cancers by the cBioPortal database (B). Diagram of CD161 mutations across cancer types in the
protein domain (C).
frontiersin.org

http://sangerbox.com
https://doi.org/10.3389/fimmu.2022.1040289
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1040289
and M2 macrophages in BRCA (Figure S6A). In OV, CD161 was

highly expressed in CD4 T cells, cancer cells, and fibroblasts

(Figure S6B). T cells expressed high levels of CD161 in colorectal

cancer (CRC, Figure S6C) and gastrinoma (GAS, Figure S6D). In
Frontiers in Immunology 08
head and neck squamous cell carcinoma (HNSCC), CD161 was

highly expressed in Macrophages, astrocytes, T cells, M2

macrophages, Tregs, cancer cells, and fibroblasts (Figure S6E).

Meanwhile, in SKCM, CD161 is expressed in B cells, T cells,
A

B

D

E

C

FIGURE 4

CNVs and SNVs were performed using the GSCALite platform. Heterozygous CNV of CD161 and T cells and macrophages (A). homozygous
CNV of CD161 and T cells and macrophages (B). Pan-cancer analysis of heterozygous/homozygous CNVsof CD161 and marker genes of T cells
and macrophages (C). Hete Amp: heterozygous amplification; Hete Del: heterozygous deletion; Homo Amp: homozygous amplification; Homo
Del: homozygous deletion; None: no CNV. The correlation between CNVs and mRNA expression levels of CD161 and marker genes of T cells
and macrophages was analyzed in a pan-cancer context (D). SNV frequency of CD161 and marker genes of T cells and macrophages. The gray
vertical bars in the graph represent patients (E). The top and side column diagrams indicate the number of variants per sample or in each gene.
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cancer cells, and NK cells, and the expression degree is the

highest in NK cells (Figure 6A).
Cancer cells and T cells exhibit high
CD161 expression in scRNA-Seq of SKCM

We analyzed the functional annotations and Single-cell

pseudotime trajectories of cancer cells and T cells in SKCM. In

cancer cells, Monocle reconstructed a trajectory, mainly

including two branch points (representing “1” and “2”), and
Frontiers in Immunology 09
divided the cells into four states (Figures 6B). In T cells, Monocle

reconstructed a trajectory including six branch points (denoted

“1” to “6”) and divided cells into fifteen states (Figures 6C). The

high KLRB1 expression level was observed in cancer cells in 1

and 5 states, and high KLRB1 expression was observed in T cells

in 7, 8, and 9 states. Concurrently, the results showed the Gene

Set Enrichment Analysis (GSEA) of KLRB1 of each “state” in

cancer cells and T cells, respectively (Figures 6D, E). We further

determined 100 genes with cancer cell branching sites; all of

these genes have branching-dependent expression. We

visualized the genes and related clusters expressed before and
A

B

C

FIGURE 5

CD161 network. Venn diagram of CD161-binding genes (A). Pathway enrichment of CD161 (B). The GSVA algorithm was used to identify
functional enrichment pathways of CD161 (C). *P < 0.05; **P <0.01.
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after branch points in Figure S7A. The top 12 genes are exhibited

in Figure S7B. In addition, we also ascertained 100 differentially

expressed genes and branch-dependent expression of branch

point T cells visualized in Figure S8A, and the top 12 genes are

exhibited in Figure S8B. The heat map of gene expression with

pseudotime value shows that genes with similar trends converge

to form different clusters. As can be seen from the figure, cancer

cells and T cells are divided into three clusters (Figures

S7C, S8C).

Moreover, the expression level of the cluster1 gene in cancer

cells and T cells decreased with pseudotime. We selected six

genes in cancer cells and T cells, respectively, showing their

change trend with time (Figures S7D, S8D). The direction of

dispersion between CD161 expression on tumor cells and T cells

is shown in Figures S7E, S8E, respectively. Finally, KLRB1 was
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analyzed by GO enrichment analysis in cancer cells and T cells

(Figures S7F, G, S8 F, G).
Cell-cell communication of T cells with
high and low expression of CD161

We used the R package “cellchat” to visualize the cell-cell

communication of T cells expressing different levels of CD161.

