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All currently approved COVID-19 vaccines utilize the spike protein as their

immunogen. SARS-CoV-2 variants of concern (VOCs) contain mutations in the

spike protein, enabling them to escape infection- and vaccination-induced

immune responses to cause reinfection. New vaccines are hence being

researched intensively. Studying SARS-CoV-2 epitopes is essential for

vaccine design, as identifying targets of broadly neutralizing antibody

responses and immunodominant T-cell epitopes reveal candidates for

inclusion in next-generation COVID-19 vaccines. We summarize the major

studies which have reported on SARS-CoV-2 antibody and T-cell epitopes thus

far. These results suggest that a future of pan-coronavirus vaccines, which not

only protect against SARS-CoV-2 but numerous other coronaviruses, may be

possible. The T-cell epitopes of SARS-CoV-2 have gotten less attention than

neutralizing antibody epitopes butmay provide new strategies to control SARS-

CoV-2 infection. T-cells target many SARS-CoV-2 antigens other than spike,

recognizing numerous epitopes within these antigens, thereby limiting the

chance of immune escape by VOCs that mainly possess spike protein

mutations. Therefore, augmenting vaccination-induced T-cell responses

against SARS-CoV-2 may provide adequate protection despite broad

antibody escape by VOCs.

KEYWORDS
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Introduction

The efficacy of the current COVID-19 vaccines is threatened by the ever-present risk

of variants of concerns (VOCs) that evade adaptive host responses to cause reinfection in

previously infected and vaccinated individuals. Currently zoonotic coronaviruses could

also spill over into humans and potentially cause pandemics. Coronaviruses, therefore,
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still pose a serious threat to the global population, economies,

and healthcare system. Novel vaccines are being researched to

induce more robust immune responses against the SARS-CoV-2

virus and confer better protection.

Understanding the benefits of current vaccines and the goal of

next-generation vaccines requires a basic understanding of the

adaptive immune response to SARS-CoV-2. Adaptive immunity

comprises two components: humoral and cell-mediated

responses. Antibodies (produced by B-cells) mediate the

humoral response by binding viruses extracellularly to prevent

infection. Therefore, preventing SARS-CoV-2 infection is the

immune correlate of antibody-mediated protection. Unlike

antibodies, T-cells do not recognize viruses extracellularly. Once

cellular infection has occurred, T-cells recognize and kill infected

cells, decreasing viral load and limiting viral spread. Protection

against severe COVID-19—e.g., need for hospitalization, ICU

admission, and mechanical ventilation—is the immune correlate

of T-cell-mediated protection against SARS-CoV-2 (1–12).

SARS-CoV-2 possesses many proteins which the immune

system can recognize. Peptide sequences within these antigens

which serve as binding sites for immune cells are called epitopes.

Defining which SARS-CoV-2 epitopes elicit robust T-cell and

broadly neutralizing antibody responses is essential for designing

future vaccines. T-cell and neutralizing antibody epitopes

conserved in SARS-CoV-2 and other coronaviruses could pave

the way for a future pan-coronavirus vaccine. A pan-coronavirus

vaccine would not only protect against SARS-CoV-2 but also

common cold coronaviruses (HCoVs), SARS-CoV-1, MERS-

CoV, and zoonotic coronaviruses with pandemic-causing

potential (10). This review discusses the immunodominant T-

cell and broadly neutralizing antibody epitopes of SARS-CoV-2.
SARS-CoV-2 virology and infection

Betacoronaviruses are positive-sense single stranded RNA

viruses including SARS-CoV-1, MERS-CoV, SARS-CoV-2, and

HCoVs OC-43 and HKU-1 (13, 14). SARS-CoV-2 contains four

structural proteins and 16 Non-Structural Proteins (NSP1-16)

(14). The viral genome is wrapped around a nucleocapsid (N)

protein enclosed in the virion membrane (15). The membrane

(M), envelope (E), and spike proteins are integrated into the

virion membrane.

The spike protein mediates SARS-CoV-2 infection. Spike

comprises two subunits, S1 and S2, produced from the cleavage

of spike by furin. S1 contains the receptor-binding domain

(RBD), which mediates SARS-CoV-2 binding to the

angiotensin-converting enzyme-2 receptor (ACE2) on host cell

membranes. Following S1-ACE2 binding, S2 mediates the fusion

of the viral and host cell membranes, releasing the viral genome

into the cytosol (16, 17). The S1 subunit contains the RBD, N-

terminal domain (NTD), and subdomains SD-1 and SD-2. The
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S2 subunit comprises a fusion peptide, heptad repeat-1, central

helix, stem helix, heptad repeat-2, an integral membrane region,

and a cytoplasmic C-terminus (18). Since spike is imperative for

viral infectivity, it is the principal target of the adaptive immune

response. Consequently, the spike protein is subject to

tremendous selection pressures which drive spike mutations

and evolution—indeed, all VOCs contain mutations in their

spike protein (19). Omicron (B.1.1.529), which emerged in

South Africa in November 2021, is currently the dominant

SARS-CoV-2 strain in circulation globally. Omicron contains

at least 32 mutations in its spike protein, of which at least 15 are

located in the RBD (20). Omicron successfully evades

neutralizing antibody responses derived from prior SARS-

CoV-2 infection and vaccination. Omicron also evades several

FDA-approved monoclonal antibodies (21, 22).

