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and aberrant pathway
activation based on m6A
methylation regulators in
rheumatoid arthritis
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Purpose: Rheumatoid arthritis (RA) is a chronic autoimmune disease (AD)

characterized by persistent synovial inflammation, bone erosion and

progressive joint destruction. This research aimed to elucidate the potential

roles and molecular mechanisms of N6-methyladenosine (m6A) methylation

regulators in RA.

Methods: An array of tissues from 233 RA and 126 control samples was profiled

and integrated for mRNA expression analysis. Following quality control and

normalization, the cohort was split into training and validation sets. Five distinct

machine learning feature selection methods were applied to the training set

and validated in validation sets.

Results: Among the six models, the LASSO_l-1se model not only performed

better in the validation sets but also exhibited more stringent performance.

Two m6A methylation regulators were identified as significant biomarkers by

consensus feature selection from all four methods. IGF2BP3 and YTHDC2,

which are differentially expressed in patients with RA and controls, were used to

predict RA diagnosis with high accuracy. In addition, IGF2BP3 showed higher

importance, which can regulate the G2/M transition to promote RA-FLS

proliferation and affect M1 macrophage polarization.
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Conclusion: This consensus of multiple machine learning approaches

identified two m6A methylation regulators that could distinguish patients

with RA from controls. These m6A methylation regulators and their target

genes may provide insight into RA pathogenesis and reveal novel disease

regulators and putative drug targets.
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Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease

(AD) characterized by tumour-like hyperplasia of synovial

tissue, persistent synovial inflammation, bone erosion and

progressive joint destruction (1). RA usually occurs in middle-

aged women. Currently, we attribute the development of RA to

genetic and environmental factors, such as smoking, obesity,

stress, neurodepression, and female hormones. Patients with RA

have a higher risk of developing malignancies than the general

population (2). Recently, the management of clinical symptoms

and complications in RA patients has received increasing

attention from medical workers (3, 4). An in-depth

understanding of the mechanisms underlying RA occurrence

and development can help to detect RA and its complications

earlier so that measures can be taken to control the development

and reduce the activity of the disease.

Previous studies have shown that T/B lymphocytes,

macrophages, fibroblast-like synoviocytes (FLSs) and other

cells are involved in the pathogenesis of RA (5). Activated

FLSs in synovial tissue exacerbate the inflammatory response

by secreting proinflammatory factors, chemokines and cell

adhesion molecules, which can recruit additional immune cells

to synovial tissue (6). Although the pathogenesis of RA remains

incompletely elucidated, immune cells and FLSs undoubtedly

play a crucial role in the progressive joint destruction and

inflammatory response (7). Therefore, studying strategies to

inhibit the proliferation and migration of FLSs and the

inflammatory response in RA is highly important for

elucidating the disease mechanism and developing treatments.

The study of epigenetics, especially RNA modifications, is a

hotspot in life science research. Recently, with the development

of the first RNA N6-methyladenosine (m6A) map by Cornell

University and the discovery of its ubiquity in mRNA,

transcriptional modification has gradually become the focus of

the biomedical community (8). Among RNA modifications,

m6A accounts for the largest proportion of base modifications

in mRNAs and functions to regulate RNA stability, protein

synthesis and translation; stem cell stress responses, cytotoxic
02
stress responses; and mRNA export (9, 10). Currently, the

known m6A methylation regulators consist of eight writers

(METTL3, METTL14, WTAP, KIAA1429, RBM15, RBM15B,

CBLL1 and ZC3H13), two readers (FTO and ALKBH5) and

thirteen erasers (YTHDF1, YTHDF2, YTHDF3, YTHDC1,

YTHDC2, HNRNPC, HNRNPA2B1, IGF2BP1, IGF2BP2,

IGF2BP3, FMR1, ELAVL1 and LRPPRC) (11). Previous

studies have shown that these regulators are involved in

biological processes (BPs) such as cell differentiation and

apoptosis and immune regulation, which are closely related to

cancers and immune diseases (12–14). However, few studies

have addressed the regulatory mechanism of m6A in RA, and

more attention is needed.

