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Hematopoietic allogeneic stem cell transplantation (allo-SCT) is a curative

option for patients with hematological malignancies. However, due to

disparities in major and minor histocompatibility antigens between donor and

recipient, severe inflammatory complications can occur, among which chronic

graft-versus-host disease (cGVHD) can be life-threatening. A classical

therapeutic approach to the prevention and treatment of cGVHD has been

broad immunosuppression, but more recently adjuvant immunotherapies have

been tested. This review summarizes and discusses immunomodulatory

approaches with T cells, including chimeric antigen receptor (CAR) and

regulatory T cells, with natural killer (NK) cells and innate lymphoid cells

(ILCs), and finally with mesenchymal stromal cells (MSC) and extracellular

vesicles thereof. Clinical studies and pre-clinical research results are

presented likewise.
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1 Introduction

Chronic graft-versus-host disease (cGVHD) is a multisystem

inflammatory disease that results from a multifaceted response of

allogeneic immune effector cells against a variety of tissues in

patients surviving early phases of allogeneic hematopoietic stem

cell transplantation (alloHSCT). Mild forms of cGVHD associate

with better control of the malignant disease. In contrast, severe

cGVHD is the main reason for morbidity and mortality in long-

term survivors of alloHSCT. Standard therapies for severe cGVHD

have limited efficacy and significant toxicity (1), and require

suppression of the immune system that may result in severe and/

or fatal infections (2). Furthermore, current pharmacological

interventions are largely unsuccessful in reversing established

fibrosis in cGVHD, without compromising immune function.

Therefore, new approaches for the prevention and treatment of

cGVHD are needed in order to improve the long-term outcomes

and quality of life post alloHSCT (3). Here, we highlight novel
Frontiers in Immunology 02
strategies to prevent and treat cGVHD using cellular therapy, and

discuss the latest developments in this field (Figure 1).

Regulatory T cells (Tregs) represent a subset of CD4+ T

lymphocytes specialized in controlling immune responses and in

maintaining immune tolerance. The efficacy of Tregs in GVHD

treatment has been initially demonstrated in murine models (4),

and further in human patients (5). An innovative possibility to

increase the anti-GVHD efficacy of cellular therapy is represented

by Chimeric Antigen Receptors (CARs). As an example, CAR-

Tregs targeting allo-activated immune cells expressing CD38 were

highly effective in reducingGVHD (6). InvariantNKT (iNKT) cells

can dampen cGVHD through induction of Tregs. Also, NK cells

may be exploited to target the alloreactive cells, while innate

lymphoid cells (ILC) that have a crucial role in tissue

regeneration of the intestinal tract, could represent an attractive

treatment option for severe cases of intestinal GVHD (7). Another

focus is treatment with cell types that are involved in tissue

homeostasis and repair, as mesenchymal stromal cells (MSCs),
FIGURE 1

Cellular therapy for chronic GVHD. The figure illustrates cell types that are currently exploited or that can be exploited for chronic GVHD, and
that are discussed in this review.
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and we also discuss the utility of extracellular vesicles derived

from MSCs.
2 T cell-based therapies

T lymphocytes have a pivotal role in the immune system.

Conventional CD4+ T cells (Tconvs) secrete a number of

immunoregulatory cytokines, while cytotoxic CD8+ T cells are

equipped to kill malignant or infected cells. T cells have been

extensively exploited in the context of bone marrow

transplantation, with the aim to recognize and kill tumor cells

(Graft-versus-Leukemia effect, GvL), and control infections,

especially opportunistic ones (8).

However, T cells are also involved in the development of

GVHD due to mismatches of HLA class I molecules and minor

histocompatibility antigens between the host and the donor,

which elicit an inflammatory response (9, 10). For this reason,

different strategies have been developed to dampen T cell

activation, aiming at blocking this detrimental process (11).