Other structural proteins also play crucial roles in the SARS-

CoV-2 lifecycle. The N protein facilitates viral encapsidation,

while E and M proteins mediate the assembly of progeny virions

and subsequent budding from the host cell (16). NSPs also play

essential roles. NSP-1 interferes with host cell protein synthesis;

NSPs 2-11 support viral replication by the viral replication-

transcription complex (RTC); and NSPs 12-16 are involved in

RNA synthesis, proofreading, and modification (16).

In summary, the lifecycle of SARS-CoV-2 begins with

infection of ACE2-expressing host cells via binding to the

RBD of spike (23). S2 mediates subsequent viral cellular entry.

After the expression of vital SARS-CoV-2 structural proteins,

progeny virions are assembled and released from the infected cell

via exocytosis. Released virions can either infect other host cells

or be transmitted to other individuals via aerosols (24, 25). For

more detailed descriptions of the virology and mechanism of

SARS-CoV-2 infection of SARS-CoV-2, we refer to in-depth

reviews on this topic (18, 26, 27).
Adaptive immunity in mild COVID-
19 versus immunopathogenesis

Protective immunity describes the immunologic signatures

which underlie mild COVID-19 disease severity. By contrast,

immunopathogenesis describes the immunologic signatures which

underlie severe COVID-19 (Figure 1). Individuals who develop severe

SARS-CoV-2 infection demonstrate early onset inflammation with

delayed and dysregulated adaptive immunity. An example of

immune dysregulation in severe COVID-19 is significant

lymphocytopenia [45,46], which is often severe and long-standing

compared to other infections [47,48]. Lymphocytopenia mainly

affects the T-cell population, affecting the naïve and central

memory CD8+ T-cells and virtually all subsets of CD4+ T -cells.

On the other hand, prompt CD8+ cytotoxic T-cell

recruitment is associated with viral clearance and better

clinical outcomes (28, 29). CD4+ T-cells are also excellent
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predictors of disease severity (30). Moderbacher et al.

demonstrated that early and robust CD4+ and CD8+ T-cell

responses were associated with lower disease severity (31). Other

lines of evidence also support the importance of T-cells in SARS-

CoV-2 infection. Treating individuals with monoclonal

antibodies can reduce viral loads by four-fold. However,

untreated individuals with lower neutralizing antibody titers

had greater reductions in viral load, highlighting the

importance of T-cells in viral clearance (32). Moreover,

patients with impaired B-cell responses, such as those with X-

linked agammaglobulinemia and those receiving rituximab (a B-

cell-depleting immunotherapy), who recovered from COVID-19

without serious complications (33–35).
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T-cell responses to SARS-CoV-2 have naturally drawn

attention to the factors regulating them. The role of Type I

and Type III interferons is of particular interest. The SARS-CoV-

2 RNA genome and its replication intermediates can be

recognized by toll-like receptors 3 (TLR3) and 7 (TLR7) in

infected cells, which secrete type I and III IFNs (36, 37). IFNs

cause T-cell expansion and differentiation (38). In agreement

with these findings, early IFN responses are associated with

protective immunity and mild COVID-19 (39), whereas

decreased IFN induction is associated with a more prolonged

and severe disease course (40). Patients with genetic deficiencies

related to IFN release and signaling are significantly more likely

to suffer severe COVID-19 (41). Lastly, auto-antibodies against
FIGURE 1

Protective immunity to SARS-CoV-2 infection is characterized by early and robust type I and III IFN. This corresponds to the early recruitment
and expansion of T-cell responses, which correlates with SARS-CoV-2 viral clearance and asymptomatic or mild COVID-19. Protective
immunity also features early plasmablast expansion and intact B-cell germinal center responses. Given the importance of IFN response in
protective immunity, SARS-CoV-2 can evade IFN responses to delay the recruitment of adaptive immunity. Immunopathogenesis is therefore
characterized by delayed T-cell activation, a consequent delay in viral clearance and overactivation of innate immunity. Innate immune cells
then overproduce pro-inflammatory cytokines that spillover into the systemic circulation, causing a cytokine storm. Concomitantly, exaggerated
neutrophil responses, platelet activation, and endothelial inflammation (i.e., endotheliosis) precipitate a hypercoagulable state manifesting
clinically as the thrombotic microangiopathy that affects critically ill COVID-19 patients. Adapted from “Immune Mechanisms Affected by
COVID-19”, by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.
frontiersin.org
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type I IFNs have been detected in various independent cohorts of

severe COVID-19 patients (42–45). Given the importance of

IFN responses in COVID-19, SARS-CoV-2 has evolved various

strategies to evade them, which have been reviewed elsewhere

(36, 46, 47).

Like acute viral infections such as Ebola (48), B-cell

lymphopenia and a slight increase in plasmablast frequencies

occur in acute SARS-CoV-2 infection. However, unlike T-cells,

SARS-CoV-2 infection does not significantly alter the numerical

composition of the B-cell compartment (49, 50). Severe COVID-

19 does profoundly alter the composition of the B-cell

compartment. De Biasi et al. reported that translational B-cell

and plasmablast percentages were higher in COVID-19 patients

than in healthy controls, while memory switched and

unswitched B-cel l s were lower (51) . Considerable

heterogeneity in antibody responses has also been observed in

different patient groups. Compared to patients with mild disease,

higher antibody levels and broader antibody responses to S and

N proteins are seen in critically ill patients (5, 49). Surprisingly,

an amplified humoral immune response with higher nAb titers

in severe COVID-19 cannot clear the virus and may even worsen

the disease. Importantly, germinal center responses fail to

develop in severe illness, impairing somatic hypermutation

and antibody class-switching and delaying viral clearance (52).

