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Aging is a gradual and progressive deterioration of integrity across multiple organ

systems that negatively affects gingival wound healing. The cellular responses

associated with wound healing, such as collagen synthesis, cell migration,

proliferation, and collagen contraction, have been shown to be lower in

gingival fibroblasts (the most abundant cells from the connective gingival

tissue) in aged donors than young donors. Cellular senescence is one of the

hallmarks of aging, which is characterized by the acquisition of a senescence-

associated secretory phenotype that is characterized by the release of pro-

inflammatory cytokines, chemokines, growth factors, and proteases which have

been implicated in the recruitment of immune cells such as neutrophils, T cells

and monocytes. Moreover, during aging, macrophages show altered acquisition

of functional phenotypes in response to the tissue microenvironment. Thus,

inflammatory and resolution macrophage-mediated processes are impaired,

impacting the progression of periodontal disease. Interestingly, salivary

antimicrobial peptides, such as histatins, which are involved in various

functions, such as antifungal, bactericidal, enamel-protecting, angiogenesis,

and re-epithelization, have been shown to fluctuate with aging. Several studies

have associated the presence of Porphyromonas gingivalis, a key pathogen

related to periodontitis and apical periodontitis, with the progression of

Alzheimer’s disease, as well as gut, esophageal, and gastric cancers. Moreover,

herpes simplex virus types 1 and 2 have been associated with the severity of

periodontal disease, cardiovascular complications, and nervous system-related

pathologies. This review encompasses the effects of aging on periodontal tissues,

how P. gingivalis and HSV infections could favor periodontitis and their

relationship with other pathologies.
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Periodontium and aging

Periodontium is a tissue that supports the teeth and protects

against oral pathogens. Anatomical and functional changes in

periodontal tissues have been associated with aging, including

thinning of the epithelium and diminished keratinization,

whereas cementum increases in width. Consequently,

periodontal health decreases with aging (1).
Aging is a biological process characterized by decreased cell

function that negatively affects gingival wound healing (2).

Different cellular responses associated with wound healing,

such as cell migration, proliferation, and collagen contraction,

have been found to be lower in gingival fibroblasts (GF) derived

from aged donors than in those derived from young donors (2).

Accordingly, collagen production decreases by more than five-

fold depending on the age of the donor (3), while old GF show

increased rates of collagen phagocytosis and augmented DNA

methylation in the collagen alpha-1 gene, which is followed by a

reduction in mRNA levels and collagen type I synthesis (3).

Interestingly, TGF-b1 stimulation increased the a-SMA levels in

both young and old fibroblasts. However, a-SMA is

incorporated in actin stress fibers in young fibroblasts but not

in old fibroblasts (2) (Figure 1). One of the proteins that increase

its expression during aging in human GF is TMPRSS11a (4), a
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type II serine protease that induces cellular senescence, a process

characterized by stable cell cycle arrest, macromolecular damage

induced by cellular impairment, such as DNA damage (4),

telomere shortening or dysfunction, epigenetic changes,

oncogene activation or loss of tumor suppressor functions, and

organelle damage and with the acquisition of a senescence-

associated secretory phenotype (SASP) (5). The SASP is

characterized by the release of components that directly or

indirectly promote inflammation such as pro-inflammatory

cytokines, chemokines, growth factors, and proteases (5). This

phenotype has been implicated in the recruitment of immune

cel ls (Figure 2), impacting the local oral mucosal

microenvironment and affecting cellular function in

neighboring cells (6).

A study from our group showed that the exposure of young

GF to blood serum from middle-aged (30-48 years old) and aged

individuals (over 50 years old) increased cellular senescence.

Specifically, that study showed that blood serum samples

obtained from middle-aged and aged individuals were

characterized by an increase in MCP-1 (CCL2) and TNFa
levels compared to those in young individuals (6).