In this study, we selected 19 m6A methylation regulators

with expression data in the GSE12021, GSE55235, GSE55457,

GSE55584, GSE77298 and GSE153105 datasets. Based on five

distinct supervised machine learning approaches, we assessed

the potential of these m6A methylation regulators as diagnostic

tools by creating binary predictive classification models and

assessing their accuracy. Then, by analysing the target genes and

pathways of the m6Amethylation regulators, we gained a further

understanding of the roles of m6A methylation regulators in the

pathogenesis of RA (Figure 1). This study is of great significance

for elucidating the potential roles and molecular mechanisms of

m6A methylation regulators in RA and for exploring new

RA biomarkers.
Materials and methods

Dataset collection and processing

Data for 384 samples were accessed via the Gene Expression

Omnibus (GEO) repository (Supplementary Table 1). The data

from GSE12021, GSE55235, GSE55457 and GSE55584 were

retrieved from the Affymetrix® GPL96 platform (Human

Genome U133A Array), and the data from GSE77298 and

GSE153105 were retrieved from the Affymetrix® GPL570

platform (Human Genome U133 Plus 2.0 Array). The raw
frontiersin.org
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data from the Affymetrix® platforms were processed via the

robust multiarray averaging (RMA) algorithm implemented in

the Affy package. After removal of batch effects with the ComBat

algorithm, the training dataset was generated by combining the

GEO datasets from the Affymetrix® GPL96 platform. Validation

dataset 1 was generated by combining the GEO datasets from the

Affymetrix® GPL570 platform. GSE89408 (platform: GPL1154)

was considered validation dataset 2. In this research, for

comparison with the RA group, we defined healthy individuals

and patients with osteoarthritis (OA) as the control group.

The samples in GSE12021, GSE55235, GSE55457,

GSE55584, GSE77298 and GSE153105 were extracted from

synovial tissues. The samples in GSE90081 were taken from

peripheral blood mononuclear cells (PBMCs). To investigate the

relationship between IGF2BP3 expression andM1 macrophages,

single-cell RNA sequencing (scRNA-seq) data from the

GSE159117 dataset were analysed.
Cell lines and cell transfection

RA-FLSs were isolated from RA synovium. The cells were

maintained in Dulbecco’s modified Eagle’s medium (DMEM)

(Gibco, Grand Island, NY, USA) supplemented with 15% foetal

bovine serum (FBS) (Thermo, USA) and cultured at 37°C in 5%
Frontiers in Immunology 03
CO2 and saturated humidity. The ethics committee of China-

Japan Friendship Hospital approved the research (approval

number 2021-153-K111).

To silence the expression of IGF2BP3, an IGF2BP3 siRNA

(siIGF2BP3) and a control siRNA (siNC) were chemically

synthesized by Tsingke Biotechnology Co., Ltd (Beijing,

China) and transfected into RA-FLSs and RAW 264.7 cells.

The siIGF2BP3 target sequences are shown below: human si-

IGF2BP3, 5’- GCAAAGGATT CGGAAACTT -3’; mouse si-

Igf2bp3, 5 ’- GGAGGUGCUGGAUAGUUUACU -3 ’ .

JetPRIME® Transfection Reagent was used for cell transfection

(Polyplus Transfection, USA).
Random forest optimization using boruta

Boruta has high feature variable selection accuracy in

biological data. We used the default settings in the Boruta

package (v7.0.0) to evaluate variable importance with 300

iterations (15). After 300 iterations, the confirmed variables

were identified. Then, these confirmed variables selected by

Boruta were used to construct a random forest model by using

the caret package (v.6.0-92). After tuning and modelling, the

final selected model was obtained and used to determine

whether the subjects were RA patients or non-RA patients.
FIGURE 1

Diagram of the study.
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Regression partition tree

Rpart is a commonly used decision tree modelling method

with a good visualization effect and straightforward results. We

used the Rpart (v4.1-15) package to build a classification tree

model. To avoid overfitting, some rules with weak classification

and descriptive abilities were removed to improve the prediction

accuracy. The classification tree model was optimized based on

the minimum Xerror value, and the optimal classification tree

model was used to determine whether the subjects were RA

patients or non-RA patients.
Least absolute shrinkage and
selection operator

LASSO has the advantage of preserving subset shrinkage and

is a biased estimator for dealing with data with complex

collinearity. Lasso allows a more refined model to be obtained

by constructing a penalty function such that some coefficients

are compressed and some coefficients are set to zero (16).

LASSO-penalized logistic regression was performed with the

glmnet package (version 4.1-4), which then calculated two

automatic l values—one that minimizes the binomial deviance

and one representing the largest l that is still within 1 standard

error of the minimum binomial deviance. Both l values (l-
min=0.02395, l-1se=0.09203) were selected and used to refit the

model, which resulted in a stricter penalty that allowed us to

reduce the number of covariates even further than with the

former l. A probability threshold of > 0.5 was used to determine

whether the subjects were RA patients or non-RA patients.
Extreme gradient boosting

XGBoost is an extreme gradient boosting algorithm that

ranks features from most important to least important and has

been used very effectively in diverse classification problems.