Dysregulated germinal center B-cell responses are a consistent

feature in the immunopathogenesis of severe COVID-19. In

agreement with low somatic hypermutation in B cells

in advanced COVID-19, Tfh cells are noticeably decreased in

some patients’ lymph nodes and spleen (53).
T-cell epitopes

A T-cell epitope is a peptide sequence that binds to major

histocompatibility complexes (MHC) I and II. The peptide-HLA

(pHLA) complex is then presented on nucleated cells and

professional antigen-presenting cells (APCs) to CD8+ and CD4

+ T-cells, respectively, which then execute effector functions (54).

Cytotoxic T-cells recognize pHLA-1 complexes on the surface of

infected cells, killing these cells and reducing viral load. By

contrast, CD4+ helper T-cells recognize pHLA-2 complexes on

professional APCs (i.e., macrophages, dendritic cells, and B-cells)

for activation. Effector functions of activated CD4+ T-cells include

B-cell help to produce high-affinity antibodies and cytokine

production to enhance cell-mediated and humoral responses. In

summary, T-cells require the presentation of SARS-CoV-2

epitopes in the context of HLA to get activated. Therefore,

identifying the various HLA-restricted SARS-CoV-2 epitopes

has been the focus of substantial research (55).

T-cell responses have been identified against almost all

SARS-CoV-2 proteins. Grifoni et al. curated studies on T-cell

epitopes and reported over 1400 SARS-CoV-2 peptides targeted
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by T-cells, comprising 382 CD4 epitopes and 1052 CD8 epitopes

(11). Regarding antigens, S, M, and N proteins are most

predominantly targeted by T-cells, within which many

epitopes are recognized (56, 57). Nielsen et al. found the top

three immunogenic epitopes of SARS-CoV-2 on separate

antigens (58). Similarly, Tarke et al. reported that considering

8-9 different SARS-CoV-2 antigens accounts for approximately

80% of the CD4+ and CD8+ responses. The same study showed

that every individual, on average, targets 17 CD4 epitopes and 19

CD8 epitopes (59). These results suggest the existence of a broad

and multi-antigenic T-cell response against SARS-CoV-2.

These results auger well for the longevity of T-cell responses,

as it is unlikely that emerging VOCs acquire mutations in all

these epitopes. For example, studies have shown that infection-

and vaccine-induced T-cell responses effectively cross-recognize

Omicron (60–63). Importantly, the breadth of the T-cell

response may be affected by factors such as viral load, the

severity of infection, induction by infection, vaccination, or

both (hybrid immunity), HLA restrictions, the specific site of

T-cell priming, and local inflammatory milieu, all conferring

significant heterogeneity to the T-cell response against SARS-

CoV-2. This heterogeneity of T-cell response supports including

several T-cell epitopes across various HLA in future vaccine

designs to ensure adequate population coverage. We discuss

some of the immunodominant SARS-CoV-2 T-cel l

epitopes below.

Immunodominant epitopes are recognized by a significant

percentage of donors—quantified across cohorts using the

response frequency (RF) metric. A meta-analysis by Abdul

Quadeer et al. described 20 immunodominant epitopes with

an RF > 0.5 (i.e., recognized by more than half of donors in a

given cohort) across several studies (64). Of these 20

immunodominant epitopes, only four were in spike,

demonstrating the importance of non-spike responses and

strongly supporting the inclusion of non-spike peptides into

future vaccine designs. The most immunodominant epitopes in

this study were S269-277 restricted by HLA-A*02:01, N105-113

restricted by HLA-B*07:02, ORF1ab1637-1646 and ORF3a207-215
restricted by HLA-A*01:01, and S1208-1216 restricted by HLA-

A*24:02, with an RF > 0.6 across at least four independent

cohorts (64). Importantly, >70% of the global population is

positive for their associated HLA alleles. Hence, utilizing these

epitopes in future vaccines could induce immunodominant

responses in diverse HLA, ensuring broad population

coverage (64).

Although the immunodominance of these epitopes and the

prevalence of their HLA alleles make these regions excellent

candidates to include in future vaccines, higher selection

pressures imposed on these regions may drive viral mutations

and evolution. Recent studies have indeed demonstrated varying

degrees of T-cell evasion (65). Similarly, chronic infections with

other RNA viruses such as HIV and HCV result from mutations
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in immunodominant CD8+ T-cell epitopes that impair killing of

virus-infected cells (66, 67). Along similar lines, the H3N2

subtype of influenza A virus has gradually evolved by losing

an three years (68). However, there is insufficient population-

level immunity to SARS-CoV-2 at present to see such evolution

in CD8+ T-cell epitopes.

