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Brousse, France
Chun Geun Lee,
Brown University, United States
Wu Junyong,
Central South University, China

*CORRESPONDENCE

Jingping Liu
liujingping@scu.edu.cn

SPECIALTY SECTION

This article was submitted to
Cytokines and Soluble
Mediators in Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 13 September 2022
ACCEPTED 30 September 2022

PUBLISHED 20 October 2022

CITATION

Lv K, Wang Y, Lou P, Liu S, Zhou P,
Yang L, Lu Y, Cheng J and Liu J (2022)
Extracellular vesicles as advanced
therapeutics for the resolution of
organ fibrosis: Current progress and
future perspectives.
Front. Immunol. 13:1042983.
doi: 10.3389/fimmu.2022.1042983

COPYRIGHT

© 2022 Lv, Wang, Lou, Liu, Zhou, Yang,
Lu, Cheng and Liu. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 20 October 2022

DOI 10.3389/fimmu.2022.1042983
Extracellular vesicles as
advanced therapeutics for
the resolution of organ
fibrosis: Current progress
and future perspectives

Ke Lv1, Yizhuo Wang1, Peng Lou1, Shuyun Liu1, Pingya Zhou1,
Li Yang2, Yanrong Lu1, Jingqiu Cheng1 and Jingping Liu1*

1National Health Commission (NHC) Key Laboratory of Transplant Engineering and Immunology,
Regenerative Medicine Research Center, Frontiers Science Center for Disease-related Molecular
Network, West China Hospital, Sichuan University, Chengdu, China, 2Department of
Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for
Gastrointestinal Cancer, West China Hospital, Sichuan University, Chengdu, China
Organ fibrosis is a serious health challenge worldwide, and its global incidence

and medical burden are increasing dramatically each year. Fibrosis can occur in

nearly all major organs and ultimately lead to organ dysfunction. However,

current clinical treatments cannot slow or reverse the progression of fibrosis to

end-stage organ failure, and thus advanced anti-fibrotic therapeutics are

urgently needed. As a type of naturally derived nanovesicle, native

extracellular vesicles (EVs) from multiple cell types (e.g., stem cells, immune

cells, and tissue cells) have been shown to alleviate organ fibrosis in many

preclinical models through multiple effective mechanisms, such as anti-

inflammation, pro-angiogenesis, inactivation of myofibroblasts, and

fibrinolysis of ECM components. Moreover, the therapeutic potency of native

EVs can be further enhanced by multiple engineering strategies, such as

genetic modifications, preconditionings, therapeutic reagent-loadings, and

combination with functional biomaterials. In this review, we briefly introduce

the pathology and current clinical treatments of organ fibrosis, discuss EV

biology and production strategies, and particularly focus on important studies

using native or engineered EVs as interventions to attenuate tissue fibrosis. This

review provides insights into the development and translation of EV-based

nanotherapies into clinical applications in the future.
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1 Introduction

Organ fibrosis is a serious and unsolved health problem

worldwide. The main pathological feature of fibrosis is the

abnormal formation and deposition of excessive extracellular

matrix (ECM), which eventually results in disrupted

architectural remodeling and progressive organ dysfunction.

Fibrosis can occur in nearly all major organs (Figure 1), such

as liver, heart, lung, and kidney, and it is attributed to ~45% of all

deaths in the world (1). For example, more than 800 million

patients were affected by chronic liver disease (liver fibrosis);

about 1.5% of global deaths were caused by chronic kidney

disease (CKD, renal fibrosis) in 2012 (2, 3). The mechanism of

fibrosis is extremely complicated, and many pathological factors,

such as infections, immune reactions, chemical insults, oxidative

stress, and hazardous agents, have been proved to be involved

with fibrosis (4). In recent decades, many single factor-targeted

treatments have been developed and have shown certain

beneficial effects in preclinical studies, but most of them fail to

achieve clinical approval. Thus, novel and advanced antifibrotic

therapeutics are desired in the clinic (5).

In recent years, extracellular vesicle (EV)-based therapies have

emerged as a potent strategy for resolving organ fibrosis. EVs are

nanoscale bilayer vesicles secreted by live cells that exert similar

functions as parental cells by delivering various types of cargoes,

such as lipids, proteins, nucleic acids, and metabolites (6). As a type

of naturally derived nanomaterial, EVs have multiple advantages,

such as abundant cell sources, intrinsic bioactive properties, low
Frontiers in Immunology 02
immunogenicity, rare toxicity, flexibility to modify, and ability to

cross biological barriers compared to synthetic materials (7). In

many preclinical studies, EV-based nanomedicines have been

shown to prevent multiple types of organ fibrosis through

complicated mechanisms, such as promoting the recovery of

damaged tissues, resolution of inflammation, inactivation of

myofibroblasts, and fibrinolysis of excess ECM components (5).

Although the results are encouraging, some important problems,

such as proper cell sources, EV engineering strategies, detailed

mechanisms, and possible limitations, remain elusive and need to

be comprehensively reviewed. This will be helpful for the

improvement and clinical translat ion of EV-based

antifibrotic therapies.

In this review, we briefly introduce the key pathology of

organ fibrosis as well as EV biology and production and

emphasize the important studies that are highly relevant to

using native or engineered EVs for decreasing organ fibrosis.

We also discuss the possible limitations in this field and provide

insights into developing advanced EV therapeutics for the

treatment of fibrotic diseases.
2 Pathology and current therapies
of fibrosis

Fibrosis, characterized by the activation of myofibroblasts,

excessive deposition of ECM, and inhibition of ECM

degradation, is a common adverse outcome of many
FIGURE 1

Pathological causes of organ fibrosis. Fibrosis can occur in most organs or tissues, such as the heart, liver, lung, kidney, tendon, intrauterine and
intervertebral disc, due to complicated pathological causes.
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etiological conditions after acute or chronic organ injury (8, 9).

A variety of cell types and signaling pathways synergistically

regulate the occurrence and progression of organ fibrosis

(Figure 2). In this section, we briefly review the critical cellular

events, signaling pathways and current clinical strategies for

fibrotic disease treatment.
2.1 Key cellular events of fibrosis

In the early phases after organ injury, persistent stress may

induce parenchymal cell death (e.g., necrosis, pyroptosis, and

ferroptosis) and trigger abnormal activation and infiltration of

multiple types of immune cells (e.g., macrophages) and

inflammation (10). Subsequently, cytokines and chemokines

secreted by these infi ltrated immune cells , such as

transforming growth factor-b (TGF-b), interleukins (ILs), and
platelet-derived growth factor (PDGF), further amplify the

severity of inflammation and organ damage (11). The

activation of myofibroblasts is the central event mediating

ECM synthesis and deposition in the later phases after organ

injury. Activated myofibroblasts can be identified by several
Frontiers in Immunology 03
marker proteins, such as a-smooth muscle actin (a-SMA) and

PDGFbR (12). However, the origins of myofibroblasts remain

incompletely understood, but multiple cell sources have been

reported (Figure 2A), such as resident fibroblasts, mesothelial

cells, circulating fibroblasts, epithelial cells, endothelial cells,

pericytes, vascular smooth muscle cells, and other specialized

tissue cells (e.g., hepatic stellate cells). Additionally, many

possible mechanisms, such as cell proliferation, epithelial to

mesenchymal transition (EMT), mesothelial to mesenchymal

transition (MMT) and endothelial to mesenchymal transition

(EndoMT), are involved in this process (5, 13).