The identified roles of 9 cell types in cell-cell communication are

classified into four types: receiver, sender, mediator, and

influencer. The receiver and sender of these nine cell types

showed three distinct cellular patterns (Figures S9A, C). In

parallel, the specific genes associated with the receiver and

sender communication patterns of the nine cell types were
A

B

D E

C

FIGURE 6

scRNA-seq results for CD161 in SKCM. The expression levels of CD161 in tumor and immune cells are based on the R package copykat in SKCM
(A). The single-cell trajectory of cancer cells contains three main branches. Cells in images are colored based on state (left), pseudotime
(middle), and KLRB1 (right) (B). The single-cell trajectory of T cells contains seven main branches. Cells in images are colored based on state
(left), pseudotime (middle), and KLRB1 (right) (C). GSEA of cancer cells for KLRB1 in each state (D). GSEA of macrophages for KLRB1 in each state
(E). The red color indicates a positive correlation, while the blue color indicates a negative correlation.
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also divided into three distinct cell patterns (Figures S9B, D).

The river plots depicted cancer cells, endothelial cells,

fibroblasts, and unknown cells associated with the receiver’s

communication patterns in pattern 1. B cells, high T cells, low T

cells, and NK cells were associated with the receiver in pattern 2.

Macrophages were associated with the receiver in pattern 3

(Figure S9C). Meanwhile, B cells, high T cells, low T cells, and

NK cells were associated with the communication patterns of the

sender in pattern1. Cancer cells and unknown cells were

associated with the sender in pattern2. Fibroblasts were

associated with the sender in pattern3 (Figure S9D). The dot

plots showed the communication patterns of the nine cell types,

respectively, for the receiver and the sender (Figures 7A, B). We

further clarified the correlations between the expression of

CD161 and specific signal pathways. The results showed that

T cells with high expression of CD161 interacted closely with

cancer cells through signal pathways such as ANGPTL, BMP,

EGF, FGF, SEMAS, and WNT (Figures 7C–H).
Correlation between CD161 expression,
macrophages, and T cells

CD161 can be expressed in various immune cells and cancer

cells in the tumor microenvironment (TME), especially T cells and

macrophages. Therefore, we used tissue chips of pan-cancer samples

to explore the expression profile of CD161 in macrophages and T

cells. We selected CD68, CD163, and CD8 as macrophages, M2

macrophage markers, and T cell markers. Immunofluorescence

showed that papillary thyroid carcinoma (PTC) and the Follicular

variant of papillary thyroid carcinoma (FV-PTC) exhibit more

CD161 expression than normal tissues (Figure 8A). Our results

showed that the expression level of CD161 in WHO II gliomas was

significantly lower than that in WHO III gliomas (Figure 8C).

Meanwhile, we found that the level of CD161 shown by GBM was

higher than that of LGG, and GBM was significantly expressed in

M2macrophages (Figure 8B). The expression of CD161 in laryngeal

squamous cell carcinoma (LSCC) (Figure 8D), CESC (Figure 8E),

UCEC (Figure 8F), and TGCT (Figure 8L) was higher than in

normal tissues. On the contrary, the CD161 expression was

decreased in tumor tissues than in normal tissues in upper tract

urothelial cancer (UTUC) and micropapillary urothelial carcinoma

(MPUC; Figure 8G), BLCA (Figure 8H), and penile squamous cell

carcinoma (PSCC; Figure 8I). In addition, we compared the

expression of CD161 in OV and ovarian papil lary

adenocarcinoma (OPV) and found that CD161 was mainly

expressed in T cells (Figure 8J). Moreover, the expression of

CD161 was up-regulated in PRAD patients with higher Gleason

scores than in patients with lower Gleason scores (Figure 8K).
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Immunotherapy is more practical for
high CD161 patients

Previous studies usually used ROC to measure the true and

false-positive rates at different thresholds of TIDEprediction scores.

Meanwhile, the area under the ROC curve (AUC) is used as the

quality measure of prediction (17). Our results showed that the

predictive value of CD161 alone had an AUC >0.7 in 4 of 25

immunotherapy cohorts (Figure 9A). Compared with TIDE (AUC

> 0.7 in 2 immunotherapy cohorts), MSI score (AUC > 0.7 in 3

immunotherapy cohorts), TMB (AUC > 0.7 in 2 immunotherapy

cohorts), T.Clonality (AUC> 0.7 in 1 immunotherapy cohorts) and

B.Clonality (AUC > 0.7 in 1 immunotherapy cohorts), CD161 had

a higher predictive value. Compared with CD8 (AUC > 0.7 in 7

immunotherapy cohorts), IFNG (AUC > 0.7 in 8 immunotherapy

cohorts) and T cell-inflamed signature (Merck 18, AUC > 0.7 in 8

immunotherapy cohorts), CD161 had a lower predictive value.