Several drugs have been approved so far for the treatment of

GVHD, however, their activity is broad and unspecific, acting on

different components of the inflammatory cascade with a

generalized immunosuppressive action, blocking not only

harmful T cells but also vital anti-viral and anti-tumor effects

(11, 12).
Frontiers in Immunology 03
For this reason, the development of more specific treatments

that target directly key components of GVHD, is required. To

this end, the same Tconvs could be employed to eliminate

specific cell populations that sustain the inflammatory process

(13, 14). However, this approach is limited by the low number of

antigen-specific cells able to kill relevant pathologic cells (15). A

possible solution to this problem is represented by CAR-T-cells.
2.1 CAR-T-cells

CARs are chimeric molecules composed of two major

components (Figure 2). An extracellular part consisting of a

single-chain variable fragment (scFv) conferring antigen

specificity, is fused to an intracellular part providing the

machinery for cell signaling transduction. The first generation of

CARs was composed of an intracellular CD3 zeta chain, but this

version showed only minimal functionality. In the subsequent

generations, different stimulatory domains were fused together,

obtaining much higher cellular activation. CARs greatly enhance

cellular functions such as cytotoxicity, proliferation, survival and

cytokine secretion. The constructs can be inserted in different

effector cells, as T cells and NK cells. Their major field of

application is in oncology, where CAR-T cells have displayed

striking results, in particular against CD19+ acute lymphoblastic

leukemia (ALL) and B cell-derived lymphomas (16).
FIGURE 2

Exploiting CAR-T cell therapy for chronic GVHD. The engineering of CAR constructs (illustrated in the circle) in conventional T cells or T
regulatory cells may be exploited in therapy for chronic GVHD.
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While CAR constructs initially were developed for use in cancer

therapy (17, 18), some CARs might also be employed to tackle cells

that mediate the inflammatory processes occurring during cGVHD

(19). Various immune cells contribute to the pathology of cGVHD,

and among them B cells produce antibodies and release pro-

inflammatory cytokines, and operate as antigen-presenting cells to

promote T cell activation. The B cells appear to be hyper-responsive

due to both intrinsic and extrinsic factors, favoring the selection of

potential harmful cells reactive against both allo- and auto-antigens

(20, 21).

Due to their pro-inflammatory properties, the selective

depletion of B cells might represent a potential therapeutic

option in patients with cGVHD. Several drugs have been

approved for this purpose, with variable results. One of the

major limitations of the drugs resides in the absence of a clear

specificity, often targeting markers that are expressed on

multiple cell populations (22). A possible solution is the

employment of CAR-T cells, such as the anti-CD19 or the

anti-CD22 CARs, which could eliminate B lymphocytes. In

particular, a beneficial anti-inflammatory activity of anti-CD19

CAR-T cells have been shown in the context of autoimmune

diseases, like systemic lupus erythematosus, where reduced levels

of auto-antibodies and immune complexes were demonstrated

in lupus-prone mice. However, clinical evidence for a role of

anti-CD19 CAR-T cells in the treatment of cGVHD in humans

is still lacking (23).

It has been demonstrated that cGVHD patients may develop

auto-antibodies during the course of the disease, which might

have a role in mediating tissue injuries (24, 25). Pre-clinical

mouse models clearly showed that the depletion of antibody-

secreting cells could attenuate clinical manifestations of cGVHD

(26). Anti-BCMA CAR-T cells can efficiently kill plasma cells

and they have been employed for the treatment of patients with

multiple myeloma with encouraging results (27). Considering

their potential role in the pathogenesis of cGVHD, anti-BCMA

CAR-T cells might open new therapeutic scenarios due to the

depletion of allo- and auto-reactive plasma cells.

Anti-CD19 and anti-BCMA CARs eliminate B cells and

plasma cells, respectively, without a specific activity against the

pathological clones. In 2016, Ellebrecht et al. developed a new

chimeric construct to selectively target and deplete antigen-

specific B cells, called chimeric auto-antibody receptor

(CAAR) (28). The authors employed CAAR-T cells for the

treatment of pemphigus vulgaris, an autoimmune disease

caused by the production of auto-antibodies against the

dermal basal membrane, by redirecting T lymphocytes against

anti-desmoglein 3 self-reactive B cells, showing encouraging

results in pre-clinical mouse models. With this approach, the

authors managed to selectively deplete only self-reactive cells.

CAARs might be employed in the context of cGVHD to

selectively eliminate those cells that sustain the pathologic

process, avoiding the generalized depletion of either B
Frontiers in Immunology 04
lymphocytes or plasma cells caused by anti-CD19 and anti-

BCMA CAR-T cells (28).

Beside B lymphocytes, also T cells have an important role in

the pathogenesis of GVHD, being able to recognize HLA

mismatches and to stimulate pro-inflammatory responses.

