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Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
Zika virus (ZIKV) is a single-strand RNA mosquito-borne flavivirus with

significant public health impact. ZIKV infection induces double-strand DNA

breaks (DSBs) in human neural progenitor cells that may contribute to severe

neuronal manifestations in newborns. The DNA-PK complex plays a critical role

in repairing DSBs and in the innate immune response to infection. It is

unknown, however, whether DNA-PK regulates ZIKV infection. Here we

investigated the role of DNA-PKcs, the catalytic subunit of DNA-PK, during

ZIKV infection. We demonstrate that DNA-PKcs restricts the spread of ZIKV

infection in human epithelial cells. Increased ZIKV replication and spread in

DNA-PKcs deficient cells is related to a notable decrease in transcription of

type I and III interferons as well as IFIT1, IFIT2, and IL6. This was shown to be

independent of IRF1, IRF3, or p65, canonical transcription factors necessary for

activation of both type I and III interferon promoters. The mechanism of DNA-

PKcs to restrict ZIKV infection is independent of DSB. Thus, these data suggest

a non-canonical role for DNA-PK during Zika virus infection, acting

downstream of IFNs transcription factors for an efficient antiviral

immune response.
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Introduction

Zika virus (ZIKV) is a single-strand RNA mosquito-borne

flavivirus (1). First isolated in 1947 in Africa, ZIKV caught

public health attention in 2007 with the first viral outbreak in

Pacific Islands, from where it spread to South America in 2015

(2–5). In 2016, Zika disease was declared to be a worldwide

public health emergency due to severe neurological

manifestations in newborns (6, 7). The neurological

complications are associated with the tropism of ZIKV for

human neural progenitor cells which results in growth arrest,

DNA double-strand breaks (DSBs), and cell death (8, 9). DSBs

are the most cytotoxic type of DNA lesions that rapidly activate

DNA-damage repair response, orchestrated in part by the DNA-

dependent protein kinase (DNA-PK) complex (10, 11).

However, the relevance of DNA-PK in restricting ZIKV

infection is unknown.

DNA-PK is a multifunctional protein complex consisting of

Ku70, Ku80, and the catalytic subunit (DNA-PKcs) which are

involved, among other functions, in DNA damage repair, V(D)J

recombination of lymphocytes receptors, transcriptional

regulation, DNA replication, and RNA metabolism (11–13).

Present in the cytoplasm and nuclei, DNA-PK also functions

as an intracellular DNA receptor critical for primary immune

response against DNA virus infections by inducing interferon

(IFN)-I and IFN-III expression (14–19). IFNs induce the

transcription of interferon-stimulated genes (ISGs) that are

critical for inhibition of viral replication cycle (20–22).

During RNA virus infections, IFN-I and IFN-III are mainly

induced by intracellular RNA sensing receptors such as retinoic

acid-inducible gene I (RIG-I) and melanoma differentiation-

associated protein 5 (MDA5) (23). For instance, ZIKV RNA

genome detection is mediated by RIG-I, leading to activation

and nuclear translocation of the transcription factors belonging

to the interferon regulatory factor (IRF) and nuclear factor-

kappa B (NF-kB) families (24–35). IRFs and NF-kB bind to

interferon-stimulated response element (ISRE) and NF-kB
motifs, respectively, both present in the promoter region

responsible for IFN-I and IFN-III genes (32, 36).

Several studies associate DNA-PK complex with ZIKV or

other flaviviruses, such as Dengue virus (DENV). Vetter et al.

(37) described DNA-PK localization and activation as a very

early marker of DENV infection (37). DENV infection causes

DNA-PK subunits relocation to the nucleoli, which may regulate

RNA splicing (37–39). In addition, human cells with Ku80

protein partially depleted, reduce the interferon response

induced by DENV (37). The DNA-PK complex is also

associated with both ZIKV and DENV genomic RNA in

human cells, with unknown effects (40). In this context and

considering ZIKV can induce DSB (8, 9), we investigated
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whether DNA-PKcs affects ZIKV infection and triggers

antiviral immune response pathways.