Based on the default parameters, we used the XGBoost

package (version 1.6.0.1) to build the final model for disease

diagnosis and rank the features by importance. Features

contributing to more than a 5% improvement in accuracy to

their branches were selected as ‘important’ (17). The trained

model was used to determine whether the subjects were RA

patients or non-RA patients.
Logistic regression

Logistic regression is a machine learning method used to

solve binary classification problems to estimate the likelihood of
Frontiers in Immunology 04
an event. The glmnet package (version 4.1-4) was used to build

the final model for disease diagnosis, which was used to

determine whether the subjects were RA patients or non-

RA patients.
Pathway analysis

M6A2Target (http://m6a2target.canceromics.org/) is a

comprehensive database for determining the target genes of

writers, erasers and readers (WERs) of m6A modification. It

integrates highly confidential targets validated by low-throughput

experiments and potential targets with binding evidence indicated

by high-throughput sequencing or inferred from m6A WER

perturbation followed by high-throughput sequencing. The gene

targets of the more important m6A regulators in disease diagnosis

were inferred using m6A2Target (18). Then, ClueGO (version

3.0.3) was used for BP functional annotation analysis of the gene

targets (19). The clusterProfiler package (version 4.2.2), a universal

enrichment tool for interpreting omics data, was used for functional

enrichment analysis.
scRNA-seq analysis

First, we imported the H5 file and converted the data to a

Seurat object. Then, with the Seurat (version 4.1.1) package, data

quality control and clustering were performed on the PBMC

population. Each cell subset was annotated based on the celldex

package (version 1.4.0).
Real-time qPCR analysis and
western blot analysis

RNA isolation and RT–qPCR analysis were carried out

according to previous studies (20). b-actin served as an

internal control. The sequences of the primers used in the

experiment are as follows. Human IGF2BP3: 5′- TCGAGG

CGCTTTCAGGTAAA-3′ (forward), 5′- AAACTATCCAGCA

CCTCCCAC-3′ (reverse). Mouse Igf2bp3: 5′- CCTGGTGA

AGACGGGCTAC-3′ (forward), 5′- TCAACTTCCATCGGTT

TCCCA-3′ (reverse).
Protein extraction and Western blot analysis were carried

out according to previous studies (20). The primary antibodies

included rabbit anti-IGF2BP3 (1:1000, Proteintech, Chicago,

USA), anti-CCNB1 (1:1000, Shanghai, China) and anti-C-Myc

(1:2,000, Cell Signaling Technology, Beverly, MA, USA). Band

densities on autoradiograms were densitometrically quantified

(Quantity One software; Bio-Rad), with GAPDH serving as the

internal control.
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Cell viability assay and cell cycle analysis

The cell viability assay was performed 24 h after transfection

of siNC and siIGF2BP3 with a CCK-8 kit from Beyotime

(Beijing, China). After transfection, cells were plated in 96-well

dishes at a concentration of 5 × 103 cells/well and cultured in

DMEM containing 15% FBS for cell attachment. Cell viability

was measured with CCK-8 reagent following the manufacturer’s

protocol at the indicated time points (24, 48 and 72 h).

Cell cycle analysis was performed 48 h after transfection of

siNC and siIGF2BP3. Cells were washed twice with ice-cold PBS,

harvested, and fixed with 70% ethanol at 4°C overnight. Then,

the cells were stained with a Cell Cycle and Apoptosis Analysis

Kit (Beyotime, Beijing, China) at 37°C for 30 minutes and

detected by flow cytometry (Becton-Dickinson, San Jose, CA,

USA). Cell cycle distributions were analysed with ModFit LT 3.1

software (verity Software House, Inc., Topsham, ME, USA).
Flow cytometric analysis and enzyme
linked immunosorbent assay

Analysis was performed 48 h after transfection of siNC and

iIGF2BP3. After 6h of LPS (100ng/ml) stimulation, cells were

collected and washed with PBS. Subsequently, the cells were

directly surface stained using anti-CD86 antibodies (Biolegend,

California, USA) for 20 min at 4°C. Signals were detected by flow

cytometry (Becton-Dickinson, San Jose, CA, USA). Data analysis

was conducted with FlowJo software version 10.0 (Tree Star,

Inc., Ashland, OR, USA).