The imbalance between ECM deposition and ECM

degradation is another vital event during fibrosis. Briefly, the

degradation of ECM proteins (e.g., collagens) is mainly

controlled by matrix metalloproteinase (MMP)-mediated

proteolysis but is antagonized by multiple tissue inhibitors of

matrix metalloproteinases (TIMPs), which are the endogenous

inhibitors of MMPs (14, 15). MMPs can be classified into

different subtypes, such as interstitial collagenases, gelatinases,

metalloelastases and membrane-type MMPs, according to their

enzyme-substrate specificity and subcellular locations (16). For

example, interstitial collagenases (e.g., MMP-1, MMP-13, and
A B

FIGURE 2

(A) Key cellular events of organ fibrosis. Organ damage can trigger infiltration of immune cells, followed by secretion of excessive cytokines/
chemokines to activate myofibroblasts. Myofibroblasts are originated from many cell types, such as epithelial cells, mesothelial cells and
endothelial cells, through EMT, MMT or EndoMT. Activated myofibroblasts promote organ ECM synthesis/deposition. (B) Key signaling pathway
of organ fibrosis. TGF-b participates in the molecular mechanism of fibrosis in Smad-dependent and Smad-independent manner such as MAPK
families. Moreover, TGF-b also interacts with other profibrotic pathways, such as the Wnt/b-catenin, Hedgehog and BMP-7 pathways. (TGF-b,
transforming growth factor-b; ILs, interleukins; PDGF, platelet-derived growth factor; EMT, epithelial to mesenchymal transition; MMT,
mesothelial to mesenchymal transition; EndoMT, endothelial to mesenchymal transition; MMP, matrix metalloproteinase; TIMPs, tissue inhibitors
of matrix metalloproteinases; PA, plasminogen activator; PAI, plasminogen activator-inhibitor 1; MAPK, mitogen-activated protein kinase; JNK,
JUN amino-terminal kinase; ERK, extracellular signal-regulated kinase; GSK-3b, glycogen synthase kinase-3b; FN, fibronectin).
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MMP-18) can proteolyze type I, II, III interstitial collagens, while

gelatinases (e.g., MMP-2 and MMP-9) can cleave the denatured

collagens and basement membrane ECM (16, 17). Conversely,

TIMPs can blunt ECM proteolysis by inhibiting the activity of

MMPs, and the upregulation of TIMPs is commonly associated

with an accumulation of ECM (18). In addition, the

dysregulation of serine proteases and their inhibitors, such as

urokinase plasminogen activator (uPA) and plasminogen

activator-inhibitor 1 (PAI-1), is also associated with abnormal

ECM remodeling and fibrosis (14).
2.2 Key signaling pathways of fibrosis

Although many possible pathways have been revealed in the

pathogenesis of organ fibrosis in recent decades, TGF-b has been

recognized as a master regulator of myofibroblast activation and

fibrotic processes (Figure 2B). TGF-b has three isoforms

(TGFb1-3) and can stimulate the biosynthesis and

accumulation of ECM components, such as collagen I and

fibronectin (FN), in epithelial cells and mesenchymal cells (19,

20). TGF-b1 can be secreted by many types of cells, such as

macrophages, lymphocytes, epithelial cells, fibroblasts, pericytes,

endothelial cells and platelets, at injured tissue sites (19). Once

activated after secretion, TGF-b1 binds to its receptor (TGF-bR)
and activates downstream profibrotic pathways in a Smad-

dependent (classical) or Smad-independent (nonclassical)

manner (21). In the Smad-dependent pathway, TGF-b1
induces phosphorylated Smad2/3 proteins, and then Smad4

binds to the Smad2/3 complex and translocates the complex

into the nucleus to induce the transcription of many essential

profibrotic genes, such as collagens, FN and PAI-1 (9). Smad7 is

a negative regulator of this process, which can compete with

Smad2/3 for binding to activated TGF-bR and thus block TGF-

b/Smad signaling (22). Moreover, TGF-b1 can also interact with

other Smad-independent pathways, such as the mitogen-

activated protein kinase (MAPK) family p38 MAPK, JUN

amino-terminal kinase (JNK) and extracellular signal-regulated

kinase (ERK) pathways. MAPKs further phosphorylate the

linker region of Smad2/3 and thus modulate Smad3

transcriptional activity (9).

Furthermore, TGF-b has potential crosstalks with other

profibrotic pathways, such as the Wnt/b-catenin, Jagged1/
Notch, Hedgehog, and bone morphogenic protein-7 (BMP-7)

pathways (23). For example, TGF-b activates Wnt signaling by

inhibiting glycogen synthase kinase-3b (GSK-3b), thereby

disrupting the stabilization of b-catenin or suppressing Wnt

inhibitors and enhancing the transcription of b-catenin-targeted
profibrotic genes (e.g., FN, PAI-1, Snail and MMP-7) in injured

kidneys (24, 25). TGF-b can also induce the transcription of

GLI2 (an activator of Hedgehog signaling), which subsequently

upregulates Hedgehog-targeted profibrotic gene (e.g., a-SMA)

expression (26–28). In contrast, BMP-7 activates Smad1/5/8,
Frontiers in Immunology 04
which can block the nuclear translocation of phosphorylated

receptor-Smad2/3 and thus inhibit TGF-b signaling (29). Due to

the complicated mechanisms of organ fibrosis, it can be

speculated that single pathway-targeted antifibrotic strategies

may not be efficient.
2.3 Current antifibrotic strategies

Since fibrosis is a long-term outcome of persistent organ

damage, it can be assumed that the resolution of fibrosis may be

achieved when the pathological causes of injuries are eliminated.

Based on previous studies of fibrogenesis, several therapeutic

strategies (Table 1) are proposed (30), such as immunoregulation,

degradation of ECM and elimination of myofibroblasts. Currently,

some potential targets or medicines for fibrosis in different organs

have been reported, and some of them have progressed to clinical

trials or clinical phases (Table 1). For example, pirfenidone and

nintedanib (NIN), two compounds with pleiotropic mechanisms of

action, are approved for the management of idiopathic pulmonary

fibrosis (IPF) due to their effects on slowing lung functional decline.

Pirfenidone may inhibit TGF-b, inflammatory cytokines (e.g.,

tumor necrosis factor-a, TNF-a) or oxidative stress, and NIN

may inhibit tyrosine kinase receptors such as PDGFR, vascular

endothelial growth factor receptor (VEGFR) and fibroblast growth

factor receptor (FGFR) (31). However, the two drugs cannot

prevent or reverse the existing organ fibrosis according to

physiological, histological, and radiological examination results

(31). Thus, more advanced antifibrotic treatments are urgently

required in the clinic.
3 Biological properties of EVs

EVs are a group of nanoscale bilayer vesicles and are widely

distributed in the cultured medium of almost all cell types and

biofluids, such as blood, urine, saliva, and breast milk (32).

Numerous evidence indicates that EVs are key mediators of cell-

to-cell or organ-to-organ communication since they can deliver

multiple types of bioactive cargoes to regulate the signaling of

the recipient cells under physiological or pathophysiological

conditions (33). In this section, we briefly introduce the

biological properties of EVs, such as biogenesis, uptake,

production, and stability.
3.1 EV biogenesis

The current classification of EVs is mainly based on their

cellular origin and/or biological function. According to their

sizes or biogenesis routes, EVs can be divided into many

subtypes, such as exosomes (~30-200 nm), microvesicles

(MVs, ~200-1000 nm) and apoptotic bodies (~800-5000 nm)
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(34, 35). Among these EV subtypes, exosomes and MVs are

frequently reported in most of the previous studies related to

fibrosis. Thus, we will focus on these two types of EVs in the

following sections (Figure 3). Briefly, the first step of exosome

biogenesis is that the plasma membrane is endocytosed to form

early endosomes, which then mature into late endosomes, also

known as multivesicular bodies (MVBs). The delimiting

membrane of MVBs can be invaginated to form intraluminal

vesicles (ILVs), followed by the endosomal sorting complex

required for transport (ESCRT)-dependent or ESCRT-

independent (tetraspanins related) steps. In the ESCRT-

dependent process, ESCRT-0 binds to the ubiquitination sites

of early endosomes, ESCRT-I and ESCRT-II induce the

formation of MVBs, and ESCRT-III promotes intraluminal

budding of endosomal vesicles and scissors ILVs into the

MVB lumen. The last step of exosome formation is the

binding of some MVBs to the cell membrane to release ILVs,

whereas other ILVs binds to lysosomes and are degraded (36).
Frontiers in Immunology 05
Unlike exosomes, MVs are mainly originated by outward

budding at the cell plasma membrane, which is regulated by

several rearrangements within the plasma membrane, such as

altered lipid/protein components and Ca2+ levels. Although

exosomes and MVs may have different biogenesis routes, they

still share some common pathways, such as ESCRT and the

conversion of ceramide from sphingomyelinas (37). However,

the detailed mechanisms of other EV subpopulations remain

elusive and need to be explored in future studies.
3.2 EV composition and uptake

EVs can participate in intracellular communication by

delivering multiple types of bioactive contents into recipient

cells (Figure 3). EVs are enriched in lipid contents, such as

cholesterol, sphingomyelin, and hexosylceramides (38), which

contribute to the in vivo stability of EVs. Due to their biogenesis
TABLE 1 Current anti-fibrotic strategies and drugs.

