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TNFa blocking agents were the first-in-class biologic drugs used for the

treatment of autoimmune disease. Paradoxically, however, exacerbation of

autoimmunity was observed in some patients. TNFa is a pleiotropic cytokine

that has both proinflammatory and regulatory effects on CD4+ T cells and can

influence the adaptive immune response against autoantigens. Here, we

critically appraise the literature and discuss the intricacies of TNFa signaling

that may explain the controversial findings of previous studies. The

pleiotropism of TNFa is based in part on the existence of two biologically

active forms of TNFa, soluble andmembrane-bound, with different affinities for

two distinct TNF receptors, TNFR1 and TNFR2, leading to activation of diverse

downstream molecular pathways involved in cell fate decisions and immune

function. Distinct membrane expression patterns of TNF receptors by CD4+ T

cell subsets and their preferential binding of distinct forms of TNFa produced

by a diverse pool of cellular sources during different stages of an immune

response are important determinants of the differential outcomes of TNFa-TNF

receptor signaling. Targeted manipulation of TNFa-TNF receptor signaling on

select CD4+ T cell subsets may offer specific therapeutic interventions to

dampen inflammation while fortifying immune regulation for the treatment

of autoimmune diseases.
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Introduction

In the late 1970s, tumor necrosis factor alpha (TNFa) was

discovered due to its tumoricidal activity, as bacterially

contaminated neoplastic tumors would regress in size (1, 2).

Over the ensuing years, TNFa was shown to have an important

proinflammatory role in a variety of preclinical experimental

models (3) and human disease settings (4). Several studies have

established an association between genetic and protein

processing defects in the NF-kB signaling pathway

downstream of TNFa in human autoimmune and

inflammatory diseases, such as systemic lupus erythematosus

(SLE) (5), Sjögren’s syndrome (6), Crohn’s disease (7), ulcerative

colitis (8) and rheumatoid arthritis (RA) (9). In the clinical

arena, inhibition of TNFa signaling in otherwise therapy-

resistant patients has led to improved treatment outcomes in a

variety of immune-mediated diseases, such as RA (10),

inflammatory bowel disease (11), adult-onset Still’s disease

(12), and psoriasis (13). Surprisingly, however, some patients

experienced new-onset autoimmune diseases, such as multiple

sclerosis (MS), psoriasis, or lupus-like syndromes following

administration of TNFa blocking agents (14–16). This led to

an insurgence o f s tud i e s shedd ing l i gh t on the

immunomodulatory role that TNFa exerts on T cells (17, 18).

It is now clear that TNFa is a multifaceted cytokine that has both

proinflammatory and immunoregulatory roles. The differential

outcomes of TNFa signaling depend on the (a) type of receptor

TNFa binds to, (b) cell type carrying the specific TNF receptor,

(c) cellular source of TNFa production, (d) phase of the immune

response, and (e) type of regulatory T cell (Treg) responsible for

suppression in each disease setting (Table 1). Given the latest

advances in our understanding of the intricacies of TNFa

signaling and its central role in auto- and allo-immunity, we

are reviewing and critically appraising the literature and

discussing potential opportunities to further develop precision

medicine approaches for autoimmune diseases and

transplant rejection.
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TNFa and TNFR overview

Ligand and receptor interactions

TNFa is a cytokine mainly produced by immune cells, such

as macrophages, CD4+ T cells, NK cells, neutrophils, mast cells,

and eosinophils. Yet, it is also secreted by non-immune cells,

including endothelial cells, fibroblasts, and neurons (19, 20).