After transfection and stimulation, the cell supernatant was

collected. According to the protocol of Mouse TNF-alpha ELISA

Kit (ABclonal, Wuhan, China), the content of TNF-a in cell

supernatant was detected.
Immunohistochemistry

The synovium tissues of six RA patients and six OA patients

are obtained from China-Japan Friendship Hospital. Sample

processing and data analysis were performed as previously

described (20). The ethics committee of China-Japan Friendship

Hospital approved the research (approval number 2021-

153-K111).
Statistical analyses

Statistical analyses were performed using GraphPad Prism

Software (GraphPad Software, San Diego, CA) and R version 4.0.4
Frontiers in Immunology 05
software (Institute for Statistics and Mathematics, Vienna, Austria;

https://www.r-project.org). We used a leave-one-out (LOO) cross-

validation approach to evaluate the performance of the classifiers in

the training set. Student’s t test was used for comparisons between

groups. Measurement data are expressed as the means ± standard

deviations, and P< 0.05 indicates statistical significance.
Results

Performance of RA classification
approaches using the m6A regulators

Considering the important role of m6A methylation

regulators in tumour and immune disease progression, we

used a public dataset to comprehensively explore the

importance of 19 m6A methylation regulators for RA

diagnosis. Based on the expression levels of these 19 m6A

methylation regulators, a disease diagnosis model (RA vs. non-

RA) was constructed using five different machine learning

methods: random forest optimization using Boruta, Rpart,

LASSO, XGBoost and logistic regression. The cross-validation

performance in the training set is presented in Supplementary

Table 2. The accuracy and AUC of all models except for the

Rpart model were greater than 0.8. To compare the performance

of each machine learning method, we observed the performance

of each model as a classifier in the validation sets. The

performance of each machine learning method in the

validation sets was also variable (Tables 1, 2; Figures 2A-F). In

validation dataset 1, the logistic regression model and LASSO_l-
min model had the highest AUC (0.90), but the LASSO_l-min

model had a higher accuracy (0.901). The Rpart model had the

lowest AUC (0.8). In validation dataset 2, the LASSO_l-min

model and LASSO_l-1se model had the highest accuracy (0.89)

and AUC (0.88). Among the models, the Rpart model had the

poorest performance. In addition, the number of m6A

methylation regulators selected by each machine learning

method differed, with Boruta selecting the most (14 regulators)

and the Rpart model selecting just one regulator. Considering

the performance of each machine learning method in the

validation sets and the number of regulators that it selects in

the models, the LASSO_l-1se model not only performed better

in the validation sets but also exhibited more stringent in

variable screening. These results indicate that the LASSO_l-
1se model has good clinical application value and practicality.

Therefore, we further compared the performance of the

LASSO_l-1se model in whole blood samples and calculated an

AUC value of 0.83 (Figure 2G), further suggesting that the

LASSO_l-1se model has clinical application prospects in

blood-based diagnosis of RA.
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The more important m6A methylation
regulators in the RA classification

Different candidate biomarkers were selected by these

multivariable machine learning methods. However, biomarkers

often have equal accuracy and importance (17). Considering the

poorest performance of the Rpart model, we focused on the

overlapping m6A methylation regulators selected by the

different machine learning methods, including of random

forest optimization using Boruta, LASSO, XGBoost and

logistic regression (Figure 3A; Supplementary Table 3). Two of

the overlapping m6A methylation regulators were selected by

every model: IGF2BP3 and YTHDC2. The expression levels of

the 19 m6Amethylation regulators were further compared in the

training dataset. The expression levels of IGF2BP3 and

YTHDC2 were significantly different in RA and non-RA

patients (Figure 3B). More importantly, based on transcript

levels, IGF2BP3 and YTHDC2 also performed well in the

diagnosis of RA in the training set (Figure 3C), with AUC

values of 0.85 and 0.75, respectively. In addition, when the

Boruta (Figure 3D), Rpart (Figure 3E) and XGBoost

(Figure 3F) algorithms were used to calculate the importance
Frontiers in Immunology 06
of the 19 m6A methylation regulators, IGF2BP3 and YTHDC2

were ranked high; and IGF2BP3 has the highest importance.
Pathway and network analysis of the
IGF2BP3 and YTHDC2 targets

To investigate the novel roles that these m6A methylation

regulators play in RA and examine the related pathways, we

predicted their target genes using m6A2Target. IGF2BP3 and

YTHDC2 had 287 predicted gene targets in total (Supplementary

Table 4); IGF2BP3 had 16 verified targets and 190 predicted targets,

and YTHDC2 had 9 verified targets and 77 predicted targets. Based

on the predicted gene targets, KEGG pathway enrichment analysis

was performed using the ClusterProfiler package (version 4.2.2) to

analyse the signalling pathways in which IGF2BP3 and YTHDC2

participate. These predicted gene targets were highly enriched in the

following functions and pathways: MYC_TARGETS_V1,

E2F_TARGETS, G2M_CHECKPOINT, MITOTIC_SPINDLE,

ESTROGEN_RESPONSE_LATE, ALLOGRAFT_REJECTION,

OXIDATIVE_PHOSPHORYLATION, DNA_REPAIR,

UNFOLDED_PROTEIN_RESPONSE, MYC_TARGETS_V2, and
TABLE 1 Model performance of the six classifiers in validation set 1: A random forest wrapper (Boruta), LASSO_l-min, LASSO_l-1se, logistic
regression, regression partition trees (Rpart) and extreme gradient boosting (XGBoost).