This topic is crucial for future SARS-CoV-2 vaccine design

as mutations in CD8+ epitopes included in future vaccines could

significantly hinder their efficacy. Naranbhai et al. demonstrated

that a subset of convalescent and vaccinated individuals

display > 50% reductions in spike-specific CD4+ and CD8+ T-

cell responses against Omicron (69). Similarly, Valtanen et al.

tested spike-specific humoral and T-cell memory to Omicron in

mild COVID-19 convalescent patients 12 months post-infection

(70). Omicron avoided neutralization by convalescent serum

altogether, and evaded CD4+ and CD8+ responses to a

significant extent (70). Agerer et al. performed deep

sequencing of 747 SARS-CoV-2 samples and focused on 27

CD8+ T-cell epitopes restricted by HLA-A*02:01 or HLA-

B*40:01 (71). Mutations in these epitopes reduced pHLA-1

binding, and diminished interferon-gamma production and

CD8+ T-cell proliferation (71). Motozono et al. described a

SARS-CoV-2 variant containing the L452R spike mutation,

which increased viral infectivity and reduced recognition of

HLA-A*24:02-restricted CD8+ epitopes (72). Lastly, de Silva

et al. analyzed global SARS-CoV-2 sequence data and revealed

mutations in immunodominant epitopes of the spike, N, and

ORF3a proteins that reduced recognition by CD8+ T-cells (65).

Importantly, complete loss of T-cell recognition was observed

due to the Q213K mutation in the ORF3a207-215—A*01:01

epitope, P13L, P13S, and P13T mutations in the N9-17—

B*07:02 epitope, and T362I and P365S mutations in the N361-

369—A*3:01/A*11:01 epitope (65). But despite this data, there is

no evidence of such mutants spreading globally within

circulating strains and causing a significant number of

COVID-19 cases (73, 74).

Ahmed et al. (75) described 914 mutations in the 20

immunodominant CD8+ epitopes identified by Abdul

Quadeer et al. (64). Of the 914 mutations, 166 were predicted

to decrease pHLA-1 binding via NetMHCpan4.1. Additionally,

83 of the 166 mutations were observed more than five times

globally and were recommended by the authors for further

experimental testing (75). For example, the S269-277—A*02:01

epitope is one of the most immunodominant epitopes in humans

in terms of RF, and its associated HLA-A*02:01 is the most

prevalent allele in humans. Studies have therefore characterized

mutations in this region, whether such mutations are seen in

circulating VOCs, and their impact on CD8+ T-cell escape

(73, 76).

Wu et al. demonstrated that the P272L mutation in the S269-

277—A*02:01 epitope reduced T-cell receptor binding affinity by

greater than 64-fold compared to the wild-type epitope (76). In
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agreement with these findings, Dolton et al. recently described

the P272L spike mutant completely evading recognition by S269-

277-specific CD8+ T-cell isolated from HLA-A*02:01-positive

convalescent and vaccinated individuals (73). Notably, unlike

the prior studies which showed no evidence of escape mutants

disseminating in the real world, the Dolton et al. study

demonstrated that P272L-containing variants from the B.1.177

lineage first emerged in the Autumn of 2020, causing a

significant number of cases in Europe. The mutation has been

observed since within the Alpha and Delta VOCs in Australia,

Italy, and the US, advocating strict global monitoring of this

epitope for escape mutants (73).

Other than S269-277—A*02:01, N105-113—B*07:02 is one of

the most immunodominant SARS-CoV-2 CD8 epitopes (64, 77,

78). Peng et al. showed the presence of N105-113—B*07:02-

reactive CD8+ T cells to be associated with a potent antiviral

phenotype and mild COVID-19 disease severity (79).

Longitudinal analyses of N105-113-B*07:02-specific CD8+ T

cells showed that these responses were maintained beyond

~270 days post-infection and retained their activity against the

Alpha, Beta, and Delta VOCs (77). CD8+ reactivity to N105-113—

B*07:02 was also seen in SARS-CoV-2 unexposed donors,

implying that this epitope is conserved across circulating

HCoVs OC-43 and HKU-1 and is the target of cross-reactive

responses (79). Indeed, this epitope is highly conserved in SARS-

CoV-2, SARS-CoV-1, and common cold betacoronaviruses

(OC-43 and HKU-1), but not the alphacoronaviruses (229E

and NL63) (78). Lineburg et al. demonstrated cross-reactivity for

this epitope across betacoronaviruses but not alphacoronaviruses

(80). Importantly, the Ahmed et al. study showed that SARS-

CoV-2 variants harboring mutations in N105-113—B*07:02 have

been observed 23 times globally, and that a mutation

(SSRWYFYYL) in this sequence is predicted to decrease

pHLA-1 binding (75).

A recent study by Dijssel et al. utilized combinatorial

encoded pHLA-1 tetramers to assess immunodominance and

phenotypes of CD8+ T-cells in 51 convalescent patients across

diverse HLA-1 allotypes (81). Parallel testing of up to 30 epitopes

p e r donor a l l owed the au tho r s t o e s t ab l i sh an

immunodominance hierarchy, i.e., the extent to which the

HLA-1 context of an individual determines the magnitude of

an epitope-specific CD8+ T-cell response. Similar testing

remains to be performed in vaccinated individuals.

Nevertheless, the most immunodominant epitope in this study

was ORF1ab1637-1646—A*01:01, followed by N105-113—B*07:02

and N325-333—B*35:01 (81). Other studies have also noted the

immunodominance of ORF1ab1637-1646—A*01:01 (82, 83). The

CD8+ response to subdominant epitopes such as S269-277—

A*02:01 was dependent on the HLA-1 context of the user,

such that the response to S269-277—A*02:01 was dominant

when the above-mentioned immunodominant HLA-1

restrictions were absent, and the S269-277—A*02:01 was lower
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in donors positive for HLA-A*01:01 and HLA-B*07:02 The S269-

277—A*02:01 response was lower in donors positive for HLA-

A*01:01 and HLA-B*07:02 (74, 81–83). In terms of escape

mutants, the Dijssel et al. study showed overall high

conservation of the three immunodominant epitopes in the 5

VOCs (Alpha, Beta, Gamma, Delta, and Omicron), but 9.2% of

all Delta strains harbored a P1640L mutation in the

immunodominant ORFab1637-1646—A*01:01 epitope (81),

which allows for partial evasion of CD8+ T-cell recognition

(65). Only two subdominant epitopes, S680-688—B*07:02 and N9-

17—B*27:05, were mutated significantly in these VOCs (81). de

Silva et al. previously showed that P13L, P13S, and P13T variants

harboring mutations in the N9-17—B*27:05 completely

abrogated CD8+ T-cell recognition, indicating that this

epitope be strictly monitored globally for escape mutants (65).