Interestingly, one longitudinal study quantified physiological

deterioration across multiple organ systems with chronological

aging, using a 38-year-old, showing that gum health (combined
FIGURE 1

Effects of aging on the periodontium and antimicrobial peptides. Crosstalk between HSV and P.gingivalis with cancer, encephalitis, multiple sclerosis,
cardiovascular, Parkinson’s, Alzheimer’s and periodontal diseases. During aging there is an impaired gingival wound healing. Aged gingival fibroblasts
show decreased cell migration, proliferation and contraction, and lower a-SMA is incorporated into actin stress fibers and aged macrophages show
altered acquisition of functional phenotypes, HSV and P.gingivalis have been associated with periodontal, cardiovascular and Alzheimer’s diseases.
AMPs, antimicrobial peptides; ALEO, apical lesions of endodontic origin; hsCRP, high-sensitive C-reactive protein; a-SMA, alpha-smooth muscle
actin; OSCC, oral squamous cell carcinoma; ESCC, esophageal squamous cell carcinoma; PDAC, pancreatic ductal adenocarcinoma;
HCC, hepatocellular carcinoma; GC, gastric cancer.
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with attachment loss) has a Z score similar to other biomarkers

of aging, such as HDL cholesterol and telomeric length in

leukocytes (7). Interestingly, the authors used the age of 38-

year-old because individuals who were aging more rapidly were

less physically able, showed cognitive decline and brain aging

and looked older, so they can identify causes of aging and

evaluate rejuvenation therapies.

During aging, there is a loss of periodontal attachment and

alveolar bone, but these changes do not have a major clinical

impact. However, in aged individuals, there is an increased pro-

inflammatory state that induces increased susceptibility to

autoimmune, inflammatory, or infectious diseases, including

periodontitis (8). Furthermore, in the gingival tissues of aged

subjects, differences associated with the innate immune system,

such as higher neutrophil infiltration in gingiva from old mice

(18 months old) compared to young mice, where the reduced

expression of Del-1 in the gingiva of old mice was associated

with higher neutrophil infiltration relative to young mice (9).

The innate immune system plays a critical role in maintaining a

symbiotic relationship with the oral microbiome, were observed

(1). Thus, alterations in host oral mucosal immunity arise during

aging that giving way to the establishment of oral dysbiosis that

allows tissue colonization by bacteria such as Porphyromonas

gingivalis (P. gingivalis) (1), which increases susceptibility to the

development of periodontitis or latent viral infections.
Antimicrobial peptides

Antimicrobial peptides (AMPs) are central players in innate

immunity, which depict additional activities beyond their
Frontiers in Immunology 03
canonical antimicrobial roles, thereby contributing to

maintaining tissue homeostasis (10). Within the group of

salivary AMPs, histatins stand out, as their concentrations

fluctuate in early and middle ages and further decrease in the

elderly (11) (Figure 1). Histatins are histidine-rich proteins that

elicit a variety of functions, including antifungal, bactericidal,

and enamel-protective activities (12). From this family of

proteins, histatin-1 and histatin-2 have been extensively

studied, as they have been found to maintain oral mucosal

homeostasis and promote wound healing by stimulating both

tissue re-epithelialization (13) and angiogenesis (14).

Particularly, histatin-1 was identified as a potent pro-

angiogenic factor that stimulates endothelial cell adhesion and

migration, as well as vascular morphogenesis in vitro and in vivo

(14), which are thought to contribute to the high efficiency of

epithelial repair in the oral cavity. In addition to its effects on

wound healing, histatin-1 was also reported to contribute to

maintaining periodontal tissue homeostasis, because it restores

cell migration in periodontal ligament fibroblasts challenged

with nicotine (14). In support of the notion that histatin-1

contributes to oral fibroblast function, this peptide induced

myofibroblast differentiation and migration in a non-oral

model, thereby contributing to skin wound healing (15).