Moreover, the predictive results were similar in CD161 and CD274

immunotherapy cohorts, with four each in the cohorts with AUC>

0.7 (Figure 9A). In addition, we used the TISMOwebsite to evaluate

genes, pathways effectively, and immune cell infiltration in the

context of Immune checkpoint inhibitor (ICB) treatment to

generate the hypothesis of immunotherapeutic response (18).

The picture shows how different ICB treatments stimulate

KLRB1 gene expression in various models (Figure 9B). KLRB1

expression levels in the B16, CT26, D3UV2, KPB25L, andMOC22

models were significantly up-regulated in ICB responders but

non-responders.

We analyzed the predictive value of CD161 in the anti-PD-1

cohort of urothelial carcinoma (Imvigor 210), the anti-PD-1

cohort of NSCLC(GSE136961), and GBMcohort, respectively. In

Imvigor 210 cohort, high-risk scores in patients were

significantly associated with longer OS (Figure 9C). Compared

with the low CD161 group, the significant treatment intensity

and response to PD-L1 immunotherapy in the high CD161

group were also confirmed (Figure 9D). Accordingly, the level of

CD274 were higher in the high-risk score group (Figure 9E). In

the GSE136961 cohort, patients experienced prolonged OS and

PFS in the high-risk score group (Figures 9F, G). The expression

level of KLRB1 in the patient group with durable clinical benefit

was significantly higher than in the patient group without the

clinical benefit (Figure 9H). In the GBM cohort, patients with

high-risk scores had shorter OS than those with low-risk scores,

but the difference was not statistically significant (Figure 9I).

Furthermore, in the GSE78220 cohort, the proportion of high

CD161 expression in the CR, PD, and PR groups was 57.39%,

80.95%, and 67.5%, respectively (Figure 9J). The high CD161

group showed increased expression of CD274, which resulted in

a reasonable response to immunotherapy (Figure 9K).
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Predicting biological functions of
transcription factors based on scRNA-
Seq of SKCM

Transcription factors have played critical biological functions

in the tumor microenvironment. We constructed a gene

regulatory system to mine the relationship between the

expression of CD161 and transcription factors in tumor cells.

Malignant cells were divided into four modules by the connection

specificity index, in which more regulons were observed in M2

and M4 (Figure 10A). We then explored the interrelationship

between the regulon distribution and the expression of CD161 in

the four malignant cell modules (Figures 10B, C). The results
Frontiers in Immunology 12
showed that the high CD161 groups presented more regulon

activities and counts in all modules, and the differences between

module two and module four were significant. Subsequently, we

performed GO and KEGG enrichment analysis based on the top-

ranked regulons, and the results showed a high correlation

between these regulons and the process of T cell activation

(Figures 10D, F). Major specificity regulons were found in high

CD161 expression tumor cells, including RORA_extended,MYC,

MAFF_ extended, XBP1,MXD4_ extended, KLF8_ extended, and

STAT4_ extended, while major regulons in low CD161 tumor

cells including EOMES_ extended, IRF8, STAT3_extended,

NUAK2_ extended, NFATC1, IRF4_ extended and NFIL3_

extended (Figure 10E).
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FIGURE 7

The dot plots depicted the receiver (A) and sender (B) communication patterns. The expression of CD161 is correlated with specific signal
pathways, including ANGPTL (C), BMP (D), EGF (E), FGF (F), SEMAS (G), and WNT (H).
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Discussion

Our results showed that the expression of CD161 is closely

related to the occurrence and development of various cancers. The

increasing evidence indicated that combining appropriate doses of

chemotherapy with immune checkpoint inhibitors (ICIs) is more

effective than monotherapy (19). Cytotoxic T-lymphocyte-associated

antigen 4 (CTLA-4)/B7 and PD-1/PD-L1 are the two most crucial

immune checkpoint pathways (20, 21). CD161 and its ligand LLT1

are expressed in the tumor microenvironment (11), and past studies

have shown that CD161 expression on T cells can play both
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inhibitory and activating roles in tumorigenesis and progression

(22). This study exhibited the relationships of expression levels and

mutational landscape of CD161 with tumor prognosis, neoantigens,

pathway enrichment, drug sensitivity, single-cell sequencing, and

immunotherapy. In addition, the association of CD161 with T cells

and macrophages was explored using Immunofluorescence.