TNFa is generated in a precursor form as a 233 amino acid type

II single-pass transmembrane protein anchored in the cell

membrane that is assembled in homotrimers and acts in a

paracrine manner (21–23). Known as transmembrane TNFa

(tmTNFa, 26kDa), this precursor protein can act both as a ligand

and as a receptor during cell-to-cell interactions, thereby

mediating both forward and reverse signaling (24, 25). It

therefore plays a pivotal role in local inflammation. tmTNFa is

processed by TNFa converting enzyme (TACE, also known as

ADAM17) to generate soluble TNFa (sTNFa, 17 kDa)

homotrimers (26, 27). Following TACE-mediated cleavage, the

cytoplasmic domain of tmTNFa is further processed by the

aspartyl protease SPPL2b, which then translocates to the nucleus

and mediates proinflammatory cytokine production (28–30).

The released fragment of sTNFa mediates additional endocrine

function of TNFa in remote sites via hematogenous circulation.

The individual roles of sTNFa and tmTNFa in mediating the

pathogenesis of autoimmunity has been studied in transgenic

mice expressing a TACE resistant form of tmTNFa (31).

Interestingly, these mice were protected from autoimmune

phenomena at a higher rate than TNFa KO animals,

highlighting both the pathogenetic role of sTNFa and the

partially protective role of tmTNFa (31). TACE inhibition has

since emerged as a targeted strategy to preserve favorable

inhibitory tmTNFa downstream signaling while efficiently

blocking sTNFa deleterious activity (32).

TNFa exerts its effects via binding to either TNFR1 or

TNFR2 (Figure 1). TNFR1 is expressed in all nucleated cells in

the form of pre-assembled trimers, while TNFR2 is preferentially
TABLE 1 Factors that influence the impact of TNFa on the outcome of the immune response.

Proinflammatory Regulatory

TNFR type TNFR1 TNFR2

TNFR-expressing cell CD4+ Teff Treg

Cellular source of TNFa Myeloid CD4+ Teff

Timing of TNFa exposure Early Late

Predominant type of Treg cell subset responsible for suppression Peripheral Treg Thymic Treg
f
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expressed in immune cells, such as activated CD4+ effector T

(Teff) and CD4+ Treg cells (33–35). Importantly, the assembly of

TNFR trimers is ligand-independent and is regulated by

cysteine-rich domains in the extracellular region of TNFR

(36). Mutations in these domains that mediate receptor folding

and trafficking lead to systemic inflammation called TNFR-

associated periodic syndrome (TRAPS) (37–41). TRAPS-

associated mutant TNFR1 is not secreted, therefore does not

bind TNF, but, instead, is retained in the endoplasmic reticulum

leading to less efficient induction of apoptosis, compared to

wild-type TNFR1 (39). Upon binding of a TNFa homotrimer to

a TNFR1 or a TNFR2 homotrimer, signaling is initiated after

secondary assembly of initial TNFa-TNFR homotrimers (42,

43). Both TNF receptors can bind to both tmTNFa and sTNFa.

Yet, tmTNFa has higher affinity to TNFR2 (44), while sTNFa has

a more stable association with TNFR1 (45) (Figure 1).
Signaling and pathway crosstalk

TNFR1 engagement triggers the transcription of

proinflammatory genes via activation of the canonical NF-kB
pathway (33, 46, 47). TNFR1 activation induces the recruitment
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of death domain (DD)-containing adapters, such as TNFR1-

associated DD protein (TRADD) and receptor-interacting

serine/threonine kinase 1 (RIPK1), with further recruitment of

TNFR-associated factor 2 (TRAF2), culminating in the

formation of signaling complex I. Associated cellular inhibitor

of apoptosis (cIAP) 1/2 proteins ubiquitinate themselves and

RIPK1, leading to further recruitment of TAK1/TAB2/TAB3

and linear ubiquitination assembly complex (LUBAC), which in

concert polyubiquitinate NEMO and activate the IKK complex.

This results in the phosphorylation and proteasomal

degradation of IkB with the subsequent nuclear translocation

of the active NF-kB complex (p50/p65). Additionally, TAK1 can

lead to proinflammatory gene transcription via the

phosphorylation of MAP kinases, such as the JNK and p38,

which activate the AP-1 complex (48–50). Alternatively, TNFR1

signaling may lead to either apoptosis or necroptosis (51).