Several drugs target T cells, controlling the inflammatory

response and showing encouraging results in cGVHD patients.

Also, CAR-T cells might be employed to this extent: anti-CD7

CAR-T cells have been designed to specifically eliminate T cells

in the context of T cell malignancies, due to the selective

expression of CD7 on T lymphocytes and NK cells. To

circumvent a potential fratricide effect, engineered cells were

manipulated with CRISPR/Cas9 to disrupt the CD7 gene. This

product showed promising result in cancer and might be

potentially employed also in the context of cGVHD to control

the inflammatory response mediated by T cells (29).

Apart from immune cells, other cells participate in the

generation of tissue injuries in cGVHD. In particular,

fibroblasts have a well-established role in mediating collagen

deposition and fibrosis, especially in the skin and lungs. Lung

fibrosis represents one of the most important causes of disability

and mortality in cGVHD patients. Macrophages and T cells have

an important role in inducing fibroblast proliferation and

collagen deposition and their depletion ameliorates the

occurrence of fibrosis in pre-clinical models. In particular, the

polarization of macrophages toward the M2 phenotype is a key

event in this process: these cells secrete high amounts of TGF-b
and IL-4 that stimulate fibroblasts and boost their activity (30,

31). In 2019, Aghajanian and colleagues developed an anti-

fibroblast activation protein (FAP) CAR construct to target and

kill fibroblasts (32). Anti-FAP CAR-T cells were evaluated in a

pre-clinical mouse model of cardiac fibrosis, proving effective in

ameliorating the cardiac lesions. In particular, treated mice

displayed a significant reduction of the number of fibroblasts

and consequently of the fibrosis compared to the control group.

The therapy was coupled to an improvement of cardiac

functional parameters, like fractional shortening and mitral

valve inflow velocity (32). Considering the important role of

fibroblasts in cGVHD pathogenesis, anti-FAP CAR-T cells

might represent a promising therapeutic tool for patients in

order to limit fibroblast proliferation and subsequent fibrosis,

especially in lungs.
2.2 Regulatory T cells (Tregs)

Tregs represent a subset of CD4+ T lymphocytes specialized

in controlling immune responses and in maintaining immune

tolerance (33). Tregs can be divided into two distinct subsets:

thymic or centrally derived Tregs, and peripherally induced

Tregs. The first group encompasses those cells that directly

exit the thymus with already acquired immune suppressive
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capabilities, and are responsible for the maintenance of self-

tolerance. The second group includes those lymphocytes

generated in the periphery after the activation of CD4+ Tconvs

and are thought to control local activation of the immune

response (34, 35). A unique marker for the identification of

Tregs is still lacking, and up to now a combination of markers is

required for their identification. Tregs are characterized by high

expression of the FoxP3 (Forkhead Box P3) transcription factor,

which represents the master regulator for Treg development and

function. High CD25 (the alpha subunit of the interleukin-2 (IL-

2) receptor) expression level is another Treg feature, also

denoting their great dependency of IL-2 (36).

Regardless of their origin, Tregs are endowed with suppressive

capabilities that can be exerted either via the secretion of

mediators or via cell-to-cell contact. Their action is fundamental

for the correct homeostasis of the immune system. Indeed,

patients diagnosed with the IPEX syndrome (congenital

deficiency of FoxP3) lack functional Tregs and suffer from

several autoimmune manifestations (37).

In the context of HSCT, the equilibrium between effector

and suppressive T cells appears to play an important role in the

development of cGVHD. Even though some studies did not find

lower Treg function in these patients, a plethora of studies have

now shown that altered Treg homeostasis and decreased Treg

counts are associated with cGVHD (38–43).

Based on the recognition that Treg counts are decreased in

patients with cGVHD and that the emergence of this syndrome

is associated with poor immune tolerance post-transplant,

Koreth et al. at the Dana-Farber Cancer Institute conducted

Phase 1 and Phase 2 studies investigating whether daily low-dose

IL-2 administered sub-cutaneously for 8 to 12 weeks would have

an effect in patients with steroid refractory (SR) cGVHD, and if

there was any correlation with Treg counts and function. In

these trials, approximately 50-60% of the patients responded

clinically, some quite significantly, allowing for steroid doses to

be tapered, which was correlated with a significant increase in

Treg counts (44, 45). These studies set the stage for trials of

donor Treg infusions, with the rationale that the patients not

responding to low-dose IL-2 were likely to have an exhausted

Treg compartment and could therefore benefit from the infusion

of fresh donor Tregs, with or without low-dose IL-2.