Together, these studies highlight the continued need for

surveillance of CD8+ T-cell escape mutants. From a vaccine

design standpoint, the current vaccines leverage only spike-

specific CD8+ T-cell responses. As mentioned by Dijssel et al., no

spike epitopes have been identified for the commonly found HLA-

B*08:01 and B*27:05, indicating that spike-specific vaccination in

individuals positive for one or a combination of these allotypes

would result in significantly weaker spike-specific CD8+ T-cell

responses (81). Furthermore, the immunodominance of non-

spike epitopes such as ORF1ab1637-1646—A*01:01 and N105-113—

B*07:02 strongly advocates for the inclusion of non-spike proteins

across diverse HLA restrictions into next-generation vaccines.

Encouragingly, the CD8+ T-cell response is broad and multi-

antigenic in previously infected individuals, and is capable of

targeting immunodominant regions outside the spike (59). This

minimizes the chance of spike mutations resulting in significant

evasion from CD8+ T-cell responses in previously infected

individuals. However, T-cell escape may be of concern in

vaccinated individuals who rely on spike-specific T-cell responses

to protect against severe disease (71). This problem may only

amplify with time when SARS-CoV-2 evolution plateaus

regarding infectivity and evasion of neutralizing antibody

responses, increasing the likelihood of T-cell escape mutants

arising for the virus to remain competitive as a human pathogen.

Therefore, how future vaccinations can maintain efficacy in light of

potential CD8+ T-cell escape is concerning. The immunodominant

regions known to harbor such mutations and other candidate

epitopes for vaccines should therefore be strictly monitored for

potential escape mutations by public health agencies.

In summary, T-cell responses against SARS-CoV-2 and

potential escape mutants warrant further attention, as this

topic is still relatively understudied compared to B-cell and

neutralizing antibody responses. From a public health

standpoint, educating the public on the role of T-cells in

COVID-19 and current SARS-CoV-2 vaccines and its impact

on future vaccine design, as well as measuring the T-cell

response in addition to antibodies in vaccine clinical trials will

be essential in combating public misconceptions and stigma
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surrounding the COVID-19 vaccines. The data encouragingly

show that CD8+ T-cell epitopes are highly conserved in VOCs,

and a multi-peptide vaccine including non-spike peptides can

provide sufficiently broad protection, but only with time will the

impact of T-cell escape mutants be evident.
Pre-existing T-cell memory to
SARS-CoV-2

SARS-CoV-2 belongs to the betacoronavirus genus, which

includes the HCoVs OC-43 and HKU-1, SARS-CoV-1, and

MERS-CoV. Genomic and proteomic analyses of SARS-CoV-2

reveals moderate conservation of nucleotide and amino acid

sequences with these betacoronaviruses. SARS-CoV-2 shares

79% nucleotide sequence identity with SARS-CoV-1.

Therefore, it was postulated early in the pandemic that cross-

reactive immune responses might exist (84–86). Memory CD4+

responses against SARS-CoV-2 were detected in SARS-CoV-2

unexposed donors, even in blood samples collected before the

pandemic (87). Such responses target 142 SARS-CoV-2 epitopes,

which are highly conserved in HCoVs (88). Stimulating pre-

existing memory T-cells by peptide homologs of HCoVs elicits

greater reactivity than the corresponding SARS-CoV-2 epitopes

(89). This study and numerous others consequently proposed

that pre-existing T-cell immune responses to SARS-CoV-2 are

derived from memory T-cells generated from exposure to

HCoVs, particularly betacoronaviruses OC-43 and HKU-1.

Studies then examined the relationship between cross-

reactive responses and COVID-19 disease severity and

vaccine-induced immunity. Sagar et al. demonstrated that

individuals infected with HCoVs within the past year had less

severe COVID-19 (90). A study on healthcare workers showed

that cross-reactive T-cells are protective against infection and

severe disease (91). From an immunological perspective, Loyal

et al. reported that SARS-CoV-2 infection causes the recruitment

of pre-existing T-cell responses, which correlate positively with

neutralizing antibody titers. The authors suggested that cross-

reactive T-cell memory would explain the rapid immune

protection provided by the BNT162b2 mRNA vaccine (92).

The Moderna mRNA-1273 vaccine also induces spike-specific

pre-existing T-cell memory recruitment—associated with

enhanced neutralizing antibody titers, Tfh responses, and total

CD4+ T-cell count (55). Dan and colleagues suggested that

cross-reactive T-cells may offer a kinetic advantage to the body’s

adaptive immune response over the SARS-CoV-2 virus (10).