We found that DNA-PKcs restricts ZIKV spread in human

epithelial cells. In the course of infection, DNA-PKcs is required

for IFN-related gene transcription, independent of transcription

factors IRF1, IRF3, or p65 (NF-kB subunit). In addition, DNA-

PKcs role during ZIKV infection was DSB independent. This

study provides information about the DNA-PKcs dynamics on

the antiviral immune response during ZIKV infection and may

contribute to new therapeutic strategies.
Materials and methods

Cell culture and reagents

A549 (ATCC®, CCL-185™), RPE (ATCC, CRL-2302), Vero

(ATCC®, CCL-81™), and derived cell lines were maintained in

DMEM-F12 (GIBCO, 12400-024) containing 5% fetal bovine

serum (FBS – GIBCO, 12657-029) supplemented with 1 U/mL

penicillin/streptomycin (Sigma, P4333). C6/36 (ATCC®, CRL-

1660™) cells were maintained at 28 °C, in L-15 (Sigma, L4386)

containing 5% FBS supplemented with 0.26% tryptose

phosphate broth (GIBCO, 18050-39), and 1 U/mL penicillin/

streptomycin. Both cell lines were routinely tested for

mycoplasma contamination. Cells were treated with 0.5 or 1

µM of NU7441 (BioGems, 5039598), 100 ng/mL human TNF

(Peprotech, 300-01A), and 3 µM etoposide (Sigma, E1383).
Virus infection

ZIKV strain BR2015/15261 (41) was kindly provided by Dra.

Claudia N. Duarte dos Santos (Fiocruz-PR, Brazil). Viral stocks

were purified from infected C6/36 cells supernatants and titrated

by plaque assay on Vero cells. This virus was used for infection

for indicated times and multiplicity of infection (m.o.i.).
Flow cytometry

Cells were detached from the plate with trypsin-EDTA

(GIBCO, 25300-062), centrifuged at 460 x g for 5 min, washed

in saline solution, and stained with Zombie NIR™ fixable

viability kit (Biolegend, 423105) at the dilution 1:2000 for

20 min at room temperature. Cells were then fixed with 3%

paraformaldehyde (PFA – Sigma, P6148) for 20 min followed by

staining with FITC-conjugated flavivirus E protein antibody

(ant i-4G2) (provided from Fiocruz-PR, Brazi l ) in

permeabilization buffer (0.25% saponin - Vetec, 1364) for
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40 min. All cells were washed with saline solution and acquired

on BD FACSVerse with FACSuite software. Analysis was

performed using FlowJo software v. 10.1 (TreeStar). The

gating strategy used for flow cytometry is available in

Supplementary Figure 2.

MTT assay

Cells were incubated with 0.5 mg/mL MTT reagent

(Amresco, 793) for 3 hours at 37 °C and 5% CO2, followed by

incubation of DMSO for formazan crystals extraction. Measures

were performed at 570 nm abs on a Biotek spectrophotometer

using Gen5 1.10 software.

Immunofluorescence

Cells were seeded onto a plate containing a 15 mm glass

coverslip, followed by ZIKV infection at determining time and

concentration. Cells were then fixed with 3% PFA for 20 min

followed by permeabilization with PBS containing 0.1% Triton

X-100 (Amresco, 694) and 2% bovine serum albumin (BSA –

Inlab, 1870) for 5 min. Primary antibodies (Supplementary

Table I) were diluted in PBS with 2% BSA, and incubated for

1 hour at room temperature, followed by detection by secondary

antibodies (Supplementary Table II), diluted in PBS with 2%

BSA, and incubated for 1 hour at room temperature. Then, cell

nuclei were stained with DAPI (Molecular probes, D3571) for 15

minutes and mounted with Mowiol (Sigma, 81381). Pictures

were obtained on an Olympus BX41 microscope and processed

on Q-capture Pro 5.1 software (Q-imaging). For transcription

factors translocation into the nucleus, cells were counted on at

least 20 infection plaque from each sample, in biological

triplicates using ImageJ software.

Real-time quantitative PCR

Total RNA was extracted from cells using TRIzol reagent

(Ambion, 15596026) according to manufacturer’s instructions.

RT-PCR was performed with M-MLV Reverse Transcriptase

(Promega, M170A) using 500 ng of RNA. For qPCR reaction, 2

µL of 1:20 diluted cDNA was used in a final volume of 10 µL, and

0.1 µM forward and reverse primers (Supplementary Table III),

performed with GoTaq qPCR Master Mix (Promega, A600A).

GAPDH was used as the housekeeping gene. Data were obtained

on the StepOne Plus Real-Time PCR system (Applied

BioSystems) and analyzed with StepOne Software v2.1.

Relative mRNA expression was calculated by 2-DDCT method.