The spectrum of cell types that respond to histatin-1 has

broadened in recent years, as this peptide was shown to induce

osteogenic differentiation and stimulate mineralization in pre-

osteoblasts and mesenchymal cells derived from the dental pulp

and apical papilla (16). Collectively, these findings open new

avenues to explore the physiological relevance of the effects of

histatin-1 in different cell types residing within the oral cavity. In

addition, this scenario provides an interesting opportunity to
FIGURE 2

Main cytokines and chemokines elevated in the Senescence-Associated Secretory Phenotype by senescent fibroblasts. Senescent fibroblasts are
characterized by cell-cycle arrest mainly related to increased levels of cyclin-dependent kinases inhibitors (p15INK4b, p16INK4a, p21CIP1),
decreased levels of lamin B1 and the presence of a SASP characterized by increased levels of cytokines and chemokine such as IL-6, MIF, IL-1a
and b which acts as pro-inflammatory cytokines. For example, chemokines such as CXCL-1, CXCL-8, CXCL-5, and CXCL-4 can be
chemoattractants for neutrophils. CCL-3, CCL-4, CXCL-12, and CCL-2 can be chemoattractants for monocytes, and IL-8, CXCL-12, and CCL-3
can act as a chemoattractant for T cells. Notably, CCL-2 and CCL-3 can also attract NK cells. MIF, macrophage migration inhibitory factor;
MIP1a, macrophage inflammatory protein 1-alpha; MCP-1, monocyte chemoattractant protein 1; CXCL-5, C-X-C motif chemokine 5;
PF-4, platelet factor 4; SDF-1, stromal cell-derived factor 1; SAHF, Senescence-associated heterochromatin foci; TAF, Telomere-associated DDR
foci; DNA-SCARS, DNA segments with chromatin alterations reinforcing senescence. SA-bGal, Senescence-associated beta galactosidase;
GROa, growth-regulated alpha protein.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1044334
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Villalobos et al. 10.3389/fimmu.2022.1044334
explore new therapeutic possibilities using this peptide as a co-

adjuvant in regenerative therapies. This is relevant in the context

of the reported variations in this and other histatins during

aging (11).
Periodontal disease

Periodontitis is known to increase in both incidence and

severity across a large proportion of the human population with

aging (1) and has been associated with other age-related diseases,

such as cancer, Alzheimer’s disease (AD), and atherosclerosis

(17–19). The etiology of periodontal disease has been commonly

associated with bacterial infection solely. However, it has been

reported that a severe disease also occurs in the absence of a large

bacterial load, indicating an excessive immune response of the

host inflammatory cytokine-mediated to subgingival pathogens,

where IL-1a plays a major role in periodontal damage (20).

Alterations in the components of the periodontium that disrupt

its barrier functions can lead to an increase in opportunistic

pathogens, causing the development of diseases at both local and

systemic levels. It is important to note that the oral microbiome

can comprise bacteria, protozoans, fungi, numerous viruses, and

archaea; in this review, we focus on discussing P. gingivalis) and

herpes simplex virus type 1 and 2 (HSV-1 and HSV-

2, respectively).
P. gingivalis in supportive
periodontal tissue diseases and
systemic implications

P. gingivalis is a gram-negative anaerobic bacillus part of a

cluster of oral microorganisms consistently found in severe

forms of periodontal disease, classically described as “red

complex”: P. gingivalis, Tanerella Forsythia, and Treponema

denticola (17). P. gingivalis plays a central role in the etiology

and progression of periodontal disease because of the wide range

of virulence factors that are associated with the induction of a

pro-inflammatory environment in the oral mucosa, leading to

the destruction of periodontal tissue, diminishing its barrier

function and immunological homeostasis, and hence responses

against noxa (8). Inflammation favors the growth of the

dysbiotic microbial community. Nevertheless, its disruptive

effects on oral mucosal immunity transcend the inflammatory

balance, as it also plays a role in mucosal senescence induction

(21). Direct cellular invasion by this bacterium has been shown

to induce immune senescence in dendritic cells, and paracrine

signals amplify senescence through the secretion of

inflammatory exosomes (21).

In addition, P. gingivalis can translocate from the oral cavity

to the bloodstream and colonize distant organs, invading and
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(19, 21). In this context, P. gingivalis was shown to play a

pathogenic role in systemic diseases, such as vascular

atheroma, where it is located in atherosclerotic plaques (18).