Random forest LASSO_min LASSO_1se Logistic Rpart XGBoost

Regulators selected by model,
n

14 11 4 13 1 5

Best threshold 0.481 (0.22,0.829) 0.520 (0.28,0.961) 1.280 (0.26,0.895) -293.891 (0.3,0.934) 0.5014 (0.24,0.829) 0.903 (0.22,0.809)

Sensitivity 0.78 0.72 0.74 0.7 0.76 0.78

Specificity 0.8289 0.961 0.8947 0.9342 0.8289 0.8092

Positive predictive value 0.6 0.8571 0.6981 0.7778 0.5938 0.5735

Negative predictive value 0.9197 0.9125 0.9128 0.9045 0.913 0.9179

Acuracy (95%) 0.8168
(0.7565~0.8676)

0.901 (0.8512-
0.9385)

0.8564 (0.8004-
0.9017)

0.8762 (0.8227-
0.9183)

0.812 (0.7511-
0.8633)

0.802 (0.7403-
0.8546)

AUC (95%) 0.811 (0.735-0.888) 0.895 (0.841-0.948) 0.89 (0.830-0.944) 0.899 (0.847-0.95) 0.794 (0.728-0.861) 0.853 (0.792-0.914)
TABLE 2 Model performance of the six classifiers in validation set 2: A random forest wrapper (Boruta), LASSO_l-min, LASSO_l-1se, logistic
regression, regression partition trees (Rpart) and extreme gradient boosting (XGBoost).

Random forest LASSO_min LASSO_1se Logistic Rpart XGBoost

Regulators selected by model,
n

14 11 4 13 1 5

Best threshold 0.693 (0.273,0.778) -2.229 (0.273,0.944) -1.588 (0.273,0.944) -7331.730
(0.091,0.472)

NA 0.007 (0.273,0.556)

Sensitivity 0.7273 0.7273 0.7273 0.9091 1 0.7273

Specificity 0.7778 0.9444 0.9444 0.4722 0 0.5556

Positive predictive value 0.5 0.8 0.8 0.3448 0.234 0.3333

Negative predictive value 0.9032 0.9189 0.9189 0.9444 NA 0.8696

Acuracy (95%) 0.766 (0.6197,
0.877)

0.8936
(0.769,0.9645)

0.8936
(0.769,0.9645)

0.5745 (0.4218-
0.7174)

0.234 (0.123-
0.3803)

0.5957 (0.4427-
0.7363)

AUC (95%) 0.782 (0.641-0.923) 0.884 (0.780-0.988) 0.881 (0.778-0.984) 0.707 (0.525-0.889) 0.5 0.667 (0.518-0.816)
NA, Not Applicable.
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so on (Figure 3G). Interestingly, BP functional enrichment analysis

carried out by ClueGO showed that the predicted gene targets

participated mainly in processes related to the mitotic cell cycle,

translation, cytoplasmic translation and regulation of DNA

metabolic processes, which play key roles in the occurrence and

development of RA (Figure 3H). To better demonstrate the

relationship between IGF2BP3 and YTHDC2, their predicted

gene targets and the related pathways, Cytoscape (version 3.9.0)

was used to construct a network, which indicated that IGF2BP3 and

YTHDC2 can regu l a t e the G2M_CHECKPOINT,

MYC_TARGETS_V1 and E2F_TARGETS pathways by acting on

CDK1, CDK2, MYC and other targets (Figure 4A).
The importance of IGF2BP3 in the
viability and cell cycle of RA-FLSs

Based on the pathway enrichment analysis results, IGF2BP3

and YTHDC2 are closely related to the cell cycle. But, when the

Boruta (Figure 3D), Rpart (Figure 3E) and XGBoost (Figure 3F)

algorithms were used to calculate the importance of the 19 m6A

methylation regulators, IGF2BP3 ranked first, while YTHDC2

ranked lower. In addition, compared with YTHDC2, IGF2BP3

performed better in the diagnosis of RA (Figure 3C). Therefore, we

further explored the regulatory effects of IGF2BP3 on the viability

and cell cycle of RA-FLSs through molecular biology experiments.