Strategies Drugs Classes Targets/
mechanisms

Target diseases Phase

Myofibroblasts and the
TGF-b pathway

Pirfenidone stress-activated kinases inhibitor TGF-b, PDGF,
SDF-1a

IPF, pulmonary fibrosis, hepatic fibrosis, renal fibrosis,
systemic sclerosis, keloid

Clinic

Nintedanib
(BIBF 1120)

tyrosine kinase inhibitor TGF-b, PDGF,
VEGF, FGF

IPF, systemic sclerosis Clinic

Imatinib
mesylate
(Glivec)

tyrosine kinase inhibitor PDGF IPF, pulmonary fibrosis, hepatic fibrosis, nephrogenic
systemic fibrosis, systemic sclerosis

1/2/3

Pamrevlumab
(FG-3019)

human recombinant monoclonal
antibody

CTGF IPF 2/3

Macitentan endothelin receptor antagonist endothelin-1 IPF 2

BMS-986263 etinoid-conjugated lipid nanoparticle
containing HSP47 siRNA

HSP 47 hepatic fibrosis, cirrhosis, NASH 1/2

ECM STX-100 specific monoclonal antibody avb6 integrin IPF, chronic allograft dysfunction 2

Immunomodulators TD139 thio-digalactoside inhibitor galectin-3 IPF 1/2

Belapectin (GR-
MD-02)

Galectin inhibitor galectin-3 NASH, cirrhosis 2

PRM-151 monocyte development inhibitor Pentraxin 2 IPF, primary myelofibrosis, post-essential
thrombocythemia myelofibrosis

1/2/3

Spironolactone aldosterone antagonists Anti-
inflammatory

myocardial fibrosis, endomyocardial fibrosis, hepatic
fibrosis, cirrhosis, renal fibrosis, ESRD

2/3/4

Lenabasum cannabinoid type 2 receptor (CB2)
agonist

Anti-
inflammatory

cystic fibrosis 2

Digitoxin cardiac glycosides IL-18/NF-kB cystic fibrosis 2

Pentoxifylline anticytokine TNF-a head and neck fibrosis, radiation injuries, cirrhosis,
NASH, CKD

1/2/3/4

Antioxidants N-acetylcysteine
(NAC)

antioxidant GSH prodrug Oxidative stress IPF, pulmonary fibrosis, cystic fibrosis, non-cystic
fibrosis, cirrhosis, ESRD

1/2/3/4

Others Aramchol inhibitors of de novo lipogenesis Hepatic SCD1 hepatic fibrosis, NASH 2/3

Emricasan
(IDN-6556)

caspase inhibitor Apoptosis hepatic fibrosis, cirrhosis, NASH 2
frontie
TGF-b, transforming growth factor-b; PDGF, platelet-derived growth factor; SDF-1a, stromal cell derived factor-1a; IPF, idiopathic pulmonary fibrosis; VEGF, vascular endothelial growth
factor; FGF, fibroblast growth factor; CTGF, connective tissue growth factor; HSP47, heat shock protein 47; NASH, nonalcoholic steatohepatitis; ESRD, end stage renal disease; TNF-a,
tumor necrosis factor-a; CKD, chronic kidney disease; SCD1, Stearoyl-CoA desaturase 1.
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routes, EVs carry many proteins originated from the cell plasma

membrane, cytoskeleton and cytoplasm, as well as other proteins

involved in EV sorting and secretion, such as tetraspanins and

proteins from the ESCRT-dependent pathway (39). In addition,

EVs also contain large amounts of RNAs and DNAs, among

which microRNAs (miRNAs) are the most abundantly studied

to explain the effective mechanisms of EVs. Other types of

RNAs, such as mRNAs, long noncoding RNAs (lncRNAs),

tRNAs, Y-RNAs and ribosomal RNAs, have also been

observed in EVs (40, 41). Interestingly, we and others had

found the appearance of mitochondrial DNA (mtDNA),

electron transport chain proteins and even fragmented

mitochondria in EVs (42).

As a result, the composition of proteins and lipids on the

surface of EVs may influence the efficiency of cell uptake

(Figure 3). In brief, EVs can be taken up by target cells via

direct membrane fusion or endocytosis, which has been well

reviewed (43). Direct fusion relies on the lipid composition of

EVs and target cells, and the fusion efficacy of EVs to the plasma

membrane may be enhanced by acidic pH in the extracellular

environment (44). In the case of endocytosis, EVs are docked by

interacting with proteins, glycoproteins or lipids exposed on the

cell membrane and then internalized by recipient cells (45).

Overall, the surface signature of EVs can influence the pattern of

EV uptake in target cells.
Frontiers in Immunology 06
3.3 EV isolation and characterization

EVs can be isolated from various types of samples (e.g.,

conditioned medium (CM) and body fluids) using different

methods, such as ultracentrifugation (UC), density gradient

ultracentrifugation, size-exclusive chromatography (SEC),

immunoaffinity, ultrafiltration, coprecipitation (polyethylene

glycol-based) and newly developed microfluidics (46), and

each method has its advantages and shortcomings. For

example, UC, including differential centrifugation and sucrose

density gradient ultracentrifugation, remains the most widely

used method which relies on the size and/or density of EVs.

However, the production efficiency of UC is limited by long time

consumption, operator dependence and rupture of EVs (47, 48).

Methods based on EV size, such as SEC, can improve the purity

and stability of EVs, while EV yield is limited (49, 50). The

immunoaffinity method can selectively enrich EVs with high

purity, but it is unsuitable for large volume samples due to its

high cost (51). For future clinical applications, a large amount of

therapeutic EVs with high purity is needed, and thus, a major

issue in this field is how to overcome the current problems of

high cost and low yield for larger-scale production of EVs.

According to the minimal information for studies of

extracellular vesicles (MISEV) guidelines, isolated EVs should

be characterized at least by morphology, particle size and marker
FIGURE 3

Biogenesis and uptake of EVs. During exosome biogenesis, the plasma membrane is endocytosed to form early endosomes and then matures
into MVBs. The delimiting membrane of MVBs invaginates from the ILVs. Finally, some MVBs bind to the cell membrane to release ILVs. MVs are
mainly originated by outward budding at the cell plasma membrane. For cellular uptake, EVs can be taken up by recipient cells via direct
membrane fusion or endocytosis by interacting with receptors on the surface. (Extracellular vesicles: EVs, microvesicles: MVs, multivesicular
body: MVB, intraluminal vesicles: ILV, microRNA: miRNAs, long noncoding RNA: lncRNA, mitochondrial DNA: mtDNA).
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proteins (52, 53). The morphology of EVs is commonly observed

using transmission electron microscopy or scanning electron

microscopy (53). The particle sizes and numbers of EVs can be

measured using nanoparticle analysis technology or dynamic

light scattering (54, 55). Some key proteins involved in EV

biogenesis or function, such as tetraspanins (e.g., CD9, CD63,

CD81, CD82) or Alix, heat shock protein70 (HSP70), TSG101,

and syntenin-1 associated with ESCRT, have been proposed as

common EV markers (56, 57). However, the truth is that there

are no specific markers for the identification of all EV subtypes

until now (39). More importantly, for therapeutic purposes, the

possible biosafety issues of EVs should be carefully considered,

since it has been reported that some EVs from immortalized cell

lines may carry oncogenic materials or endotoxins, while some

EVs from infected cells may carry viral-derived proteins (34, 58).