First, we evaluated CD161 expression levels in 33 tumors

from TCGA; it was found that there was a noticeable difference

in the expression of Pan-cancer CD161 in tumor and normal

tissues. TCGA data showed increased levels of CD161 in GBM,

LGG, PAAD, KIRP, STAD, OV, KIRC, LAML, CESC, ESCA,
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FIGURE 8

Triple immunofluorescence method was used to analyze the correlation between CD161 expression and T cells and macrophages. The
expression levels of CD161 on T cells and macrophages in PTC and FV-PTC (A), GBM (B), LGG (C), LSCC (D), CESC (E), UCEC (F), UTUC and
MPUC (G), BLCA (H), PSCC (I), OV and OPV (J), PRAD (K), and TGCT (L).
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FIGURE 9

Relationship between CD161 expression and immunotherapy from two websites and four databases. Several markers area under the ROC curve
(AUC) for predicting immune response (A). Different ICB treatments stimulated KLRB1 gene expression in various models (B). In the Imvigor 210
cohort, the correlation between patient risk score and OS (C). CD161 expression correlated with the treatment intensity and response to PD-L1
immunotherapy (D). Correlation between patient risk score and CD274 level (E). The GSE136961 cohort shows the correlation between patient
risk score and OS (F) and PFS (G). Relationship between KLRB1 expression level and clinical benefit (H). In GBM cohort, the correlation between
patient risk score and OS (I). In the GSE78220 cohort, CD161 expression correlated with the treatment intensity and response to PD-L1
immunotherapy (J). Relationship between patient risk score and CD274 level (K). *P < 0.05; ***P < 0.001.
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SKCM, TGCT, ACC, and THYM compared to normal tissues.

Several studies from us and others on CD161 showed that

CD161 is highly expressed in GBM (23–25), which verified

that restraining the CLEC2D-CD161 pathway may strengthen

T cell-mediated immunity against GBM to a certain extent (12).

Moreover, CD161 HNSC, READ, UCS, LUAD, BLCA, and

LUSC was lower than normal tissues. And CD161 was

expressed in 20 cell lines. DNA methylation is abnormal in all

forms of cancer (26); we found that the expression levels of

KLRB1 and marker genes of T cells and macrophages were

principally negatively correlated with methylation and only

minority positive correlations.

Studies showed that CD161 is a favorable prognostic gene

whose expression primarily reflects tumor-associated leukocytes

(2). Our results represented a dual role of CD161 expression in

tumor prognosis, and we confirmed elevated CD161 expression

with poorer prognosis in ESCA, LGG, and UVM both in OS and

DSS. This result is consistent with a previous study, which

indicated that the high expression of CD161 is likely to be a

risk factor for patients with ESCA, LGG, and UVM (23). On the

contrary, CD161 was protective in ACC, BRCA, BLCA, CHOL,

CESC, HNSC, GBM, KIRP, LIHC, MESO, LUAD, PAAD, OV,

READ, PRAD, SARC THCA, SKCM, and UCEC. Furthermore,

we provided information about CD161 mutations, CNVs, and

SNVs changes through cBioportal and GSCALite, which are

discrepancies in different cancers. The mutation levels of UCS,

TGCT, and OV were relatively high, and the change frequency of

CD161 was more than 4%. We predicted different types of CNA

of CD161 and marker genes of T cells and macrophages, most

CNVs are heterozygous amplification or deletion. The SNV

frequency of CD161 was 7% at the cancer level, lower than

that of CD163 and CD8. The number of mutations in CD161-

related SKCM was the largest, followed by LUSC, UCEC, and

LUAD. The most frequent DNA alterations of CD161 and

marker genes of T cells and macrophages were missense

mutations. Studies showed an increase in CD8 + CD28- T

cells expressing the CD161 receptor in melanoma diseases,

indicating that CD8 + CD28- T cells can be activated in these

patients (27, 28).

Neoantigens are produced by tumor mutations and are highly

immunogenic. They are protein fragments that are not present in

the normal human body. They may become a new target of tumor

immunotherapy and can excitation CD8+ and CD4+ T cells to

produce immune response (29). We found that the number of

neoantigens was significantly related to the increase of CD161 in

GBM, LUSC, COAD, and CESC. Pathway enrichment analysis

showed that CD161 was active in immune-related pathways of

many cancers. Furthermore, drug sensitivity analysis showed that

low-expressed CD161 exhibited resistance to some drugs in CTRP

and GDSC. These results emphasize that CD161 plays a complex

and vital role in TME. The matrix components of TME are

composed of many different cell types, such as neutrophils,

cancer-related fibroblasts, myelogenous suppressor cells (30),
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macrophages, mast cells, regulatory T cells, natural killer cells,

and platelets. These cell subsets interact with cancer cells through

complex communication networks (31). Our results based on the

R-package copy showed that the expression level of CD161 was

extremely high in immune cells of LIHC, LUAD, GBM, PAAD, PC,

and SKCM. To learn more about the role of CD161 in single-cell

pseudotime trajectories and functional annotation of cancer cells

and T cells in SKCM, scRNA-seq analysis was performed. In our

results, we used Single-cell sequencing data to find that CD161 is

highly expressed in tumor cells and T cells of SKCM. Further study

on pseudotime trajectories and functional annotation of CD161

emphasizes the correlation between CD161 and T cell infiltration

and progression in SKCM.