Lastly, Tarke et al. showed that infection with SARS-CoV-2

induces a new T-cell repertoire. Out of the 280 identified CD4

epitopes, only 53 were seen in unexposed donors, suggesting that

SARS-CoV-2 infection and/or vaccination substantially

improves protection compared to pre-existing immunity alone

by stimulating a largely new epitope repertoire (59).
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Neutralizing antibody epitopes

Preventing acquisition of infection is the immune correlate of

antibody-mediated protection against SARS-CoV-2. Numerous

studies have therefore characterized the targets of neutralizing

antibody responses against SARS-CoV-2, aiming to include these

epitopes in next-generation vaccines and as targets of monoclonal

antibodies All neutralizing antibodies are directed against spike,

with 90% targeting the RBD (93). Notably, the RBD can exist in 2

conformational states, a closed state where the ACE2 receptor-

binding motif is unexposed and an open state where the ACE2

receptor-binding motif is exposed. Specifically, the receptor

binding site (RBS) within the spike RBD contains the ACE2

receptor-binding motif and is exposed to neutralizing antibodies

during ACE2 binding.

Studies identified correlates of antibody-mediated protection

early in the pandemic. Convalescent patients show varying levels

of neutralizing activity in their serum. Individuals with high

levels of neutralizing activity showed predominant responses

against the RBD. In contrast, individuals with lower neutralizing

activity exhibited preferential responses against the NTD and

other proteins (94). Barnes et al. and others structurally

characterized four distinct anti-RBD antibody classes using

cryo-EM (Figure 2). Class I and II neutralizing antibodies

recognize epitopes in the RBS and dominate the neutralizing

antibody responses in convalescent and vaccinated individuals.

Class III anti-RBD neutralizing antibodies target highly

conserved epitope regions centered on an N343 glycan outside

the RBS. Class IV is a cryptic epitope site not exposed to the

immune system when the RBD is in the down confirmation (95).
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Since the class I and II epitopes are the dominant targets of

neutralizing responses, these regions are under tremendous

selection pressures, making the RBS more prone to mutations

than other RBD sites (96). VOCs feature RBS mutations, such as

E484K, n501Y, and K417N, that significantly reduce neutralizing

activity of monoclonal antibodies isolated from infected donors

(97, 98). However, specific class I and II neutralizing antibodies

[reviewed by Liu et al. (18)] are resistant to VOC mutations.

Hence, some areas of the RBS are still suitable as immunogens

for vaccines, despite its high mutation rate (18).

RBD sites other than the RBS recognized by neutralizing

antibodies include the cryptic class 4 site and N343 glycan class 3

site. The cryptic class 4 site is highly conserved across the

sarbecovirus species, which includes SARS-CoV-1 and SARS-

CoV-2 and numerous zoonotic coronaviruses. The cryptic

nature of this epitope – such that it is only exposed when the

RBD is in the up confirmation – may explain its strict

conservation. Yuan et al. isolated CR3022, a neutralizing

antibody from a SARS-CoV-1 convalescent patient that bound

the class 4 epitope on SARS-CoV-2 but was non-neutralizing

(99). Since this epitope resides outside the RBS, studies

investigated how some class 4 antibodies confer neutralization.

C118 and C022 antibodies utilize a long CDHR3 to bind this

region using a specific approach angle that sterically hinders

RBS-ACE2 binding (100). C118 and C022 are potent and

broadly neutralizing against SARS-CoV-2, SARS-CoV-1, and

other zoonotic sarbecoviruses (100). COVA1-16 is another

neutralizing antibody targeting this region, using a unique

approach angle to confer neutralizing activity (101). However,

a study showed that many class 4 antibodies were non-
FIGURE 2

A substantial portion of neutralizing antibody responses against SARS-CoV-2 are directed against the RBD of S. Class 1 and 2 neutralizing
antibodies bind to the RBD region containing the ACE2 receptor-binding motif (i.e., the receptor-binding site [RBS]). Class 1 and 2 anti-RBD
neutralizing antibody responses dominate the humoral response of convalescent and vaccinated individuals. Most neutralizing activity being
against the RBS imposes significant selection pressures on this region, making it highly prone to mutagenesis and viral evolution. By contrast,
class 3 anti-RBD neutralizing antibodies target an epitope outside the RBS centered on an N343 glycan, which represents a highly conserved
epitope in SARS-CoV-2 VOCs and other coronaviruses. Similarly, class 4 anti-RBD neutralizing antibodies target a cryptic epitope outside the
RBS that is only exposed when the RBD is in the up conformation. The class 4 epitope, given its cryptic nature, is even more strictly conserved
than the class 3 epitope. Created with Biorender.com.
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neutralizing since they did not approach their respective

epitopes at an orientation that sterically hinders ACE2

binding. This complicates the use of cryptic class 4 epitopes as

immunogens for vaccines since not only does this region need to

be targeted but be done at a specific orientation.