To explore the effects of IGF2BP3 on RA-FLSs, siRNAs were

transfected into RA-FLSs. The transfection results were confirmed

by RT−qPCR and Western blotting and indicated that the siRNA
Frontiers in Immunology 07
had a good knockdown efficiency (Figures 4B-D). Then, we studied

the effect of IGF2BP3 on RA-FLS viability in vitro. The CCK-8

cytotoxicity assay revealed that downregulation of IGF2BP3 in RA-

FLSs significantly reduced cell viability compared to that of the

control cells (P < 0.05, Figure 4E). The cell proliferation assay also

revealed that downregulation of IGF2BP3 in RA-FLSs significantly

inhibited cell proliferation compared to that of the control cells (P <

0.05, Figure 4F). In addition, the flow cytometry results showed that

low expression of IGF2BP3 had an obvious effect on the G2/M

transition. Compared with that in the control group, the proportion

of G2/M-phase cells in the siIGF2BP3 group was significantly

increased (P < 0.05, Figures 4G, H). We also measured the

expression of cell cycle-related proteins, showing that siIGF2BP3

reduced CCNB1 and C-MYC expression (Figures 4C, D). In

addition, the expression of IGF2BP3 in synovial tissues of

patients with OA and RA was detected. We found that IGF2BP3

expression was significantly higher in synovial tissues of RA

patients, further affirming the importance of IGF2BP3 in the

progression of RA (Figure 4I).
Correlation between IGF2BP3 expression
and inflammatory activity

Increasing evidence suggests that m6A modification is an

important regulator of immune response regulatory mechanisms

and inflammatory regulatory networks (21). To identify the

IGF2BP3-associated immune signature in RA, we determined

the immune scores and the proportions of immune cells with
B C D

E F G

A

FIGURE 2

ROC curves for validation set 1 and validation set 2, with the model trained on a separate set. The red lines indicate the models trained using a
LOO cross-validation approach across the training set. We used five methods to develop models based on the training set: (A) a random forest
wrapper (Boruta), (B) LASSO_l-min, (C) LASSO_l-1se, (D) logistic regression, (E) regression partition trees (Rpart) and (F) extreme gradient
boosting (XGBoost). (G) ROC curve of the LASSO_l-1se model in whole blood samples.
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xCell (22). First, we found significant differences in the immune

score between the two groups, with higher immune scores in the

RA patient group than in the NC patient group (P < 0.001;

Figure 5A). Then, the proportions of immune cells were

compared between the two groups. There were significant

differences in the proportions of many immune cells, including

interdigitating cells (IDCs), natural killer T (NKT) cells, classical

dendritic cells (cDCs), macrophages, mast cells, M2 macrophages,

Th2 cells, M1 macrophages, andmyocytes (Figures 5B, C). Among

these cell types, we focused on M1 macrophages because of the

closely relationship between M1 macrophages and RA (23). The

proportion of M1 macrophages in RA patients was significantly

higher than that in control patients. In addition, we investigated

the relationship between the proportion of M1 macrophages and

the expression level of IGF2BP3 in RA patients and found that they

were strongly correlated (Figure 5D). IGF2BP3 expression was also

significantly correlated with the expression of M1 macrophage

markers, including IL1A, CD86 and TLR2 (Figures 5E-G).

Therefore, we thought that IGF2BP3 can participate in the

regulation of M1 macrophage polarization.

To further explore the effect of IGF2BP3 on M1 macrophage

polarization, we transfected RAW264.7 cells with Igf2bp3-siRNA
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or NC-siRNA (negative control). RT−qPCR and Western blot

analysis were performed to confirm the efficiency of gene silencing

and indicated that the siRNA had a good knockdown efficiency

(Figures 5H, I). Forty-eight hours after transfection, RAW264.7

cells were treated with 100 ng/ml LPS for 24 h. Then, by

measuring the expression of the surface marker (CD86) of M1

macrophages by flow cytometry, we found that the expression

level of CD86 in siIgf2bp3 cells was significantly lower than that in

siNC cells (Figure 5J). In addition, we further detected the content

of TNF-a in the cell supernatant, which indicated that the content

of TNF-a in siIgf2bp3 cells was lower than that in siNC cells

(Figure 5K). These results further validated the involvement of

IGF2BP3 in the regulation of M1 macrophage polarization.
scRNA-seq revealed the relationship
between IGF2BP3 expression and M1
macrophage polarization

To further characterize the relationship between IGF2BP3

expression and M1 macrophage polarization, we conducted

scRNA-seq in the GSE159117 dataset. Fourteen cell clusters were
B

C D E F

G H

A

FIGURE 3

The more important m6A methylation regulators in RA classification. (A) Venn diagram of the m6A methylation regulators selected by the
different machine learning methods; (B) the expression levels of 19 m6A methylation regulators in the training dataset; (C) the ROC curves for
IGF2BP3 and YTHDC2 in the training set; the importance of the 19 m6a methylation regulators calculated by the Boruta (D), Rpart (E) and
XGBoost (F) algorithms; KEGG pathway (G) and BP (H) enrichment analyses of the gene targets of IGF2BP3 and YTHDC2 *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001, ns (p > 0.05).
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obtained by a combined uniform manifold approximation and

projection (UMAP) analysis (Figure 6A). SingleR (version 1.8.1)

was used to identify 7 cell types: B cells, CD4+ T cells, CD8+ T cells,

dendritic cells, monocytes, NK cells and T cells (Figure 6B).