Immunoblotting

Immunoblotting was used for characterization of

A549PRKDC-/- cells. Cells were lysed using a lysis buffer
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containing protease inhibitor (Mini Protease Inhibitor Tablets

– Roche, 5056489001). The samples were incubated for 30 min

at 4 °C, being briefly vortexed each 10 min followed by

centrifugation at 13.000 x g for 10 min at 4 °C. The

supernatant was transferred to a new tube and the total

proteins were quantified using Pierce BCA protein assay kit

(Thermo, 23225). From total proteins, 20 µg were transferred to

polyacrylamide gel electrophoresis for protein separation and

then transferred to nitrocellulose 0.22 µm blotting membranes.

The membranes were blocked in 5% non-fat milk in TBS

containing 0.1% Tween 20 (TBST) for 1 hour at room

temperature. Membranes were then probed with primary

antibodies (Supplementary Table IV) diluted in TBST

containing 5% BSA, at 4 °C shaking overnight. Membranes

were washed with TBST and incubated in secondary antibodies

(Supplementary Table V) for 1 hour at room temperature. Then,

membranes were washed and chemiluminescence developed

using ECL substrate (Pierce, 34577). Tubulin was normalized

as the reference control.
CRISPR/Cas9

A549PRKDC-/- and RPEPRKDC-/- cells were generated with a pair

of sgRNA guides (Guide1: GATCACGCCGCCAGTCTCCA;

Guide2: CAGACATCTGAACAACTTTA). The guides were

inserted in pX458 plasmids containing Cas9 encoded genes plus

GFP sequence for clone isolation. The cells were transfected with

pX458/Guide using lipofectamine 3000 reagent (Invitrogen, L3000-

008) following manufacturer’s instructions. For clone selection and

expansion, the fluorescent cells were isolated into a 96-well plate

using BDMelody cell sorter (BD). Knockout cell line clones were

confirmed by immunofluorescence and immunoblotting assays.
Data processing and statistical analyses

Data derived from the experiments were processed using

GraphPad Prism nine software. The data were analyzed

according to experimental settings using unpaired two-tailed

Student’s t-test or two-way ANOVA, with Sidak’s correction

where necessary.
Results

DNA-PKcs is required for control of ZIKV
infection

DNA-PK complex plays a critical role in DNA damage

repair such as DSB as well as in antiviral immune response

(10, 11, 14, 16–19). It was demonstrated that ZIKV can induce

DSB in neural progenitor cells (8, 9). However, the role of the
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catalytic subunit of DNA-PK in controlling ZIKV infection is

currently unknown. To determine the role of DNA-PKcs during

ZIKV infection, we used CRISPR/Cas9 editing of the PRKDC

gene to generate DNA-PKcs-deficient A549 and RPE epithelial

cells, referred to as A549PRKDC-/- (Figures S1A, B) and

RPEPRKDC-/- (Figure S1C). We observed an increase of

infectious ZIKV particles released from A549PRKDC-/-

(Figure 1A) and RPEPRKDC-/- (Figure 1B) compared with wild-

type (WT) cells as well as a significant increase in intracellular

ZIKV RNA (Figures 1C, D). In the absence of DNA-PKcs, ZIKV

spread to adjacent cells, as measured by plaque area size

(Figures 1E, F), as well as the percentage of infected cells

(Figure 1G, Figure S2) and dead cells (Figure 1H) are also

increased. Altogether, these results indicate DNA-PKcs is

required for full control of ZIKV infection in both A549 and

RPE cells.

To evaluate whether the DNA-PKcs kinase function is

required for ZIKV control, we treated A549 cells with

NU7441, a DNA-PKcs inhibitor (42, 43), 24 hours before

infecting with ZIKV (Figure 1I). Similar to what we observed

in PRKDC-/- cells, NU7441 pre-treatment increased ZIKV

infection in WT, but not in A549PRKDC-/- cells. These results

suggest DNA-PKcs kinase function is necessary for control of

ZIKV infection.
ZIKV infection does not induce double-
strand DNA breaks in A549 cells

IFN-I is induced by DNA-PKcs through its DNA sensing

function following DSB (44). Furthermore, ZIKV infection

induces DSB in neural progenitor cells as observed by gH2A.X

histone phosphorylation (8, 9). Thus, we evaluated whether

ZIKV infection induces DSB in A549 cells, leading to a source

of immunostimulatory DNA to activate DNA-PKcs. To assess

this, the A549WT and A549PRKDC-/- cells as well as A549 cells

pre-treated with 1 µM NU7441 were infected with ZIKV (m.o.i.