In addition, periodontal disease has been associated with an

increased risk of cancers (Figure 1), such as pancreatic cancer,

via a mechanism that relies on P. gingivalis, as it was found in

pancreatic cancer cells and has been shown to exert direct pro-

tumoral effects on enhanced pancreatic tumor cell proliferation

through its ability to survive intracellularly (22). However, the

conclusive mechanism of invasion in atheroma plaques and

pancreatic adenocarcinoma is not completely understood.

Although P. gingivalis has been associated with local

inflammation and oral cancer risk, recent evidence suggests

that the consequences of oral mucosal imbalance might extend

beyond local malignancies. Oral dysbiosis has been shown to

increase the risk of oral squamous cell carcinoma (OSCC), and

bacterial communities displaying enrichment of genes associated

with cell motility and pro-inflammatory processes, such as

bacterial chemotaxis and flagella assembly, are significantly

increased in OSCC patients (23). P. gingivalis is also associated

with other gut cancers, such as esophageal cancer, gastric cancer,

and hepatocarcinoma (17).

In contrast, P. gingivalis-derived gingipains and LPS, as well

as their DNA, have been found in the brains of individuals with

AD, suggesting transneuronal dissemination of this bacterium

from the oral cavity (19). Interestingly, P. gingivalis is also

present in individuals with AD but without established

dementia, suggesting that brain infections are an early event

that plays a role in AD pathogenesis (19) (Figure 1). Mechanisms

underlying neurodegeneration are related to inflammation

mediated by P. gingivalis virulence factors, including LPS,

gingipains, cathepsin B, and tau, among others (24), which

lead to the accumulation and production of the amyloid

plaque component Ab in the brain and tau-related pathology,

as a result of gingipain proteolysis (19), although clinical studies

correlating these data are still incipient.

Another prevalent oral disease worldwide that affects

periapical supportive tissues and may cause loss of the affected

tooth is apical periodontitis (25). It usually presents as an

asymptomatic disease that is radiographically detected as an

osteolytic area. The etiological factor is a predominantly

anaerobic biofilm that triggers an immune-inflammatory

response by the host (26), where macrophages play an

important role in the hallmark of apical lesions of endodontic

origin (ALEOs), such as root resorption. There is evidence that

these ALEOs depict a high percentage of extraradicular

infections, specifically P. gingivalis and Porphyromonas

endodontalis, thus challenging the notion that microorganisms

are confined only to the root canal system (27). Furthermore,

bacterial DNA has been detected at significantly higher levels in

peripheral blood mononuclear cells taken from individuals with

apical periodontitis than in healthy controls, suggesting that
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there might be bacterial DNA translocation from the ALEO onto

the systemic circulation, reaching other tissues, such as

endothelial cells of blood vessels (27). It has also been shown

that Porphyromonas spp. induces autoimmune responses that

may contribute to cardiovascular diseases; specifically, P.

gingivalis, which can invade endothelial cells (28).

Serum levels of high-sensitivity C-reactive protein (hsCRP),

used as a biomarker for a cardiovascular event, are higher in

young individuals with AP than in healthy controls, as well as IL-

6, matrix metalloproteinase 8 (MMP-8), and soluble E-selectin,

which are implicated in atherogenesis (29) (Figure 1). There is

even an association of ALEOs with hsCRP levels > of 3 mg/mL,

supporting a mechanistic link between this prevalent disease and

cardiovascular risk in young individuals (30).
Role of macrophages during aging

Macrophages are phagocytic cells that form the first line of

defense against pathogens. These plastic cells can polarize from

classically activated M1 macrophages to alternatively activated

M2 macrophages in vitro. However, the polarization state of M1

and M2 macrophages in vivo corresponds to a continuum of

intermediate phenotypes that can switch from one phenotype to

another in response to the cytokine milieu in each tissue

microenvironment, whereas an inadequate balance between

the polarization states can lead to the development of chronic

inflammation and disease (31).