Thus, it is necessary to establish standardized and reproductive

operating procedures, quality control criteria, and strictly sterile

conditions during EV production (59).
3.4 Large-scale production and
EV stability

For future clinical translation, a good manufacturing

practice (GMP)-compliant protocol for EV production should

be developed. The manufacturing of EV products can be briefly

divided into upstream and downstream processings and

subsequent quality control (60). In upstream processing, the

large-scale expansion of EV-producing cells mainly depends on

bioreactors, such as hollow fiber and stirred suspension

bioreactors (using microcarriers) (61). Hollow fibers culture

the cells in the hollow and semipermeable fibers and has less

risk of contamination, while microcarriers are tiny beads with

many varying features and require changing of culture media

frequently (62). A recent study reported a turbulence strategy

integrated into the cell culture in a stirred tank incompatible

with a GMP bioreactor, which could obtain ~1013 EV particles

from the supernatant of the one-liter bioreactor (63). In

downstream processing, traditional isolation methods are not

suitable for large-volume samples. Among the different methods,

tangential flow filtration (TFF) may be one of the most powerful

tools for industrial-scale EV manufacture (64) since it has a

superior yield and bioactivity of isolated EVs compared to UC

(65). Furthermore, TFF can be combined with other isolation

approaches, such as SEC, to achieve higher scalability and

reproducibility (66).

Stability is an important parameter for biological reagents,

and the lipid bilayer structure of EVs provides unique protection

to their bioactive cargoes (67). Some storage techniques that can

long-term preserve EV bioactivities, such as freezing,

lyophilization and spray-drying, have also been developed
Frontiers in Immunology 07
(68). For example, EVs suspended in buffered saline solution

are stable for up to 2 years at -80°C without significant changes

in properties (69), and the bioactivities of lyophilized EVs are

similar to those of frozen EVs even stored at room temperature

for 4 weeks (70). Therefore, the stability of EVs makes them ideal

therapeutics in future clinical applications.
4 Therapeutic potential of
native EVs

In recent decades, increasing numbers of studies have

reported the potential of native EVs in preventing fibrosis via

multiple mechanisms (Supplementary Table 1). Here, we briefly

introduce the important studies regarding the anti-fibrotic

effects (in major organs) of native EVs from various cell

sources, such as stem cells, immune cells, tissue cells and

blood (Figure 4).
4.1 Cardiac fibrosis

Cardiovascular disease (CVD) is one of the leading causes of

death globally, and more than 17 million deaths worldwide are

due to CVD per year (109, 110). Cardiac fibrosis can occur after

almost all types of heart diseases, such as myocardial infarction

(MI), hypertrophic cardiomyopathy (HCM), dilated

cardiomyopathy (DCM), aortic stenosis (AOS), and diabetic

cardiomyopathy (111, 112). Although some potential

medicines, such as angiotensin (AT)-converting enzyme and

angiotensin II receptor antagonists, b-blockers, endothelin

antagonists, and statins have been used in the clinic to protect

cardiac function, their direct antifibrotic efficacy remains

debated (113, 114). Thus, new and advanced antifibrotic

therapies are urgently needed.

Increasing evidence shows that native EVs isolated from

stem cells may have the potential to prevent cardiac fibrosis

(Figure 4). Mesenchymal stem cells (MSCs) are a type of adult

stem cell with immunoregulatory and tissue repair potentials

that can be isolated from multiple tissue types, such as bone

marrow (BMSCs), umbilical cord tissue (ucMSCs) and adipose

tissue (ADMSCs) (115). The possible antifibrotic effects of MSC-

derived EVs (MSC-EVs) have been reported in multiple models

of cardiac damage (such as hypertension and MI), and the

underlying protective mechanism is linked to the inhibition of

EMT (miR-200, etc.), anti-apoptosis, induction of M2

macrophages or pro-angiogenesis (Supplementary Table 1)

(71, 72, 116, 117). Induced pluripotent stem cells (iPSCs) are a

new source of embryonic-like stem cells obtained by

reprogramming of somatic cells (e.g., skin fibroblasts), which
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can further differentiate into many different cell types. iPSC-

derived EVs reduced ECM deposition in the aortas of aged mice

by inhibiting MMPs and elastase activity while enhancing the

endothelial nitric oxide synthase (eNOS) pathway (73). Another

therapeutic strategy is using EVs produced by iPSC-derived

cardiac cells. For instance, iPSCs were first differentiated into

contractile cardiomyocytes (iCMs), then iCM-derived EVs

reduced the fibrotic areas of the left ventricle (LV) by

enhancing autophagic flux after ischemic heart injury (74).

EVs isolated from human embryonic stem cell (ESC)-derived

cardiovascular progenitor cells recovered heart function (LV

ejection fraction values/LV systolic dimensions) and reduced

fibrotic areas after MI by promoting angiogenesis and inhibiting

cardiomyocyte death (75).

In addition, native EVs from heart tissue cells also displayed

certain antifibrotic effects in cardiac injury models (Figure 4;

Supplementary Table 1) (118). The cardiosphere is a cluster of

endogenous cardiac stem cells that forms when they are cloned

in suspension, and cardiosphere-derived cells (CDCs) have been

shown to have regenerative potential in cardiac injuries such as

MI (119). CDC-EV treatment was shown to reduce the levels of

cardiac hypertrophy, inflammation, and interstitial cardiac

fibrosis in an Ang II-induced hypertension model by

delivering Y RNA fragments to induce IL-10 expression (76).
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DCM is a serious pediatric cardiomyopathy, and ~50~60% of

children with DCM will die in 5 years (120). In a swine model of

DCM, CDC-EV treatment decreased myocardial fibrosis by

shedding proangiogenic and cardioprotective miR-146a-5p to

suppress inflammation (77). Regeneration-associated cells

(RACs) are a group of heterogeneous cells (e.g., endothelial

progenitor cells, M2 macrophages and regulatory T cells) under

vasculogenic conditions after heart injury (121). RACs-derived

EVs could reduce interstitial fibrosis after myocardial ischemic

injury by shedding functional miRNAs (e.g., miR-150-5p, miR-

195 and miR-142-3p) to promote angiogenesis and

cardiomyogenesis while reducing the inflammatory response

(78). Altogether, these findings indicate that native EVs from

multiple cell types may mitigate cardiac fibrosis via

immunological regulation, pro-angiogenesis or suppression of

cell death.
4.2 Lung fibrosis

Chronic lung diseases are highly associated with progressive

lung fibrosis, resulting in poor quality of life and high mortality

of patients (122). For example, IPF, an aggressive lung disease

with an uncertain cause, has a poor prognosis with a median
FIGURE 4

Therapeutic potentials of native EVs. Native EVs isolated from multiple cell sources (e.g., stem cells, immune cells, tissue cells, and plasma) have
exerted therapeutic efficacy on the alleviation of fibrosis in some major organs (e.g., heart, lung, liver, and kidney) and other tissues (e.g., IUA,
IDD, and urethral stricture), and their therapeutic role may be due to multiple mechanisms, such as anti-inflammation, EMT inactivation, ECM
degradation, and pro-angiogenesis. (Mesenchymal stem cells, MSCs; iPSCs, induced pluripotent stem cells; natural killer, NK; bronchial epithelial
cell, BECs; tubular epithelial cell, TECs; epithelial to mesenchymal transition, EMT; extracellular matrix, ECM; intrauterine adhesion, IUA;
intervertebral disc degeneration, IDD).
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survival time of ~2-5 years after diagnosis (123) and ∼3 million

patients worldwide suffer from IPF (124). However, the

therapeutic efficacies of current treatments are not ideal in the

clinic (125). For example, IPF patients receiving pirfenidone still

have a high mortality rate and uncertain survival times (126).

Therefore, advanced treatments for the resolution of lung

fibrosis are also needed.

Native EVs from stem cells (e.g., MSCs) have shown

therapeutic potency in preclinical models of lung injury, and

immunoregulation may be one of the main mechanisms

involved (Supplementary Table 1). For example, BMSC-EV

treatment attenuated profibrotic factor (TGF-b1, a-SMA,

collagen I/III) expressions as well as fibrotic areas after

lipopolysaccharide-induced acute lung injury, and this effect

may be due to the inhibitory role of miRNAs (miR-23a-3p

and miR-182-5p) on the NF-kB/Hedgehog pathways (79). In a

silicosis model, ADMSC-EV intervention reduced the collagen

contents and F4/80+ macrophage numbers and suppressed NF-

kB/TLR activation in lungs by delivering functional miRNAs

(e.g., miR-146b) (80). In addition, the direct impact of MSC-EVs

on profibrotic pathways had been reported. In a bleomycin

(BLM)-induced IPF model, hucMSC-EV treatment inhibited

myofibroblast differentiation and collagen deposition by

delivering miR-21-5p/miR-23-3p to suppress the TGF-b
pathway (81). BMSC-EV treatments also ameliorated fibroblast

activation and a-SMA/collagen I expression in a BLM model,

and miR-186 of EVs may inhibit SRY-related HMG box

transcription factor 4 (SOX4), a regulator of lung development

and monocyte infiltration (82, 83).