Destabilization of complex I can lead to formation of complex

II as non-ubiquinated RIPK1 and TRADD recruit FADD, C-

FLIP and pro-caspase 8, ultimately leading to the activation of

effector caspases (52). However, when caspase 8 is inhibited by

caspase inhibitors or virally expressed proteins, RIPK1 and

RIPK3 assoc ia te and ei ther se l f -phosphoryla te or

phosphorylate each other, eventually leading to necroptosis (53).
FIGURE 1

TNFa-TNFR interactions and corresponding biologic agents’ targets. Created by using biorender.com.
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TNFR2, in contrast to TNFR1, does not contain a death

domain. Instead, TNFR2 directly recruits TRAF1 or TRAF2

along with cIAP1/2, triggering the recruitment of LUBAC,

TAK1/TAB2/TAB3, and NEMO/IKK1/2 complexes, ultimately

leading to activation of the canonical NF-kB pathway. tmTNFa

binding to TNFR2 results in activation of the non-canonical NF-

kB pathway via NIK accumulation, phosphorylation of IKK1

complex and processing of p100, and subsequent formation of

p52/RelB heterodimers that translocate to the nucleus to activate

transcription of target genes (54, 55). TNFR2 ligation in human

Tregs enhances IL-2-induced proliferation mainly via the

activation of the non-canonical NF-kB pathway (56). In

addition to NF-kB pathway stimulation, TNFR2 crosslinking

can also lead to MAPK activation. Indeed, p38 MAPK signaling

is key to TNFR2-driven Treg activation and proliferation (57).

On the other hand, pro-apoptotic signaling mediated by JNK

activation depends on TNFR2 localization, which is regulated by

TRAF2 (58) and requires the association of internalized TNFR2

with AIP1 (59).

TNFa binding to TNFR1 or TNFR2 may elicit downstream

signaling that is not solely restricted to either type of receptor.

Cross-talk between TNFR1 and TNFR2 may occur at multiple

levels (60). Ligand passing has been credited with endowing

TNFR2 the ability to deliver pro-apoptotic signals (61).

According to this mechanism, owing to TNFR2’s more rapid

association with TNFa and associated longer half-life of TNFa

binding, TNFR2 increases the local TNFa concentration in the

vicinity of TNFR1 receptors. These subsequently accept TNFa

ligand molecules, inducing apoptosis (61). Under long-term

TNFa exposure, TNFR1 and TNFR2 co-expressing cells

prevent apoptosis by generating TRAF1 and TRAF2

heterodimers that are more efficient activators of NF-kB
pathway signaling (62). Moreover, TNFR2 activation during

inflammatory conditions may control TNFR1-induced

activation via ASK1 ubiquitination (63).
Role of TNFa-TNFR in T cell
development in the thymus

TNFa has been found to be important in many stages of

thymic T cell development as it promotes the apoptosis of triple

negative CD3-CD4-CD8- (64) and double positive CD4+CD8+

thymocytes (65). Beyond NF-kB’s conventional role in

transmitting downstream TCR signals, TNFa can also directly

upregulate anti-apoptotic genes, such as cIAP1/2, which is

important for the maturation of CD4+ and CD8+ single-

positive T cells during the later stages of T cell development

(66). Contrary to their conventional counterparts, Treg

development relies upon the cooperative activity of several

TNF receptor superfamily members (67). Tregs are dedicated

to suppressing immune responses, ensuring self-tolerance and

immune homeostasis, limiting tissue damage by overactive
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immune responses (68). Their unique transcriptional program

is bestowed on them by the sustained expression of the

transcription factor FOXP3 (69). Thymic Treg (tTreg)

development is a two-step process (70). First, TCR-CD28

signaling upregulates CD25 (IL2Ra) and CD122 (IL2Rb)
expression along with c-REL-dependent chromatin remodeling