IGF2BP3 was found to be expressed mainly on monocytes and B

cells among the seven cell types (Figure 6C; clusters 4 and 8).

Macrophages are the main type of cell derived from monocytes.

Therefore, the relationship between CD86 and IGF2BP3 expression

was explored in monocytes, and CD86 and IGF2BP3 were found to

have a coexpression trend (Figure 6D). Then, we preliminarily

investigated the expression of several macrophage markers in

monocytes. M1 macrophage markers (including CD86, IL1B,

TLR2 and TLR4) were significantly upregulated but M2

macrophage markers (including MSR1, IL10, MMP14 and

VEGFA) were downregulated in monocytes (Figure 6E).
Discussion

RA is a systemic autoimmune disorder affecting the

synovium of peripheral joints. The average life expectancy of

patients with RA is shorter than that of the overall population,
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and patients with active disease are also prone to develop various

diseases, such as cardiovascular disease, pulmonary interstitial

disease, and osteoporosis (24, 25). m6A methylation has been

shown to be associated with tumours, neurological disorders,

metabolic diseases, ADs, viral infections and so on (26).

Mutations in the genes encoding m6A methylation regulators

are closely associated with inflammation-related diseases, and

changes in their expression levels have been observed in RA (21,

27). Therefore, exploring the diagnostic value and mechanism of

m6A methylation regulators in RA is highly important for the

effective treatment of RA and the improvement of its prognosis.

In this study, based on m6A methylation regulator expression

profiles and consensus machine learning approaches, we

constructed binary predictive classification models and assessed

their accuracy. Among the models, the LASSO_l-1se model not

only performed better in the validation sets but also exhibited

more stringent performance. In addition, the LASSO_l-1se model

exhibited better performance in whole blood samples, further

suggesting that the LASSO_l-1se model has application prospects

in blood-based diagnosis of RA. Our primary aim in this study

was to investigate the relationships between m6A methylation

regulators and clinical classification rather than to develop a
B C

D E
F

G H
I

A

FIGURE 4

The importance of IGF2BP3 in the Viability and Cell Cycle of RA-FLSs. (A) The network connecting IGF2BP3 and YTHDC2 pathways and other
targets; (B) RT−qPCR results showing the efficient depletion of IGF2BP3 expression in RA-FLSs compared with siNC-transfected RA-FLSs;
(C, D) Expression of IGF2BP3, c-MYC and CCNB1 in RA-FLSs after transfection; (E) The proliferative ability of RA-FLSs after transfection was
evaluated by a CCK-8 assay; (F) Representative images (left) and histograms (right) showing the effect of siFN1 on the cell proliferation of
RA-FLSs; (G, H) Flow cytometric analysis was used to evaluate the cell cycle distribution of RA-FLSs after transfection; (I) Representative IHC
staining and IHC staining score of Synovial tissues. *p < 0.05, **p < 0.01, ***p < 0.001.
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diagnostic tool. Combined with the comprehensive imaging,

haematological and gene expression analyses, a diagnostic

model of RA has more clinical diagnostic significance and

higher accuracy. This study lays the foundation for the

establishment of diagnostic tools by evaluating the accuracy of

m6A methylation regulators for clinical classification and affirms

the potential diagnostic value of m6A methylation regulators. A

limitation of this study is the relatively small sample size used to

generate and validate the m6A methylation regulators as

classifiers. This may have led to overfitting of some models and

thus to overestimation of effect sizes. To alleviate this issue, we

validated each model’s diagnostic value in different published

datasets and validated potentially interesting genes using

molecular biology experiments. To develop accurate diagnostic

tools, further studies based on larger retrospective and prospective

clinical cohorts are warranted.

Machine learning provides an unbiased approach to predict

patient status while also offering the potential to identify

previously unknown interactions and identify novel biological

signatures (17, 28). Our approach of investigating the

biomarkers identified through multiple feature selection

techniques increases confidence in the generation of

reproducible biomarker panels and reduces the number of
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m6A methylation regulators for potential clinical investigation.