In addition, EVs from healthy lung tissue cells may be a

possible therapy for the treatment of lung fibrosis

(Supplementary Table 1). Airway epithelial cells (AECs) play

regulatory roles in the development of lung fibrosis, and

damaged bronchial epithelial cell (HBEC)-derived EVs can

induce myofibroblast differentiation associated with airway

remodeling (127). However, healthy AEC-EVs may have the

opposite anti‐fibrotic effects. A recent study found that EVs from

healthy HBECs could reduce TGF-b-induced myofibroblast

differentiation in vitro, and intratracheal administration of

these EVs promoted collagen degradation in BLM-induced IPF

by inhibiting the crosstalks between the TGF-b and Wnt

pathways (84). Lung spheroid cells (LSCs), an intrinsic source

of lung stem cells, have been shown to mitigate fibrosis

development in a rat BLM model (128). Similarly, human

LSC-derived EVs (hLSC-EVs) also inhibited myofibroblast

proliferation and collagen production by shedding miRNAs

(miR-30a, miR-99 and let-7), and the inhalation of these EVs

decreased BLM- or silica-induced rat lung fibrosis (85),

suggesting that inhalation of EVs is a promising route for

treating lung fibrosis. Altogether, these reports suggest that

stem cells and healthy lung tissue cells are potential EV

sources for mitigating lung fibrosis with inflammation and

myofibroblasts as the possible targets.
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4.3 Liver fibrosis

Chronic liver diseases are also a major health issue globally,

with more than 800 million patients affected and ~2 million

deaths per year (2). Liver fibrosis can be triggered by many

causes, such as alcohol, nonalcoholic hepatic steatohepatitis

(NASH), and biliary atresia, and the fibrosis is associated with

cirrhosis, liver failure and portal hypertension (11). Current

clinical therapies for patients with chronic liver diseases are

including the removal of the pathological cause, management of

the complications, and final liver transplantation (11, 129).

However, these strategies are not efficient due to the continued

growth of cirrhosis and the paucity of available donor livers

(130). Thus, the development of novel treatments to lighten the

burden of patients with liver fibrosis is necessary.

Native EVs from MSCs and iPSCs are also major players in

studies related to liver fibrosis therapy (Supplementary Table 1).

For instance, human amnion MSC-derived EV treatment reduced

a-SMA expression and fibrotic areas in a rat CCl4-induced liver

fibrosis model by inhibiting Kupffer cells and hepatic stellate cells

(HSCs) activations (86). Chemokines, such as CXC chemokine

ligands (CXCLs), are involved in the activation of HSCs through

autocrine and fibrogenesis (131). Allogenic ADMSC-EVs reduced

the CCl4-induced collagen volume fraction and a-SMA/collagen

I/III expression by transferring miR-150-5p to inhibit CXCL1

signaling in a mouse CCl4 model (87). Chronic graft-versus-host

disease (cGVHD) is a common complication of allogeneic

hematopoietic stem cell transplantation and is highly associated

with major organ damage, such as liver damage (132, 133). In

cGVHD mice, hBMSC-EVs alleviated the degree of liver fibrosis

and prolonged animal survival by inducing IL-10+ regulatory cells

and inhibiting IL-17+ pathogenic T cells (88). In another study,

human skin fibroblast-derived iPSC-secreted EVs decreased HSC

activation and liver fibrotic areas by shuttling functional miRNAs

(e.g., miR-92a-3p) in a CCl4- or bile duct ligation-induced mouse

model (89).

In addition, EVs from liver or other tissue-derived stem cells

also showed potential anti-fibrotic effects (Supplementary

Table 1). Human liver stem cells (hLSCs) are a stem cell

population derived from human adult liver cells that exhibit

antifibrotic effects in a murine model of NASH (134). A recent

study found that hLSC-derived EVs could attenuate plasma

alanine aminotransferase (ALT) and liver fibrosis in a murine

model of NASH by delivering miRNAs (miR-29a, miR-30a and

let-7) to inhibit collagen I and Snail expression (90). Tonsils are

an alternative source of MSCs since tonsil-derived MSCs (T-

MSCs) can be readily obtained from surgically removed tonsil

tissues. T-MSC-EV treatment reduced the expression of a-SMA,

TGF-b, Vimentin and connective tissue growth factor (CTGF)

in the liver of the CCl4 model by delivering miR-486-5p to

inhibit Hedgehog signaling (91).

Interestingly, EVs from immune cells or healthy liver cells

may have a potential role in preventing liver fibrosis
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(Supplementary Table 1). As a type of innate immune cell,

natural killer (NK) cells are important regulators of HSC

activation (135, 136). NK-cell line (NK-92MI)-derived EVs

reduce TGF-b-induced HSC activation and a-SMA/collagen

expression by transferring miR-223 to inhibit the autophagy-

related (ATG7) pathway (92). EVs from primary human

hepatocytes could also attenuate CCl4-induced hepatocyte

injury and profibrotic factor (a-SMA, collagen and CTGF)

expression (93). In addition to eukaryotes, EVs isolated from

prokaryotes may also have antifibrotic effects. Akkermansia

muciniphila is a probiotic with beneficial effects on the host

metabolic system and immune response. In a high-fat diet

(HFD)- and CCl4-induced mouse liver injury model,

probiotic-derived EVs reduced liver functional damage and

fibrotic factor (TGF-b, a-SMA and collagen I) expressions by

normalizing gut microbiota composition disorders (94).
4.4 Renal fibrosis

Chronic kidney disease (CKD) is a huge public health issue

that attributed to ~1.5% of deaths worldwide in 2012 (3). Renal

fibrosis is the key feature of CKD and the leading cause of the end-

stage renal disease (ESRD) and renal failure (137). Current clinical

CKD therapeutic strategies mainly focus on controlling ongoing

nephron injury, hyperfiltration and renal complications. Once

CKD patients progress to ESRD, the only treatment is kidney

replacement therapy or kidney transplantation (138). Thus, more

efficient therapeutics to prevent renal fibrosis are needed.

As shown in Supplementary Table 1, EVs isolated from stem

cells remain as a major candidate for antifibrotic therapy in

kidneys (139). For example, hBMSC-EV treatment reduced a-
SMA and ECM (collagen I) expressions in a mouse aristolochic

acid nephropathy (AAN) model (95). Yes-associated protein

(YAP) plays a vital role in fibrogenesis by retaining activated

Smad2/3 in the cell nucleus (140). EVs from hucMSCs alleviated

interstitial fibrosis by promoting YAP degradation in a rat UUO

model (96). Autophagy is a conserved cellular process that

removes unnecessary or damaged components, while it may be

impaired in the diabetic nephropathy (DN) state (141). In a rat

DN model, BMSC-EVs were found to reduce collagen

accumulation by inducing mTOR-mediated autophagy (97).

Importantly, the antifibrotic effects of MSC-EVs can be

replicated in large animal models. In a porcine model of

metabolic syndrome (MetS), the systemic administration of

ADMSC-EVs restored kidney function and reduced

tubulointerstitial fibrosis by IL-10-dependent immunoregulation

(98). Additionally, intrarenal injection of ADMSC-EVs decreased

ECM expression in another swine MetS model by inducing

regulatory T cells (99). These findings suggest that in situ
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administration of EVs may be an efficient way to improve their

therapeutic potency.

Renovascular disease (RVD), represented by the narrowing

of one or both renal arteries, can cause high blood pressure and

renal dysfunction in patients. In a swine atherosclerotic RVD

model, intrarenal-injected ADMSC-EVs decreased interstitial

fibrosis while improving the glomerular filtration rate (GFR)

and peritubular capillary density by shedding some vasculo-

protective genes (e.g., HGF and VEGFR) (100). In addition, EVs

isolated from other stem cells may also have therapeutic effects.

For example, mouse ESC-derived EVs reduced renal dysfunction

(creatinine and blood urea nitrogen) and a-SMA expression by

promoting tubular epithelial cell (TEC) proliferation and

angiogenesis in a mouse model of ischemic acute kidney

injury (AKI) (101). In a mouse AAN, hLSC-derived EVs

reduced renal interstitial fibrosis via miR-29b-mediated

inhibition of the Wnt/b-catenin pathway (102).