at the FOXP3 locus. Second, IL-2 signaling drives FOXP3

expression in a STAT5-dependent manner to endorse full Treg

phenotype (70). TNFR2 expression is upregulated in Treg

progenitors and serves as a link between TCR signaling

strength and augmented IL-2/STAT5 signaling, eventually

driving Treg differentiation (67).
Effect on Teffs in the periphery

Teffs not only produce TNFa, but also respond to it. Cell-

type specific ablation of TNFa expression showed that myeloid-

derived TNFa mediates the pathogenesis of collagen-induced

arthritis (CIA), whereas T cell-derived TNFa is protective during

the induction phase of arthritis by limiting T cell priming and

memory T cell development (71). Interestingly, in a preclinical

model of EAE, TNF produced by myeloid cells exacerbated

neuroinflammation by driving the recruitment of inflammatory

cells in the central immune system (CNS), and TNF produced by

T cells further promoted myeloid cell recruitment into the CNS

(72). However, in secondary lymphoid organs, TNF derived

f rom myelo id and T ce l l s synerg ized to dampen

encephalitogenic Th1 and Th17 responses by decreasing IL-12

and IL-6 production (72). Another study using CD4+CD45RBhi

T cell-induced colitis in lymphopenic mice showed that resident

non-T cells are induced by Teffs in situ to produce TNFa, which

in turn induced colitis. Of note, TNFa derived from Teffs was

neither necessary nor sufficient to induce colitis (73). The exact

nature of cell-to-cell interactions or soluble factors that Teffs

employ to induce TNFa production by intestinal resident cells

remains unclear. To address this, a subsequent study showed

that TNFR2-deficient Teffs failed to induce full-fledged colitis in

Rag1 KO mice due to their impaired capacity to produce Th1

cytokines, owing to increased p100/p52 ratio and thus defective

non-canonical NF-kB signaling (74). Therefore, it seems

plausible that TNFa-TNFR2 interactions between Teffs and

local resident cells are key to pathogenicity in colitis. The

balance between distinct cellular sources of TNFa in each

disease sett ing may influence the outcome of the

immune response.

Multiple studies have shown the role of TNFa in driving

immune pathology. Local expression of TNFa in neonatal non-

obese diabetic (NOD) mouse islets causes an influx of antigen-

specific Teffs that precedes the onset of diabetes (75).

Nevertheless, TNFa can have a dichotomous role in the

pathogenesis of diabetes, depending on the stage of the

ongoing autoimmune process. In a transgenic model of virally
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induced diabetes, early islet-specific TNFa expression

augmented diabetes incidence, while late TNFa expression

abrogated diabetes (76). It is unclear whether TNFa acts via

induction of autoreactive cell apoptosis or promoting the

expansion of Tregs at the later stage of the immune response.

In that vein, seminal work indicated that Tregs accumulated

preferentially in the pancreatic lymph nodes and islets

suppressed islet destruction by CD8+ T cells in a TNFa

signaling-dependent fashion (77). Another important temporal

parameter relating to the diabetogenic potential of TNFa is the

duration of exposure; chronic exposure of diabetogenic T cell

clones to TNFa results in T cell unresponsiveness (78).

TNFa regulates multiple aspects of Teff fate, including

survival, activation, and proinflammatory cytokine production

(79–81). TNFa signaling lowers the threshold for TCR-

dependent activation by providing TNFR2-mediated

costimulation (82). Furthermore, TNFR2 signaling delivers an

anti-apoptotic stimulus during the primary T cell response,

expanding the resulting memory T cell pool following a

second antigen encounter (83). A clinical study showed that

infliximab, a TNFa blocking antibody, induces apoptosis in

activated T cells isolated from the lamina propria of steroid-

refractory Crohn’s disease patients, presumably due to anti-

apoptotic NF-kB signaling withdrawal (84). Lastly, TNFa

signaling promotes Teff proliferation even in the presence of

Treg-mediated suppression (85). However, prolonged TNFa

exposure restored Treg suppressive function, suggesting that

TNFa promotes an effective immune response early on, yet

delivers a delayed immunoregulatory feedback signal to Tregs

to restore homeostasis (85).
Effect on Tregs in the periphery

Thymic derived T regulatory cells (tTregs)