1) at 24 hours. As a positive control, cells were treated with 3 µM

etoposide, a topoisomerase II inhibitor, for 12 hours (Figures 2A,

B). As expected, etoposide treatment increased the number of

gH2A.X foci (green) per cell, being enhanced in A549PRKDC-/- or

in NU7441-treated cells. However, the gH2A.X foci levels were

similar in A549 cells infected with ZIKV (red) compared with

uninfected cells. These results suggest that DNA-PKcs controls

the ZIKV infection independent of any DSB-induced response.
DNA-PKcs is required for IFN-I and IFN-
III genes transcription during ZIKV
infection

RIG-I is the major ZIKV RNA sensor, leading to induction

of IFN-I and IFN-III transcription, crucial for an efficient
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antiviral immune response (33, 34). To evaluate whether RIG-

I orchestrates ZIKV sensing in A549 cells, we infected A549WT

and A549RIGI-/- with m.o.i. 1 for 24 hours to measure the

induction of IFN-related genes transcription (Figure 3A). We

observed A549 lacking RIG-I failed to induce IFN-I, IFN-III,

ISGs, and IL6 transcriptions during ZIKV infection, confirming

that RIG-I is necessary for activation of antiviral immune

response. Next, we investigated whether DNA-PKcs is

required for activating the IFNs pathways downstream RIG-I

during ZIKV infection. We performed a gene expression analysis

of IFN-I, IFN-III, and ISGs in A549WT and A549PRKDC-/- cells

infected with ZIKV at an m.o.i. 0.1 (Figure 3B) and m.o.i. 1

(Figure 3C). During ZIKV infection we observed a reduction of

IFNL1, IFIT1, and IFIT2, but not IFNB, IFIT3, and ISG15

transcription in the absence of DNA-PKcs. Similarly, in RPE

cells, where ZIKV infection does not induce IFNL1 transcription,

the absence of DNA-PKcs decreased IFNB and IFIT2, but not

ISG15 transcription (Figure S3A). In addition, proinflammatory

gene transcription induced after RIG-I activation such as IL6

and NFKBIA is independent of DNA-PKcs in A549 cells upon

ZIKV infection (Figure 3D), but dependent in RPE cells lacking

DNA-PKcs (Figure S3B). Altogether, these results suggest

crosstalk between RIG-I and DNA-PKcs during ZIKV

infection, which results in an efficient antiviral immune

response in A549 and RPE cells.
IRF1, IRF3, and p65 nuclear accumulation
during ZIKV infection is DNA-PKcs
independent

We evaluated the crosstalk between RIG-I and DNA-PKcs

during ZIKV infection analyzing the IFN-I/III-inducing

transcription factors including IRF1, IRF3, IRF5, IRF7, and

p65 (NF-kB subunit) (24, 25, 27, 29–31, 35). We infected

A549 cells with ZIKV and measured the accumulation of the

transcription factors in the nucleus. We observed that ZIKV

infection induces IRF1 and IRF3, but not IRF5 and IRF7 nuclear

accumulation (Figures 4A–D and Figures S4A, B). As expected,

A549RIGI-/- cells failed to induce IRF3 and IRF1 nuclear

accumulation, confirming that RIG-I is the major ZIKV

intracellular sensor (Figures 4A, B). However, the activation of

the transcription factors was independent of DNA-PKcs,

showing a similar nuclear location percentage of IRF3 and

IRF1 (Figure 4C, D). Similarly, the induction of p65 nuclei

accumulation was independent of DNA-PKcs (Figure 4E).

Interestingly, while IRF3 nuclei translocation occurred

exclusively in infected cells, we observed that IRF1

accumulation in the nuclei occurred mostly in bystander cells,

confirmed by ZIKV dsRNA staining, which shows the early stage

of virus infection (Figure S4C). Altogether, these results suggest

that upon ZIKV infection, DNA-PKcs is necessary for
frontiersin.org
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FIGURE 1