The selected m6A methylation regulators (IGF2BP3 and

YTHDC2) ranked highly in variable importance. Previous

studies have shown that IGF2BP3 and YTHDC2 are closely

related to cell proliferation and migration, cell cycle regulation,

and immune and inflammatory regulation (29–31). In addition,

the study by Fan et al. confirmed that IGF2BP3 not only was

significantly overexpressed in RA synovial tissue but also

might be a therapeutic target of thymopentin (TP) during

RA treatment (32). The above literature reports provide

supporting evidence that IGF2BP3 and YTHDC2, identified

here as candidate biomarkers, may be associated with

disease progression in RA, validating our machine learning

approach to identify relevant m6A methylation regulator

biomarkers. Pathway enrichment analysis showed that

IGF2BP3 and YTHDC2 were involved in the regulation of

MYC_TARGETS_V1, E2F_TARGETS, G2M_CHECKPOINT

and other pathways, which are closely related to the cell cycle.

In particular, IGF2BP3 not only was ranked highest by the

Boruta, Rpart and XGBoost methods but also showed better

diagnostic value in the training set. We focused on verifying the

relationship between IGF2BP3 expression and the cell cycle and

further confirmed that IGF2BP3 may affect the proliferation of
B C

D E F G

H I J K

A

FIGURE 5

Correlation between IGF2BP3 expression and inflammatory activity. Immune scores (A) and proportions of immune cells (B, C) in the RA and NC
groups; (D) correlation between the proportion of M1 macrophages and the expression level of IGF2BP3 in RA patients; (E–G) correlations
between the expression levels of M1 macrophage markers (IL1A, CD86 and TLR2) and IGF2BP3; (H, I) RT−qPCR and Western blot analysis
confirmed the efficiency of gene silencing; (J) expression level of CD86 in RAW264.7 cells after transfection; (K) the content of TNF-a in
RAW264.7 cells after transfection. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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RA-FLSs by regulating the G2/M transition. Inflammatory cells

can secrete a large amount and variety of inflammatory factors

and chemokines, leading to the activation of more FLSs and

promoting their proliferation and migration, thereby further

aggravating the inflammatory response in the disease (33).

Among these immune cell types, M1 macrophages attracted

our attention for the following three reasons: 1. M1

macrophages, also called classical macrophages, can produce

proinflammatory cytokines and thus have potent microbicidal

ability but are also prone to cause tissue destruction and

exacerbate inflammatory processes that are detrimental to

health (34); 2. The synovial lining of RA patients exhibits cell

proliferation and a large amount of inflammatory cell infiltration

in the interstitium. The degree of inflammatory infiltration

determines the severity of the disease (35). 3. Among the

inflammatory cells involved in RA, macrophages play a key

role. These cells can polarize into different phenotypes and

mediate the immune/inflammatory response as well as the
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repair phase when possible (23). By analysing the relationship

between IGF2BP3 expression and M1 macrophage polarization

in RA RNA-seq datasets and scRNA-seq datasets, we found that

IGF2BP3 plays a crucial role in M1 macrophage polarization.

CD86, also known as B7.2, is a T lymphocyte activation antigen

with a molecular weight of 80 kD and can be expressed in

dendritic cells, monocytes, T lymphocytes and B lymphocytes.

Previous studies have shown that CD86 can serve as a marker to

elevate the proportion of M1 macrophages (36, 37). By

measuring the expression of CD86 by flow cytometry, we

found that the expression level of CD86 in siIgf2bp3

RAW264.7 cells was significantly lower than that in siNC

RAW264.7 cells. Yang et al. also showed that siIGF2BP3 can

reduce MALAT1 expression, thereby impeding p38/mitogen-

activated protein kinase phosphorylation and macrophage-

mediated inflammation (38). These studies all further verified

that IGF2BP3 can regulate macrophage polarization and

inflammatory exacerbation during RA progression.
B C

D

E

A

FIGURE 6

Characterization of macrophages by scRNA-seq in PBMCs. (A) UMAP plot showing the sources of the collected scRNA-seq cell samples;
(B) UMAP plot showing 14 cell clusters of 7 cell types in the collected samples; (C) UMAP plot showing the IGF2BP3 expression level in the 14
cell clusters; (D) scRNA-seq analysis revealed the correlation between IGF2BP3 and CD86 expression; (E) UMAP plot showing the expression
levels of M1 and M2 macrophage markers.
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The RA diagnostic model established based on public

databases had good performance in multiple validation sets.

However, further validation of the diagnostic value of

established models in larger independent cohorts is warranted

before considering their clinical application. Furthermore, we used

five machine learning feature selection algorithms on data from

patient synovial tissue to identify two signature m6A methylation

regulators in RA, and our findings may provide a new RAmarker

and reveal novel disease mechanisms. Moreover, this study is the

first to confirm the effect of the m6A reader protein IGF2BP3 on

the progression of RA and verify its biological function through

bioinformatics analysis and molecular biology experiments. This

study provides new ideas and strategies for the early diagnosis and

targeted therapy of RA and has theoretical innovation prospects.

Moreover, it provides theoretical support for the discovery of new

markers and drug targets for RA.
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