In addition to stem cells, EVs from healthy kidney tissue

cells may also have an antifibrotic role (Supplementary Table 1).

For example, in a rat ischemic AKI model, renal tubular cell-

derived EV treatment reduced collagen I/II/IV/V deposition, a-
SMA/FN expression and neutrophil infiltration by shuttling

mRNAs encoding cytoplasmic ribosomal proteins (Rps6 and

Rps13) (103). Interestingly, EVs isolated from the plasma of MI

could inhibit the apoptosis and autophagy of TECs (NRK-52E)

in vitro, and decrease the fibrotic area in a contrast-induced

nephropathy (CIN) model by delivering miR-1-3p to target

ATG13 and activate the AKT pathway (104). These studies

suggest the potential of native EVs in attenuating renal fibrosis

through a variety of mechanisms.
4.5 Other organ fibrosis

In addition to these major organs, many other organs or

tissues can also undergo fibrosis (Figure 4). For example, in the

reproductive system, intrauterine adhesion (IUA) is a serious

fibrotic disease due to disordered repair after endometrial basal

layer damage. Rabbit BMSC-derived EV treatment inhibited

endometrial fibrosis and the TGF-b1/Smad2 pathway in a

rabbit model of endometrial injury (105). Subretinal fibrosis is

a common complication of macular neovascularization and

causes irreversible loss of central vision (142). hucMSC-EV

treatment was found to suppress the EMT of retinal pigment

epithelial cells in vitro and reduce laser-induced subretinal

fibrosis in mice by shedding miR-27-3p to inhibit the

homeobox protein Hox-C6 (HOXC6) (106). Intervertebral disc

degeneration (IDD) is a major cause of chronic discogenic back

pain/sciatica which results in poor quality of life in patients.

Fibrosis progression of nucleus pulposus (NP) cells plays a vital
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role in the pathology of IDD. Rat BMSC-EVs reduced TNF-a-
induced ECM (collagen I) expression in NP cells by inhibiting

proapoptotic RASSF5 signaling via miR-532-5p (107). Urethral

stricture (abnormal narrowing of the urethra) is a complication

of urological surgery and is caused by fibrosis of the urethral

epithelium due to damage or infection. In a rat urethral injury

model, hucMSC-EV treatment inhibited myofibroblast

activation by transferring anti-inflammatory miR-146a (108).

These reports indicate that MSC-EVs may exert antifibrotic

effects in many types of organs by inhibiting EMT,

inflammation or apoptosis.
5 Engineering strategies of EV-based
anti-fibrotic therapies

Although native EVs isolated from multiple cell types have

shown certain antifibrotic effects, their therapeutic efficiency

may be restricted by some intrinsic limitations, such as short

half-life, low specific organ retention, possible off-target effects,

and insufficient cell sources. Therefore, the development of

engineered EVs may resolve these issues and enhance their

therapeutic potency (143). Abundant evidence shows that

native EVs can be re-engineered by biological or chemical

methods and serve as advanced nanomedicines for the
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resolution of organ fibrosis. In the following sections, we

briefly discuss the current modification strategies and

therapeutic outcomes of engineered EVs in different organ

fibrosis models (Figure 5 and Table 2).
5.1 Engineered EVs as anti-fibrotic
agents

5.1.1 Genetic modifications
Genetic engineering of parental cells is a common strategy to

produce functional EVs. Engineered EVs with enhanced

therapeutic properties or organ targeting efficacy can be

obtained from donor cells with genetic modifications, such as

gene or protein (e.g., miRNAs and cytokines) overexpression or

knockdown (7). Vector transfection and transduction are the

main methods used for the genetic engineering of EV donor cells

(66). For example, mouse ADMSC-derived EVs were engineered

to overexpress miRNA-181-5p, a regulator of hepatic progenitor

cell differentiation and autophagy (144). As a result, these

engineered EVs had high potency to rescue liver function and

reduce ECM (collagen I and FN) and vimentin expression in a

CCl4-induced liver fibrosis model (144). miRNA-21a-5p can

synchronize with NF-kB activation and it is abundant in

fibrotic tissues. Engineered hucMSC-EVs with antagomir-21a-

5p showed higher potential in inhibiting fibroblast activation in
FIGURE 5

Engineering strategies of EV-based anti-fibrotic therapies. Native EVs can be re-engineered by multiple strategies, such as genetic modifications,
preconditions, loading with therapeutic reagents, and incorporation with functional materials. Engineered EVs can exhibit additional beneficial
effects, such as enhanced drug payload, longer half-life, better organ targeting capability and bioavailability, and serve as advanced
nanomedicines for the resolution of organ fibrosis. (Antisense oligonucleotide: ASO, pneumatic microextrusion: PME).
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TABLE 2 Therapeutic effects of engineered EVs.

Modifications Fibrotic
models

EV
origins

Isolation
methods

Reengineering routes Therapeutic
effects

Possible mechanisms ref.

Genetic
engineering

CCl4 mice
ADMSC

ExoQuick-TC
Kit

Transfection to overexpress miRNA-
181-5p

In vivo:
AST, ALT, TB↓

COL I,
Vimentin↓

Inflammation↓
In vitro:

COL I, COL III,
FN, a-SMA,
Vimentin↓

Inhibiting the apoptosis pathway (144)

tendon
adhesion

hucMSC UC Using antagonist to underexpress miR-
21a-3p

In vivo:
Tendon
adhesion↓

a-SMA, COL
III↓

In vitro:
Fibroblast

proliferation↓
a-SMA, COL

III↓

Inhibiting NF-kB activity (145)

UUO human
ADMSC

UC Lentiviral transfection to overexpress
GDNF

In vivo:
Interstitial area↓

Perfused
capillaries↑
a-SMA↓
In vitro:

Migration↑
Tube formation↑

Pro-angiogenesis (146)

MI hucMSC Total
Exosome
Isolation
reagent

Using CRISPR/Cas9 to silence b-2
microglobulin

In vivo:
Fibrotic area↓

Preventing the immune rejection (147)

UUO Primary
mouse
satellite
cells

UC Using Lamp2b fused with RVG In vivo:
a-SMA, COL
1A1, COL 4A1,
Vimentin, FN↓

myoD,
myogenin,
eMyHC↑

Downregulation of TGF-b
pathway

(148)

Delivery vehicle CCl4 human
BMSC

UC Carrying siRNA or ASO targeting
STAT3

In vivo:
a-SMA, COL I,
Vimentin, FN,

Col 1a1↓

Anti-inflammatory (149)

Adriamycin RAW
264.7

centrifugation Delivery DEX In vivo:
Interstitial
fibrosis↓

Anti-inflammation (150)

Precondition MI mice
BMSC

UC Hypoxia condition (0.5% O2) and
culture for 24 h

In vivo:
Cardiac
function↑

Fibrotic scar
size↓

Delivery of anti-apoptosis miR-
210

(151)

Urethral
stricture

hucMSC UC Pretreatment with 10ng/mL TNF-a for
12h

In vivo:
a-SMA↓

Collagen fibers↓
In vitro:
Fibroblast
activation↓

a-SMA, COL I,
COL III↓

IL-6, IL-1b↓

Delivery anti-inflammatory miR‐
146a

(108)

(Continued)
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TABLE 2 Continued

Modifications Fibrotic
models

EV
origins

Isolation
methods

Reengineering routes Therapeutic
effects

Possible mechanisms ref.