DNA-PKcs is critical for control of ZIKV infection. Virus replication measured by plaque assay, expressed as plaque-forming units per mL (PFU/
mL), on (A) A549WT and A549PRKDC-/- or (B) RPEWT and RPEPRKDC-/- cells infected with ZIKV at indicated m.o.i. and time. RT-qPCR analysis to
measure ZIKV RNA in (C) A549WT and A549PRKDC-/- or (D) RPEWT and RPEPRKDC-/- cells infected at indicated m.o.i. and time. (E) A549WT and
A549PRKDC-/- or (F) RPEWT and RPEPRKDC-/- cells infected with 50 PFU of ZIKV at 48 hours in semi-solid medium, then ZIKV-E protein (green)
was stained for immunofluorescence analysis, and the relative area of infection percentage was measured using the ImageJ software. The cell
nuclei were stained with DAPI (blue). (G) Percentage of ZIKV-infected A549WT and A549PRKDC-/- cells at indicated m.o.i. and time, analyzed by
flow cytometry. (H) Viability analysis by MTT assay of ZIKV-infected A549WT and A549PRKDC-/- cells relative to uninfected cells (mock) at
indicated m.o.i. and time. (I) A549WT and A549PRKDC-/- were pretreated with NU7441 (0.5 and 1 µM) at 24 hours followed by ZIKV infection
(m.o.i. 1) at 24 hours. We used two-way ANOVA with Sidak’s correction in (A–D, G, H), and unpaired two-tailed Student’s t-test was used in (E,
F). * p<0.05, n = 3, error bars ± SEM.
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enhancement of IFNs and ISGs transcription, acting

downstream activation of transcription factors.
Discussion

The DNA-PK complex senses viral DNA with an unknown

impact on ZIKV infection. Here we demonstrate that DNA-

PKcs, the catalytic subunit of the DNA-PK complex, is critical

for control of ZIKV infection by a non-canonical mechanism.

We analyzed different infection profiles such as quantifying

viable ZIKV, intracellular ZIKV-RNA, ZIKV spreading to

adjacent cells, and ZIKV-infected cells. We showed that

absence of DNA-PKcs increases susceptibility to ZIKV

infection in two different human epithelial cell lineages,

allowing a faster virus spreading. Moreover, we showed that

the DNA-PKcs mechanism for controlling ZIKV infection

depends on its kinase function. Previous studies have

associated DNA-PK complex with infection of flaviviruses. For

instance, Vetter et al. (37) demonstrated that Ku70 and Ku80

knockdown in Huh7 cells are insufficient to impact DENV

infection, differing from our findings with ZIKV (37). The

difference could be explained due to a partial knockdown of

the Ku components or the use of different cell lines and

flavivirus. In addition, depletion of each DNA-PK subunit
Frontiers in Immunology 06
separately varies on number of differentially expressed genes

(45). Hence, instead of Ku proteins, only the catalytic subunit

may be critical for control of infection.

ZIKV infection induces DSB in human neural stem cells (8,

9), which may implicate DNA-PK activation (46). However, our

findings showed that ZIKV does not increase H2A.X

phosphorylated foci, a DSB marker, in human epithelial

(A549) cells. Hence, ZIKV does not induce DSB in A549 cells,

and the role of DNA-PKcs in controlling viral infection is

independent of DSB repair response. In addition, we showed

that either inhibition of DNA-PKcs kinase function or loss of

whole protein has increased DSB sensitivity to etoposide, a

genotoxic stressor, as suggested in previous studies (43, 47).

We showed that DNA-PKcs is necessary for an effective

antiviral response against ZIKV infection which may explain its

role in restricting the infection. The effect of DNA-PKcs on IFN-

I and IFN-III transcriptions differs between cell types. Similar to

our findings, Vetter et al. (37) demonstrated that inhibition of

Ku80 protein expression decreases IFNB transcription in

DENV-infected cells (37). It is important to notice that DNA-

PKcs antiviral response might differ between humans and mice

and virus species (19). These could explain why the antiviral

response against other RNA viruses is DNA-PKcs independent

(14). ZIKV infection might induce mitochondrial DNA release,

activating DNA sensors such as DNA-PK or cGAS, which results
A B

FIGURE 2

ZIKV infection does not induce DSB in A549 cells. A549WT, A549PRKDC-/- and 1 µM NU7441 pre-treated A549WT infected with ZIKV (m.o.i. 1) at
24 hours. Stimulation with 3 µM etoposide for 12 hours was used as a DSB positive control. (A) Immunofluorescence to analyze gH2AX (green)
in the ZIKV-infected cells (red, ZIKV-E protein). The cell nuclei were stained with DAPI (blue). (B) Percentage of gH2AX foci per cell showed in
(A). *Compared with WT cells; #Compared with mock. We used two-way ANOVA with Sidak’s correction. * or # p<0.05, n = 3, error bars ±
SEM.
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in IFN-I and IFN-III transcription (14, 48–50). However, we

observed abrogation of the IFNs transcription in A549RIGI-/- cells

infected with ZIKV, suggesting only RNA sensing pathway is

activated during the infection.