CD161 plays different roles in different cancers. Tumor-

associated macrophages (TAM) and cancer-associated

fibroblasts (CAF) are the most abundant noncancer cells in

the tumor matrix. They have become vital participants in cancer

progression, metastasis, and therapeutic resistance (32). As the

core of immunosuppressive cells and cytokine network, TAM

plays a crucial role in tumor immune escape (33). M1-like are

activated in response to inflammatory response and antigen

presentation, while M2-like can be involved in therapeutic

resistance to cancer growth, metastasis, and angiogenesis (34).

CD68 refers to TAMs activated by M1 and M2 macrophages,

while CD163 is M2 macrophages related antigen (20, 35).

Tumor-infiltrating CD8 (+) T cells can also respond in many

cancers (36). In this study, we found that the expression of

CD161 in PTC, FV-PTC, LSCC, CESC, UCEC, and TGCT was

higher than in normal tissues. On the contrary, the expression of

CD161 in UTUC, MPUC, BLCA, and PSCC was lower than in

normal tissues. The multiple immunofluorescence staining

results showed that CD161 was expressed in macrophages and

T cells of various cancers and further verified the effects of

single-cell sequencing. Therefore, we speculated that CD161 is

involved in macrophage and T cell-related immune processes. It

should be noted that CD161-related immune infiltration is

primarily based on the interaction between CD161 located on

immune cells and its ligand, presumably LLT1, located on tumor

cells (37, 38).

Cancer immunotherapy recognizes and attacks cancer cells

by operating the immune system, including cellular adoptive

immunotherapy and immune checkpoint inhibitors therapy

(39). Imvigor210 cohort and melanoma data set (GSE78220)

can centrally verify the predictive value of Immune Cell Pair

(ICP) score for immunotherapy response (40). We found that

the predictive value of immunotherapy quality of CD161 was

higher than the TIDE, MSI score, TMB, T. Clonality, and B.

Clonality. Moreover, different ICB treatments stimulated KLRB1

gene expression in many models to produce a better response to

checkpoint inhibitor immunotherapy. The relationship between

CD161 expression and immunotherapy was obtained from four

databases. Our study showed a statistically significant increase in

CD274 expression in IMvigor210 and GBMcohort datasets in
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the high CD161 group. These results suggest that the high

expression of CD161 has a reasonable response to

immunotherapy, and CD161 may be involved in the

immunomodulatory response of tumors by mediating immune

infiltration. Although we performed relatively comprehensive

single-cell sequencing and pan-cancer analysis of CD161, most

of our results were based on dataset analysis, and experimental

validation results were limited. Some studies have shown that the

CD161-CLEC2D pathway may be a potential target of Glioma,

but its effect on other cancers and the specific mechanism of

action still need to be further studied.
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Conclusions

In conclusion, we provided a pan-cancer analysis of the

abnormal expression, methylation, and prognosis of CD161.

Although there are similar studies about CD161 in pan-cancer,

our study is a more comprehensive analysis. Specifically, our

study explored more the potential roles of CD161 in the tumor

microenvironment of melanoma at the single-cell sequencing

level and the prediction of transcription factors. CD161 is closely

related to T cells and macrophages based on the multiplex

immunofluorescence staining. We also analyzed the predictive
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FIGURE 10

Correlation between transcription factors and CD161 expression in malignant cells. Heatmap of transcription factors in malignant tumor cells divided
into four modules according to the ligation specificity index (A). Regulon activity scores of transcription factors in CD161 high and CD161 low malignant
neoplastic cells in four modules (B). Violin plot of regulatory activity scores of transcription factors in CD161 high and CD161 low malignant cells in four
modules (C). GO enrichment analysis was performed to examine the possible functions of high expression regulons in malignant tumor cells (D). Scatter
plots based on transcription factor specificity scores in malignant cells expressed in CD161 high and CD161 low groups (E). KEGG enrichment analysis
was performed to examine the possible functions of high expression regulons in malignant tumor cells (F). ns, not statistically significant; ****P <.0001.
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value of CD161 expression in tumor immunotherapy response.

Our results suggest that CD161 may be a promising target for

tumor immunotherapy.
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