Given the limitations of the class 4 epitope, Scheid and

colleagues studied neutralizing antibody responses in a cohort of

14 COVID-19 convalescent donors. Four individuals with the

highest neutralizing activity were chosen to produce 92

monoclonal antibodies (102). Out of these, BG10-19, BG1-22,

BG4-25, and BG7-15 were the most potent monoclonal

antibodies. BG10-19 retained neutralizing activity against

Alpha and Beta VOCs and SARS-CoV. The neutralizing

activity of BG10-19 against SARS-CoV-1 was higher than

S309, the original class 3 neutralizing antibody isolated from a

SARS-CoV-1 patient. BG10-19 targets a cryptic class 3 epitope

centered on an N343 glycan, representing a highly conserved

epitope across SARS-CoV-1, SARS-CoV-2, and several VOCs

(102). The N343 glycan likely plays a pivotal role in stabilizing

the RBD, evidenced by mutations in N343 resulting in decreased

RBD expression, explaining its conservation across SARS-CoV-2

VOCs and sarbecoviruses (103). BG10-19 exhibits bridging

interactions between different RBDs of the S trimer, stapling

the RBD closed such that the ACE2 receptor-binding motif is

never exposed (102, 104). Several other antibodies – such as

CV38-142, C135, C032, C548, b6, b49, b50, b53, XG014, and
47D11 – target the class 3 epitope and exhibit broad neutralizing

activity against SARS-CoV-2 VOCs. Class 3 and 4 anti-RBD

neutralizing antibodies can synergize to enhance neutralizing

potency against SARS-CoV-1, SARS-CoV-2, and several VOCs

(18). This synergy may be important for formulating different

antibody cocktails and designing future-generation vaccines.

A substantial number of neutralizing responses (10% in total)

are directed against the NTD. Specific dominant epitopes called

supersites on the NTD are the predominant targets of neutralizing

responses against this region (105). However, supersites

consequently experience tremendous selection pressures that drive

mutations in these sequences. Indeed, VOCs feature suchmutations

and can evade neutralizing responses against these regions.

However, a study probed for anti-NTD memory B-cells in

convalescent COVID-19 individuals using NTD-specific probes.

The presence of broadly neutralizing antibodies that can neutralize

even Omicron was reported. These results also suggest that the

recruitment of these anti-NTD memory B-cells upon re-infection

contributes to a benign clinical course (105). Structural analyses of

these broadly neutralizing antibodies showed that they targeted

regions outside the NTD supersites (105). Therefore, certain NTD

regions should remain under consideration for use in vaccines and

as targets for therapeutic antibodies.

Although the S1 subunit (containing the RBD and NTD) is the

primary target of antibody responses, several neutralizing antibodies

targeting the S2 subunit have been isolated. S2 exhibits higher degrees

of conservation than S1, making peptides comprising the S2 subunit
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suitable candidates for pan-coronavirus vaccines. For instance, the

stem helix is highly conserved across SARS-CoV-1, SARS-CoV-2,

MERS-CoV, and the four HCoVs. Mechanistically, the S2 subunit

mediates the fusion of viral and host cell membranes, during which

the fusion peptide is cleaved by transmembrane serine protease-2

(TMPRSS2), and the stem helix undergoes various conformational

changes. Antibodies targeting the fusion peptide and stem helix

prevent these events, thereby conferring neutralizing activity. In this

regard, Ladner et al. found that infection and vaccination induce

cross-reactive antibody responses against the fusion peptide and stem

helix, the latter of which was neutralizing (106). Cross-reactive

responses against the stem helix neutralize SARS-CoV-2 and HCoVs

OC43, 229E and NL63 (106). Infection with SARS-CoV-1 and other

coronaviruses also induce dominant neutralizing responses against

this region. CC.40, S2P6, and CV3-25 are all neutralizing antibodies

known to target areas in the stem helix. Importantly, S2P6 cross-

neutralizes SARS-CoV-1, SARS-CoV-2 (ancestral strain and Alpha,

Beta, and Gamma VOCs), HCoV OC43, and the GD pangolin

coronavirus (107). COVID-19 vaccination also induces neutralizing

antibodies against the stem helix (107).

These findings suggest that efforts to develop a pan-

coronavirus vaccine that utilizes the S2 stem helix as an

immunogen could prove fruitful. However, the immune

response to S2 is subdominant compared to S1, hindering its

use in vaccines. In this context, similarities can be drawn with

the influenza virus. Surface hemagglutinin (HA) is the most

abundant protein expressed on the surface of influenza virus.

HA is composed of two subunits: HA1 and HA2. HA1 comprises

the RBD-containing globular head, responsible for virus

attachment to sialic acid on host cell membranes (108). Most

nAb responses against influenza are directed against HA1, akin

to the S1 subunit of the SARS-CoV-2 spike. HA1 is also the

immunogen utilized in the current yearly influenza vaccines.

However, the tremendous genetic diversity of the influenza virus

through antigenic drift and shift, combined with the selection

pressure imposed on HA1 by virtue of its immunodominance,

promotes mutagenesis and viral evolution (109, 110). HA1

mutations thus underpin the low efficacy of the yearly

influenza vaccines, which range from 10-60% (111). Recent

efforts have been directed toward including more conserved

regions of the influenza virus to develop a universal influenza

vaccine (109). HA2 is a potential candidate for a universal

influenza vaccine. The HA2 subunit contains a stalk region

and a C-terminus, the latter comprising the transmembrane

region that extends into the cytoplasm and anchors HA onto the

viral envelope. Notably, the HA2 stalk is a cryptic site hidden on

the virion surface, thus protected from immune recognition. The

HA2 stalk domain is consequently subject to lower selection

pressures and is more conserved and evolves slower than the

HA1 globular head (112, 113). Particularly, the long a-helix
(LAH) domain of the stalk is maintained across several HA

subtypes (114, 115). However, like S2 of SARS-CoV-2, the HA2

antibody response is subdominant compared to HA1. Therefore,
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eliciting predominant responses against HA2 in the presence of

the immunodominant HA1 is challenging (110).

Strategies to circumvent this problem and design an H2A

stalk-containing influenza vaccine may thus inform the

development of an S2-containing COVID-19 vaccine.