Our data show that ZIKV infection induces nuclear

accumulation of the main transcription factors involved in

IFN-I and IFN-III transcription independently of DNA-PKcs.

These findings implicate that DNA or RNA sensing pathways

upstream of the transcription factors are not affected by DNA-

PKcs during ZIKV infection. A prior study suggested DNA-PK

complex is not required for IRF3 nor p65 nuclear translocation

under RNA virus infection or Poly(I:C) stimulation (14).
Frontiers in Immunology 07
Furthermore, we showed ZIKV infection fails to induce IRF1

and IRF3 accumulation to the nucleus in absence of the RNA

sensor RIG-I, suggesting DNA-PKcs is not a ZIKV sensor

receptor. Our findings confirmed that RIG-I is the major

nucleic acid sensor activated by ZIKV, as previously

demonstrated (33, 34), and suggests novel crosstalk between

DNA-PKcs and RIG-I pathway downstream to transcription

factors. One possibility is during ZIKV infection, DNA-PKcs

acts in the nucleus regulating IFN transcription. The DNA-PK is

known to be a regulator of the transcriptome and RNA

metabolism (13, 38, 51–55). DNA-PKcs is described to

phosphorylate RNA polymerase II, which might enhance the
A

B

D

C

FIGURE 3

DNA-PKcs regulates interferon-related genes during ZIKV infection. (A) RT-qPCR to measure the expression of mRNA for indicated genes on
A549WT and A549RIGI-/- cells infected with ZIKV m.o.i. 1 for 24 hours. (B) RT-qPCR to measure the expression of mRNA for indicated genes on
A549WT and A549PRKDC-/- cells infected with ZIKV m.o.i. 0.1 at the indicated time or (C) m.o.i. 1 at 24 hours. (D) Expression of mRNA for NFKBIA
and IL6, determined by RT-qPCR on A549WT and A549PRKDC-/- cells infected with ZIKV m.o.i. 1 at 24 hours. We used unpaired two-tailed
Student’s t-test in (A, C, D), and two-way ANOVA with Sidak’s correction in (B). ND: Non-detected. * p<0.05, n = 3, error bars ± SEM.
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transcription of some viral genomes such as Hepatitis B virus

and Human immunodeficiency virus (52, 55–57). Genotoxic

stress or viral infections such as DENV induce DNA-PKcs

localization to the nucleolus, where it acts as a regulator of

pre-mRNA splicing (13, 37, 38). The regulation of RNA

metabolism by DNA-PKcs should be explored in the future in

the context of ZIKV infections.

Overall, these findings provide a role of DNA-PKcs in

control of ZIKV virus infection beyond its DNA sensing

function or DSB repair response. Future work should consider

whether this conclusion can be generalized to different RNA

viruses. This study will advance our understanding of the

antiviral immune response and may contribute to new

therapeutic approaches.
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FIGURE 4

ZIKV induces IRF1, IRF3, and p65 nuclei accumulation independent of DNA-PKcs. Immunofluorescence analysis for localization of endogenous
(A) IRF3 (red) and (B) IRF1 (red) on A549WT and A549RIGI-/- cells infected with ZIKV m.o.i. 1 (green, ZIKV-E protein) at 36 hours (left panel), and
quantified by scoring cells with nuclear staining (right panel, n = 3, counts of at least 30 nuclei per slide). (C–E) Immunofluorescence analysis
for localization of endogenous (C) IRF3 (red), (D) IRF1 (red), and (E) p65 (red) on A549WT and A549PRKDC-/- cells infected with ZIKV m.o.i. 1
(green, ZIKV-E protein) at 24 hours (left panel), and quantified by scoring cells with nuclear staining (right panel, n = 3, counts of at least 30
nuclei per slide). TNF was used as a positive control in (E). Cell nuclei were stained with DAPI (grey). We used unpaired two-tailed Student’s t-
test. N = 3, error bars ± SEM. ND: non-detected.
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