During aging, altered acquisition of functional phenotypes in

response to the tissue microenvironment has been reported in

splenic macrophages (32) and bone-marrow-derived

macrophages (BMMs) (33) obtained from aged mice

compared to young mice. The mRNA levels of pro-

inflammatory cytokines (i.e. IL-6, TNFa, iNOS, and IL-1b)
from aged splenic macrophages were decreased after LPS from

Escherichia coli (E. coli) or TNFa/IFN-g stimulation, as

compared with cells derived from younger animals (32). These

results are concordant with a reduced amount of pro-

inflammatory cytokines, including IL-12, and increased IL-10,

produced by splenic macrophages, as previously reported (34).

Conversely, aged mouse BMMs from mice showed higher levels

of the TNFa transcript and protein secretion after IFN-g and E.

coli-LPS stimulation, respectively (33). However, BMMs

challenged with P. gingivalis, a common periodontal pathogen,

show attenuated levels of cytokines and chemokines, including

TNFa, IL-6, IL-10, and nitric oxide (NO) (35). Furthermore,

aged macrophages showed lower levels of TLR4/MD-2, although

no changes were observed in their surface density (34).

Macrophages play a role in the innate host response in

periodontitis, particularly in oral tissue. Clark et al. (36) reported

age-related changes in macrophages associated with a pro-

inflammatory and M1-like phenotype (Figure 1), as well as

improper polarization, which might be associated with the
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response to microbial plaque and periodontal disease resolution.

Likewise, decreased NO production and changes in the

expression levels of toll-like receptors (TLRs), together with

defects in the signaling pathways in aged macrophages (37,

38), could be related to increased susceptibility to infections in

the elderly and chronic disease development such

as periodontitis.
Herpes simplex virus infection
in periodontal disease and
systemic implications

HSV-1 and HSV-2 are two highly prevalent viruses in the

human population. It is estimated that approximately 66.6% of

individuals worldwide are infected with HSV-1 and 13.2% with

HSV-2 (39). Both viruses have been reported to modulate the

host´s innate and adaptive immune responses (40, 41). HSVs

cause lifelong infections with a wide range of clinical

manifestations, from mild to life-threatening. A common

primary infection-related clinical manifestation in children is

herpetic gingivostomatitis, which consists of oral lesions in the

buccal and gingival mucosae as well as the tongue, and is usually

self-contained (39).

Importantly, HSV-1 and HSV-2 have been associated with

the severity of periodontal diseases, such as chronic

inflammatory conditions that affect the supporting tissue of

the teeth (42). Notably, HSV DNA has been found in

subgingival plaque samples associated with higher clinical

attachment loss (≥4 mm) and the presence of bleeding on

probing (BOP) (43). Moreover, it has been estimated that 63%

of sites with aggressive periodontitis and 45% of sites with

chronic periodontitis contained HSV-1 copy counts (44)

The severity of periodontal diseases related to HSV

infections may be explained by the fact that herpes simplex

viruses infect periodontal tissues (Figure 1), which induces local

immune responses and may also serve as cofactors for bacterial

virulence determinants in periodontal diseases (43).

Interestingly, HSV-1 and HSV-2 DNA have been detected via

nested PCR in T cells and monocytes/macrophages in gingival

cells obtained from adult individuals with periodontitis (45).

Furthermore, it was found that downregulation of periodontal T

cell function caused by HSV infection may increase the risk of

destructive periodontal disease, as T cells have been suggested to

have a protective role in periodontal disease (45).

Importantly, the combination of bacteria associated with

periodontitis and HSV infections could lead to an increased

likelihood of cardiovascular complications in infected

individuals (46). Indeed, HSV-1 and HSV-2 have been

associated with several cardiac diseases (Figure 1), such as

atherosclerosis, and are considered factors that increase the
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risk of this disease (47). Noteworthy, two mechanisms have been

proposed to explain the association between periodontitis and

cardiovascular diseases such as atherosclerosis. Either

periodontal pathogens directly invade the bloodstream or

indirectly increase the systemic levels of inflammatory

mediators (47). Importantly, it has been suggested that

improving one of these conditions may positively affect the

other diseases (47). However, this potential association

requires further investigation.