Attempts at a ‘headless’ HA (i.e., HA without the HA1

subunit) have been tried for decades (110). A recent phase 1

clinical trial demonstrated that a ferritin-based HA2 stalk-

containing nanoparticle vaccine was a safe platform in 50

healthy participants aged 18-70 years (116). Encouragingly,

broadly neutralizing stalk-specific antibody responses directed

against seasonal H1 and avian H5 subtypes were demonstrated

in recipients (116). An alternative chimeric strategy—containing

the same HA2 stalk but linked to different globular heads—was

developed to overcome the inherent instability of a ‘headless’

HA2 stalk and allow presentation of HA2 in its natural

conformation to the immune system (110, 117). Two phase 1

clinical trials showed the chimeric platform to be safe and

immunogenic, and inducing long-lasting HA2-specific broadly

neutralizing antibodies in participants (116, 118, 119).

Glycosylating the immunodominant epitopes on HA1 to

‘mask’ these sites constitute another way of boosting anti-stalk

responses and has been shown to induce cross-reactive

neutralizing antibodies in mice vaccinated three times with

hyperglycosylated HA (120, 121). Rather than hyper-

glycosylating the immunodominant regions of HA1, some

studies have substituted the amino acids of these regions,

creating a ‘mosaic’ HA1 and thereby enhancing HA2 stalk

neutralizing antibody responses (108, 109). Mosaic HA

vaccines have yielded better cross-reactive stalk-specific

responses in mice compared to the yearly influenza vaccine

(122). Lastly, a handful of studies utilize only a conserved region

of the stalk, such as the LAH. Immunizing mice with an LAH

vaccine protects mice against mortality after challenge with

different influenza virus subtypes, including H1, H3, H5, and

H9 (114, 123, 124). However, LAH vaccinated mice still suffered

severe disease (114, 123, 124).

These findings indicate that some strategies employed to

enhance cross-reactive responses against the HA2 stalk domain

of the influenza virus may be useful to consider in designing an

S2-containing SARS-CoV-2 vaccine.
Discussion

A future where HCoVs, SARS-CoV-1, MERS-CoV, SARS-

CoV-2, and currently zoonotic sarbecoviruses with pandemic-

causing potential can be mitigated with pan-coronavirus

vaccines is foreseeable. T-cell responses are broad and are

largely conserved in VOCs. Next-generation vaccines must

include sequences from proteins other than spike since many

immunodominant T-cell epitopes reside outside the

spike protein.
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Future studies will also continue identifying and structurally

characterizing broadly neutralizing antibodies that are potent

neutralizers of SARS-CoV-2 and sarbecoviruses. Individuals

with hybrid immunity display more robust broadly neutralizing

antibody responses than infection and vaccination alone. He et al.

recently leveraged this observation to isolate a large panel of

neutralizing antibodies from recovered vaccinated donors that

targeted overlapping sites on a specific RBD footprint (125). These

broadly neutralizing antibodies were effective against SARS-CoV-

1, the sarbecovirus SHC014, and SARS-CoV-2 VOCs, including

Omicron (125). Future vaccines must also consider spike

sequences other than the RBD, given the susceptibility of

specific RBD sites to antibody escape mutations. However,

broad neutralizing activity is detected against the class 3 and 4

RBD epitopes, which are relatively well conserved in variants.

Several broadly neutralizing antibodies also target the conserved

S2 stem helix. Utilizing these sequences in the pursuit of a pan-

coronavirus vaccine could prove useful. A very recent study

showed a conserved YYDRxG motif in the CDRH-3 region of

antibodies predicts broad neutralizing activity (126). Neutralizing

antibodies with a YYDrxG motif bind to a conserved epitope on

the RBD of the spike protein (126). These results suggest that an

epitope-targeted strategy to identify and isolate broadly

neutralizing antibodies could also be fruitful.

However, neutralizing antibodies face the ever-present risk

of new VOCs emerging. Infection and vaccination-induced

neutralizing antibody titers also wane significantly after six

months, raising the question about the long-lasting efficacy of

next-generation vaccines even if broadly recognized

immunogens were incorporated. Efforts need to be directed

into exploring the utility of measuring the cellular response

mediated by T-cells, since they are much more likely to stand the

test of time. Compared to neutralizing antibodies, T-cell-

mediated correlates of immune protection have, unfortunately,

not been given adequate attention. Educating the public on the

role of T-cells in vaccine-induced protection against severe

disease is also crucial to combating the stigma surrounding

current and future vaccination efforts, not only for SARS-

CoV-2 but other infectious diseases. The measles vaccine, for

instance, exhibits excellent efficacy and is one of the major

success stories of vaccines. Recent studies have shown measles

vaccine-induced immune protection to possibly result from

rapid T-cell-mediated control of viral replication in infected

cells (127). Therefore, achieving sterilizing immunity with

neutralizing antibody responses may not be the only way for a

vaccine to be successful. A better understanding of the

mechanisms of T-cell-mediated protection against SARS-CoV-

2 will undoubtedly inform the focus of future studies by setting

new targets for next-generation vaccines. Collaborative efforts

incorporating both the humoral and cell-mediated arms of

adaptive immunity will accelerate the development of pan-

coronavirus and other vaccine designs. Such efforts will also

inform vaccine strategies for other infectious diseases, such as
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the influenza vaccine discussed above, as vaccinology research

for COVID-19 has set a precedent for research in this field.
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