The inflammatory microenvironment poses several

challenges to Treg stability (86). In the synovial fluid of RA

patients, TNFa was found to compromise Treg suppressive

capacity via dephosphorylation of a serine residue in the

DNA-binding domain of FOXP3 (87). Several studies have

focused on TNFa blocking agents. Infliximab has been

reported to reverse TNFa-induced suppressive capacity and

FOXP3 expression loss in Tregs (88). Adalimumab, but not

etanercept, was shown to increase Treg numbers in the synovial

fluid of RA patients and improve Tregs’ capacity to suppress IL-

17 production (89). Interestingly, adalimumab, in contrast to

etanercept, stabilizes tmTNFa on the surface of monocytes;

tmTNFa then promotes Treg expansion via TNFR2-mediated

IL-2/STAT5 signaling (89). Promoting tolerogenic tmTNFa

signaling, while neutralizing sTNFa deleterious actions, may

underly the increased efficiency of adalimumab over etanercept

and warrants confirmation in larger clinical trials.
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Multiple studies have shown that TNFR2 signaling safeguards

Treg stability under inflammatory conditions. Adoptively

transferred TNFR2-deficient Tregs were unable to confer

protection from colitis induced by co-transferred Teffs in Rag1

KOmice, underlining the critical role of TNFR2 in Treg phenotypic

and functional stability in inflammatory environments (90).

Indeed, TNFR2 expression defines a maximally suppressive Treg

subgroup within effector Tregs (eTreg) that accounts for tumor-

infiltrating eTreg-mediated immune surveillance evasion by solid

tumors (91). Conditional TNFR2 ablation in Tregs led to

exacerbated Th17-mediated experimental autoimmune

encephalomyelitis (EAE), a mouse model of MS, due to impaired

Treg homeostasis (92). TNFa signaling has been shown to be

pivotal for maintenance of eTreg phenotype in the periphery (93)

and endows Tregs with the ability to suppress IFNg production by

Teffs in a TNFR2-dependent manner (94).

In addition to safeguarding Treg lineage under inflammatory

conditions, TNFR2 signaling synergizes with IL-2 to boost Treg

proliferation via the non-canonical NF-kB signaling pathway

(56). In a broader sense, TNFa signaling is used by Tregs to scale

to inflammation. In line with this concept, Teff-derived TNFa has

been shown to boost Tregs, dependent upon TNFR2 expression

on Tregs, in experimental models of diabetes (95) and graft-vs-

host disease (GvHD) (96). CD8+ T cells responding to virus

infection stimulate a Vb5+ thymic Treg subset that expressed

markers of a terminally differentiated effector cell phenotype,

which promotes chronic infection in a TNFa-dependent manner

(97). While proinflammatory signals enhance Treg proliferation,

intense cell cycling increases the risk of Treg lineage

destabilization. Indeed, IL-6 and TNFa synergistically drive

robust human Treg proliferation in a TNFR2-dependent

manner, with genetic deletion of TNFR2 leading to reduced

expression of FOXP3 (98). TNFa-TNFR2 form a feedback loop

that drives epigenetic changes that stabilize Treg phenotypic

identity (99). These properties have been employed to expand

Tregs ex vivo by delivering TNFR2 agonistic signals (100). In

addition, a selective TNFR2 agonist was used to promote

expansion of the endogenous Treg pool, which resulted in

significantly reduced GvHD severity and mortality (101).
Induced T regulatory cells (iTregs)

In contrast to tTregs, induced Tregs (iTregs) do not require

TNFa for in vivo function (102). While TNFR2 KO tTregs were

unable to prevent adoptive T cell transfer-induced colitis in Rag1

KO mice, TNFR2 KO iTregs were fully suppressive (102).