Sulfate-
Induced Colitis

mice
BMSC

Ultrafiltration Pretreatment with IL-1b (25 ng/mL),
IL-6(20 ng/mL) and TNF-a (20 ng/

mL) for 24h

In vivo:
Collagen

deposition↓
Necrotic mucosal

surface↓

Anti-inflammatory (152)

CCL4 RAW264.7 sequential
centrifugation

Pretreatment with 100ng/mL RLN for
24h

In vivo:
Serum AST,

ALT↓
Hepatic

hydroxyproline↓
a-SMA↓
In vitro:

a-SMA, COL Ib↓

Anti-inflammatory (153)

Material
encapsulation

Ischemic AKI mice
BMSC

UC KMP2 hydrogel to release EVs In vivo:
BUN, CREA↓

NGAL↓
a-SMA, FN↓
Inflammation↓

Renal
microvascular

injury↓

Decreasing cell apoptosis/
inflammation and improving
microvascular endothelial cell

regeneration

(154)

Thioacetamide
induce chronic
liver injury

human
ESC

UC EVs embedded with a clickable PEG In vivo:
Hepatoprotective

effects↑
COL I, a-SMA↓
MMP-9, MMP-

13↑

(155)

MI MSC ultrafiltration Seeding EVs in fibrin scaffold In vivo:
Infarct size↓
LV wall↑

Viable cardiac
tissue↑

Promoting endogenous
angiomyogenesis

(156)

Combination partial
nephrectomy

hucMSC UC A hybrid scaffold of PME and PDRN
combined with MSC-EVs primed with
20 ng/mL IFN-g and TNF-a for 72h

In vivo:
CREA, BUN↓

GFR↑
a-SMA,
Vimentin,
Snail1↓

IL-1RA, TNF-a↓
IL-10↑
In vitro:

N-Cadherin, FN↓

(157)

BLM L-929 UC Hybrid nanovesicles to delivery NIN In vivo:
Pulmonary
function↑
Collagen

deposition↓
a-SMA, MMP-7,

TGF-b↓

Diminishing macrophage-induced
inflammatory response

(158)

Sulfate-
Induced Colitis

Human
dental
pulp
MSCs

UC HIF-1a overexpression and TNF-a (10
ng/mL), IL-1b (10 ng/mL) and IFN-g

(50 ng/mL) pretreatment

In vivo:
Fibrillar collagen
proportion↓
In vitro:

a-SMA, COL
1a↓

(159)

GDNF, glial cell line-derived neurotrophic factor; CRISPR/Cas9, clustered regularly interspaced short palindromic repeats/CRISPR-associated endonuclease; RVG, rabies viral glycoprotein
peptide; ASO, antisense oligonucleotide; DEX, dexamethasone;TNF-a, tumor necrosis factor-a; RLN, relaxin; PEG, polyethylene glycol; PME, pneumatic microextrusion; PDRN,
polydeoxyribonucleotide; IFN-g, Interferon-g; NIN, nintedanib.
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vitro and a-SMA and collagen III expression in a rat tendon

adhesion model than native EVs (145).

EVs can also be engineered with therapeutic proteins (e.g.,

cytokines). Glial cell line-derived neurotrophic factor (GDNF) is

a member of the TGF-b superfamily and plays a vital role in

renal morphogenesis and angiogenesis (160). In a UUO renal

fibrosis model, GDNF-overexpressing hADMSC-EVs exhibited

higher potency to reduce peritubular capillary rarefaction and

renal fibrosis score/a-SMA levels than native EVs (146).

Disruption of the human leukocyte antigen (HLA) light chain

b2-microglobulin (B2 M) gene may disable the function of HLA-

I molecules and thus prevent hucMSC-mediated immune

rejection (161). hucMSCs with B2 M deletion (B2 M-

hucMSCs) were generated using a CRISPR/Cas9 method, and

these modified EVs were more efficient in reducing fibrotic areas

and restoring cardiac function than native EVs in a rat model of

MI (147).

Furthermore, the organ targeting capability of native EVs

can be improved by genetic modifications. Fusion of targeting

ligands (e.g., peptides) into EVmembrane proteins (e.g., Lamp2b

and CD63) is a common strategy to produce EVs with specific

cell- or tissue-targeting ability (162). For example, a recent study

showed that engineered mouse satellite cell-derived EVs using

Lamp2b fused with a rabies viral glycoprotein peptide (RVG)

had higher renal targeting efficacy. In a UUO model, delivery of

miR-29 (a potent inhibitor of TGF-b3) by these modified EVs

had higher antifibrotic potency (reducing renal a-SMA,

collagen, vimentin and FN levels) than unmodified EVs (148).

Altogether, these studies indicate that genetic engineering is a

potent strategy to enhance the organ targeting and therapeutic

effects of EVs.

5.1.2 Delivery of therapeutic reagents by EVs
Due to their bilayer structure and cargo transferring

capacity, EVs can serve as natural carriers of therapeutic

agents and protect them against in vivo degradation. The

current techniques of loading cargoes into EVs can be divided

into exogenous loading (coincubation, electroporation,

extrusion or sonication of drugs with isolated EVs) and

endogenous loading (genetic modification of EV donor cells)

(66, 163). Antisense oligonucleotide (ASO)/siRNA is a type of

nucleic acid drug that can silence targeted genes, but its

therapeutic potency is largely limited by off-target effects and

liver toxicity (164, 165). To overcome these limitations, ASO or

siRNA targeting STAT3 (a key regulator of inflammation) was

loaded into BMSC-EVs, and the engineered iExosiRNA-STAT3 or

iExomASO-STAT3 treatment showed higher potential to reduce

collagen I deposition and a-SMA, vimentin and FN expression

in a CCl4-induced liver fibrosis model (149).

In addition, EVs can also be used to deliver chemical drugs

to enhance their therapeutic index in vivo (Table 2). The anti-

inflammatory drug, dexamethasone (DEX), has been used for
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macrophage-derived DEX-packaging EVs exhibited a superior

capacity to suppress renal inflammation and interstitial fibrosis

without apparent glucocorticoid adverse effects in Adriamycin-

induced nephropathy in mice (150). These studies suggest that

engineered EVs are potent carriers for the delivery of therapeutic

agents to alleviate fibrosis.

5.1.3 Preconditioned EVs
In addition to the mentioned EV modification methods,

parental cells can also be primed/preconditioned with

pathological stimuli to produce EVs with desirable profiles or

contents useful for fibrosis resolution (Table 2). MSCs are

usually preconditioned with hypoxia or cytokines to acquire

and retain phenotypes relevant for therapeutic applications

(167). For instance, EVs isolated from BMSCs under hypoxic

conditions (0.5% O2 for 24 h) had superior therapeutic ability in

restoring cardiac function and ameliorating fibrotic scar area

after MI, because those EVs had enriched miRNAs such as the

anti-apoptotic miR-210 (151). Pretreatment of donor cells with

cytokines can augment the immunomodulatory properties of the

produced EVs. For example, TNF-a-preconditioned hucMSC-

EVs reduced a-SMA and collagen expression in a rat urethral

fibrosis model due to the enriched anti-inflammatory miR-146a

in those EVs (108). EVs from mouse BMSCs primed with a

cocktail of cytokines (IL-1b, IL-6 and TNF-a) had higher

efficacy in reducing the necrotic mucosal surface and collagen

deposition in a dextran sulfate sodium-induced colitis

model (152).

In addition, pretreatment of donor cells with bioactive

molecules may also enhance the therapeutic effects of EVs

(Table 2). Relaxin (RLN) is an antifibrotic peptide hormone

that has been shown to reduce liver fibrosis by reversing the

activation of HSCs (168). In a mouse CCl4 liver fibrosis model,

EVs from RLN-preconditioned mouse macrophage cell lines

(Raw264.7) showed higher potency to lower serum ALT/

aspartate aminotransferase (AST) and reduced liver fibrosis

(hydroxyproline and a-SMA levels) than native EVs (153).

These studies suggest that the preconditioning of parental cells

may be an efficient method to produce functionalized EVs.
5.2 Biomaterials for EV retention
and delivery

Current evidence indicates that systemically administered

EVs have a short half-life and can be rapidly cleared in vivo. To

resolve this problem, an innovative strategy that encapsulates

EVs with functional biomaterials has been proposed (Figure 5

and Table 2). EVs delivered by biomaterials such as hydrogels

and scaffolds may have enhanced therapeutic efficacy due to

prolonged EV release and improved bioavailability (169).
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Hydrogels are three-dimensional hydrophilic networks with

advanced properties, such as tunability, good biocompatibility

and biodegradability, and high tissue retention, therefore, they

have been widely used to encapsulate cells or drugs. This strategy

can also be applied in the local delivery of EVs to improve their

stability and half-life (170). Self-assembling peptide (SAP) is a

type of biomaterial made of natural amino acids, and some of

them can rapidly form a nanoscale hydrogel in ionic saline

conditions (171). An injectable SAP hydrogel was used to

encapsulate BMSC-EVs, which enabled a sustained release of

EVs with preserved biofunction. In a mouse model of ischemic

AKI, local delivery of BMSC-EVs by SAP hydrogels showed

better efficacy in decreasing renal damage, inflammation and

subsequent renal fibrosis (a-SMA and FN) than EVs

alone (154).