HSV infections may cause nervous system-related

pathologies, such as herpetic encephalitis, meningitis, and

Mollaret’s syndrome, and have been associated with several

neurodegenerative diseases, such as Parkinson’s disease,

multiple sclerosis (MS), and AD (48) (Figure 1). Moreover,

several studies have associated HSVs infections with neuronal

aging, which, in turn, could lead to AD. For instance, it has been

shown both in vitro and in vivo models that HSV-1 infection

induces a significant increase in the levels of histone

modifications, such as H4 lysine (K) 16 acetylation (ac)

(H4K16ac) and histone-modifying factors, such as Sin3 and

histone deacetylases (HDAC1), suggesting that neuronal

responses to virus latency and reactivation upregulate these

aging markers (49). Additionally, upregulation of the histone

regulator A (HIRA) during viral latency and its different

localization in cortical neurons in HSV-1-infected mouse

brains have also been reported (49). Importantly, HIRA is also

a key player in aging (49). Thus, HSVs infections are also linked

to aging of the nervous system, which is directly related to the

development of AD.

Interestingly, the frequency and magnitude of herpesvirus

reactivation have been described to be affected by aging. This

observation is supported by the detection of increased CD8+ T

cells specific for this virus in aged subjects. However,

herpesviruses can also reactivate as a result of stress. Further

studies are needed to understand the effects of herpesvirus

reactivation and its role in healthy aging (50).
Conclusions

There are changes at both immune and non-immune cells of

the oral mucosa during aging, that lead to a destabilization of the

tissue homeostasis and impaired wound healing. Also, these

aging-associated changes coupled with the decrease in AMPs

create a permissive environment in the periodontium for both

pathogen colonization and reactivation of pre-existing

pathogens such as HSV, which may influence the development

and severity of oral diseases, such as periodontitis. Interestingly,

pathogens involved in the development of this disease, such as

P.gingivalis, are also involved in the development of systemic

diseases including various cancers and Alzheimer’s disease. Also,

HSV infections at other sites than the oral cavity may

nevertheless relate to periodontitis and central nervous system
Frontiers in Immunology 06
diseases, given the potential of this condition to cause systemic

diseases. Given this scenario, further studies on these eventual

associations may shed light on previously unrecognized relations

between cell and tissue aging and oral diseases as well as new

insight into their consequences at the systemic level.
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33. Gibon E, Loi F, Córdova LA, Pajarinen J, Lin T, Lu L, et al. Aging affects
bone marrow macrophage polarization: Relevance to bone healing. Regener Eng
Transl Med (2016) 2(2):98–104. doi: 10.1007/s40883-016-0016-5

34. Chelvarajan RL, Collins SM, Van Willigen JM, Bondada S. The
unresponsiveness of aged mice to polysaccharide antigens is a result of a defect in
macrophage function. J Leukoc Biol (2005) 77(4):503–12. doi: 10.1189/jlb.0804449

35. Shaik-Dasthagirisaheb YB, Kantarci A, Gibson FC. Immune response of
macrophages from young and aged mice to the oral pathogenic bacterium
porphyromonas gingivalis. Immun Ageing (2010) 7(1):1–7. doi: 10.1186/1742-4933-7-15

36. Clark D, Halpern B, Miclau T, Nakamura M, Kapila Y, Marcucio R. The
contribution of macrophages in old mice to periodontal disease. J Dent Res (2021)
100(12):1397–404. doi: 10.1177/00220345211009463

37. Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S.
Cutting edge: Impaired toll-like receptor expression and function in aging. J
Immunol (2002) 169(9):4697–701. doi: 10.4049/jimmunol.169.9.4697

38. van Duin D, Mohanty S, Thomas V, Ginter S, Montgomery RR, Fikrig E,
et al. Age-associated defect in human TLR-1/2 function. J Immunol (2007) 178
(2):970–5. doi: 10.4049/jimmunol.178.2.970

39. Reyes A, Farıás MA, Corrales N, Tognarelli E, González PA. Herpes simplex
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