Interestingly, pre-treatment of TNFR2 KO tTregs with TGFb

restored their suppressive function (102). Even though TGFb

had been previously shown to promote iTreg homeostasis in the

periphery, this was the first study to show TGFb’s role in

restoring TNFR2-deficient tTreg function. In fact, TNFa

antagonizes TGF-b-induced iTreg generation (103).
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TNFa was shown to exacerbate the development of EAE by

impairing differentiation and function of iTregs via TNFR2-

mediated activation of Akt, which in turn inhibited TGFb-

induced SMAD3 phosphorylation, resulting in decreased Foxp3

expression (103). Interestingly, TNFa does not activate the Akt

pathway in tTregs (103), which may explain the dichotomy of the

precipitation of autoimmune side effects by anti-TNFa biologics,

depending on whether tTregs or iTregs have the predominant

regulatory role in the pathogenesis of each disease. In contrast,

adoptive transfer of TNFR1 KO iTregs showed improved clinical

scores that were associated with sustained elevated TNFR2

expression on their surface (104). Still, TNFR2 KO iTregs were

unable to prevent colitis, unlike WT iTregs. The differential

results of these studies may be due to differences in

experimental methodology, such as the use of different genetic

knockout mice, which may alter T cell development, or the use of

different protocols to induce Treg differentiation.
Therapeutic opportunities

Current TNFa blockade agents are aimed at preventing

ligand binding to TNF receptors without taking into

consideration the different forms of the receptor or their cell-

specific expression pattern. Therefore, they indiscriminately

prevent both the proinflammatory and the immunoregulatory

effects of TNFR2 signaling. Novel biologics under development

are aimed to selectively inhibit binding of TNFa to TNFR1,

whereas selective TNFR2 activation requires both specific

binding to the receptor and facilitation of oligomerization of

TNFR2 complexes (105). Selective anti-TNFR1 binders under

development include humanized mouse monoclonal antibodies

(106), nanobodies (107), and small molecule inhibitors (108).

Interestingly, XPro1595, a novel class of TNFa inhibitor called

signaling-incompetent TNF derivative that inactivates sTNFa

through the formation of mixed TNFa heterotrimers, has

demonstrated an impressive improvement in EAE models

(109). On the other hand, targeted TNFR2 binding has been

achieved by generating TNFa muteins by mutagenesis or using

phage display (110, 111). Fusion of homotrimeric TNF moieties

allows for the generation of a nonvalent molecule capable of

TNFR2 clustering (112). Indeed, sTNFa muteins S95C/G148C

and TNF07, which display TNFR2 agonist properties due to

their stable trimeric structure created by internal covalent cross-

linking, expanded Tregs while simultaneously selectively

inducing activation-induced cell death (AICD) of autoreactive

CD8+ T cells in diabetic patients ex vivo (113).
Conclusion

The outcomes of TNFa signaling in CD4+ T cells depend on

multiple parameters, including the phase of the immune
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response, duration of TNFa exposure, cellular source of TNFa

production, and type of TNF receptor expressed on the

responding CD4+ T cell subpopulation. The complex role of

TNFa in Treg biology holds promise in aiding the development

of Treg-based therapies, both in improving ex vivo expansion

(98) and in vivo function (114). Incorporating TNFa signaling in

synthetic immune receptors, such as chimeric antigen receptors,

could help fine tune engineered Treg therapies under

deve lopment (115–117) . Recen t advances in our

understanding of the biology of TNFa-TNFR signaling provide

excellent opportunities to design targeted therapies that inhibit

the effector arm of T cell immunity while unleashing the

immunoregulatory properties of TNFa signaling for the

treatment of autoimmune diseases and transplant rejection.
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