Similarly, human ESC-EVs were encapsulated into a

polyethylene glycol (PEG) hydrogel through a click reaction.

The resulting EV-loaded hydrogel showed higher antifibrotic

effects in a thioacetamide-induced liver fibrosis model, as

indicated by lower expression of MMP-9/13, collagen I and a-
SMA than EVs alone (155). The fibrin scaffold is a degradable

biopolymer made of fibrinogen and can provide binding sites for

cell migration and proliferation to promote tissue regeneration

(172). In another study, an invasive EV spray was prepared by

incorporating MSC-EVs with fibrin scaffold materials. In a

mouse or a swine model of MI, EV spray treatment led to

smaller infarct size, thicker left ventricular wall, and enhanced

angiomyogenesis than EVs alone in the postinjury heart (156).

Altogether, these findings suggest that biomaterial-based EV

engineer ing i s an effic ient s t ra tegy for enhanced

antifibrotic therapy.
5.3 Combined strategies for enhancing
therapeutic potency

Moreover, the combination of multiple EV modifications

may be an attractive strategy for advanced anti-fibrotic therapy

(Table 2). For example, cytokine (TNF-a and IFN-g)-
preconditioned hucMSC-EVs were loaded into a hybrid

scaffold made of pneumatic microextrusion (PME, consisting

of PLGA, magnesium hydroxide and decellularized porcine

kidney extracellular matrix) and polydeoxyribonucleotide

(PDRN). This combined treatment showed a synergistic effect

of reducing renal inflammation (IL-1RA and TNF-a) and

fibrosis (a-SMA, vimentin and Snail) in a mouse model of

partial nephrectomy (157). NIN is a tyrosine kinase receptor

inhibitor for the treatment of lung fibrosis in the clinic, but its

therapeutic efficiency is not ideal due to nonspecific organ

distribution. In a recent study, NIN was loaded into hybrid

nanovesicles made of clodronate disodium (CLD)-loaded

liposomes and fibroblast cell line (L-929)-derived EVs. In a
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BLM-induced mouse lung fibrosis model, this engineered hybrid

EVs showed higher lung retention than unmodified EVs and

thus decreased macrophage-mediated inflammation and ECM

deposition in the lungs (158). In addition, the combination of

stimuli and genetic modification may enhance the therapeutic

potency of native EVs. For example, EVs from human dental

pulp MSCs with HIF-1a (a master regulator of hypoxia)

overexpression and cytokine (IFN-g, IL-1b and TNF-a)
preconditioning were produced, and these EVs had higher

potency to alleviate the fibrillar collagen proportion and colon

length shortening in a mouse colitis model than native EVs

(159). Altogether, the combination of multiple engineering

strategies may further enhance the anti-fibrotic potency of EV-

based therapies.
6 Clinical trials of EVs for fibrosis-
related diseases

To date, few clinical trials have been conducted associated

with direct organ fibrosis, and most of them are still in the early

stages. For example, a randomized, placebo-controlled, phase 2/

3 clinical pilot study was performed to investigate the safety and

therapeutic efficacy of cord-blood MSC-EVs in preventing the

progression of grade III and IV CKD. The results showed that

intra-arterial and intravenous EV injections reduced the

inflammatory immune reaction and improved kidney function

(173). Recent studies suggest that severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infection may cause

severe lung damage and substantial lung fibrotic consequences

in patients (174). To protect the damaged lungs, several EV-

based clinical trials are already underway or seem to be

underway. A multicenter, double-blind, randomized controlled

trial (RCT) phase 2/3 trial is recruiting, and it aims to evaluate

the efficacy and safety of MSC-EVs on reducing inflammation in

moderate COVID-19 patients (NCT05216562). An open-label

phase 1 study was conducted to evaluate the safety and

immunoregulation of EVs carrying CD24 in patients with

moderate/severe COVID-19 (NCT04747574). These modified

EVs are produced from T-REx™-293 cells engineered to express

CD24 (a vital immunomodulator), and its phase II trial is

currently active, not recruiting (NCT04969172). Although the

current state is still far from clinical applications, increasing

evidence suggests that EVs are a potent cell-free, off-the-shelf

antifibrotic strategy.
7 Future perspectives

Notably, a large number of studies indicate that EVs may be

promising means to mitigate organ fibrosis. Moreover, as a type
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of naturally derived nanomaterial, EVs have several advantages,

such as intrinsic biological properties, the ability to cross

biological barriers, and minimal immunogenicity or toxicity in

vivo (7, 51). However, there are still some limitations that needed

to be well resolved before further translation of EVs into

clinical applications.

A primary challenge in this field is how to standardize the

production of EVs on a large-scale during isolation, purification,

and scalability. For research purposes, small amounts of EVs can

be readily isolated by common techniques, such as UC, SEC and

immunoaffinity (47), but the yields are far below the clinical

requirement. For small animal models, such as rodents, the

medium EV dosage is ~80-100 mg/mouse with systematic

injection, while it dramatically increases to 75 mg/swine in situ

in large animal models (175, 176). In this case, it can be assumed

that the required EV amounts for human patients with fibrotic

diseases are much larger. Thus, it is urgent to optimize the

process of large-scale EV production with high yield and purity,

as well as retain integrity and biofunction. More importantly, for

clinical applications, it is strictly required to define the bioactive

components, standard operating procedures, quality control

criteria, virulence and sterility of EV products.

Native EVs usually exhibit a short half-life and insufficient

organ retention in vivo. The distribution of EVs can be affected

by many factors, such as parental cell types or administration

routes (177). To improve the specific organ targeting efficiency

of EVs, it is possible to select the appropriate cell source

according to the therapeutic intent, such as bronchial

epithelial cell-derived EVs for lung fibrosis and cardiosphere-

derived EVs for cardiac fibrosis (77, 84). Another strategy is

surface modification of EVs with targeting ligands, thereby

enhancing the uptake of therapeutic EVs in targeted organs.

The administration routes of EVs may also affect their

therapeutic potency. For instance, i.v. injected EVs showed

higher retention in the liver and spleen and lower retention in

the pancreas compared to i.p. and subcutaneous injection (177).

Thus, the selection of a proper delivery route should also be

considered in the treatment of fibrosis in different organs.

Since the mechanism of fibrosis is complicated and many

types of cells and pathways are involved, it seems that single-

target therapy may not be efficient. In fact, many antifibrotic

strategies, such as cessation of chronic tissue injury, resolution of

local inflammation, deactivation or el imination of

myofibroblasts, and degradation of ECM, have been evaluated

individually or combined in preclinical studies or clinical trials

(5). However, many current EV-based studies are still focusing

on targeting a single cause (e.g., inflammation and angiogenesis),

and the direct antifibrotic potency of EVs needs to be further

enhanced. To address this limitation, a better strategy is to

develop engineered EVs that can target multiple essential cells or

pathways involved in fibrosis, which may exhibit advanced

therapeutic effects.
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Another important limitation is that current findings related

to the anti-fibrotic effects of EVs are mainly based on small animal

(mouse and rat) models, while there have been only a small

number of large animal (e.g., swine) model-based studies (156).

Moreover, these models may not fully mimic the pathology of

human patients due to the large genetic and/or physiological

differences between humans and small animals. For example,

rodent models of liver fibrosis are commonly induced by toxic

reagents (e.g., CCl4) or bile duct ligation, while virus (hepatitis B

virus) infection, alcoholic liver disease, and nonalcoholic fatty liver

disease are the main causes of liver fibrosis in the clinic (2, 178).

Thus, standard and large animal models that can better mimic the

fibrosis of patients are needed in this field.
8 Conclusion

In summary, EV-based therapeutics have shown promising

effects in mitigating multiple types of organ fibrosis in many

preclinical studies. Moreover, the therapeutic potential of EVs

can be further improved using multiple modification strategies.

To better translate EV-based therapies into clinical applications,

more research is required to clarify the direct antifibrotic role of

EVs and to establish large-scale production and efficient EV

engineering strategies in the future.
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