2.2.1 cGVHD prevention employing Tregs
Several preclinical and clinical studies have suggested that

enriching donor grafts with donor Tregs could improve the

outcome of transplant by facilitating immune reconstitution and

reducing the risk of GVHD, without interfering with the anti-

tumor activity (4, 46, 47).

A major advantage of Treg-therapy is the capacity to induce

allo-specific suppression, avoiding the side effects of general

immunosuppressive drugs. In humans, Treg-based cell therapy

consists of isolation and purification of circulating Tregs from
Frontiers in Immunology 05
peripheral blood (PB) or umbilical cord-blood (UCB), expansion,

and transfer to the patient. However, the purification and

expansion of sufficient numbers of Tregs for effective

immunotherapy is hampered by their low number in peripheral

blood, the lack of specific phenotypic markers for their isolation,

and the slow rate of in vitro expansion for clinical use (48). To

bypass these issues, several protocols have been applied for de

novo generation and expansion of functional Tregs (49, 50).

Expansion protocols usually start from peripheral blood

mononuclear cells (PBMCs), either involving the use of

stimulatory antibodies (e.g. anti-CD3, soluble CD28, anti-CD3/

CD28 magnetic beads) or engineered APCs. In addition, several

compounds have been employed to enrich for Tregs at the end of

the cell culture, either by blocking Tconv activation, boosting Treg

expansion or combining the two approaches (51). Tregs can be

isolated from PBMCs using a CD4+CD25+CD127dim/− Treg cell

isolation kit. However, activated Tconvs display high levels of

CD25 and up-regulate FoxP3, thus limiting the sorting strategy.

Furthermore, experimental evidence showed that cells with a Treg

phenotype in pro-inflammatory environments can be

reprogrammed toward Th17 pro-inflammatory cells with an

amplification rather than an attenuation of tissue damage.

Considering these factors, the risk of having a contaminant

Tconv population after sorting for Tregs is high, in particular in

in vitro expanded cells starting from PBMCs (52, 53).

In the last decade, the safety and feasibility of Treg-based cell

therapy for GVHD prevention and treatment has been tested in

several clinical trials, as mentioned in Table 1. The Perugia group

was the first to provide proof of principle that purified natural

polyclonal Tregs can prevent GVHD mediated by Tconvs in the

setting of haploidentical transplantation for hematologic

malignancies, with no pharmacologic GVHD prophylaxis.

Patients received CliniMACS immunomagnetic purified donor

Tregs (2×106/kg) at day -4, followed by a purified CD34+

hematopoietic stem cell graft and Tconv infusion at day 0. The

upfront infusion of Tregs into conditioned patients permitted

the in vivo expansion of Tregs, as previously described in mouse

models (66). To establish the optimal Treg : Tconv ratio,

different escalating doses of donor Tconv (0.5 - 2x106/kg) were

administered. Di Ianni et al. reported the first results from 28

patients (24 in any complete remission and 4 in relapse) showing

a rapid immune reconstitution with a wide repertoire, an

increased reconstitution of pathogen-specific CD4+ and CD8+

T cells, and a low incidence of CMV reactivation. Two patients

developed ≥ grade 2 acute GVHD (aGVHD) and no patients

developed cGVHD (5). Martelli et al. extended the analysis to 43

patients with high-risk acute myeloid leukemia (AML) in any

remission to investigate whether Treg-Tconv adoptive

immunotherapy would prevent post-transplant leukemia

relapse. In this setting, the incidence of ≥ grade 2 aGVHD was

15% and only one patient developed cGVHD (54). These results

show that adoptive therapy with Tregs is a feasible option in
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HLA-haploidentical transplant, since it enables the control of

alloreactive co-infused Tconvs, with low incidence of GVHD

and persistence of a strong GvL effect.

More recently, the same Treg-Tconv adoptive immunotherapy

protocol was tested in combination with a low-toxicity conditioning

regimen including total marrow and lymphoid irradiation (TMLI).

Pierini et al. designed this protocol for aged or unfit AML patients,

unable to tolerate total body irradiation (TBI). Fourteen patients

were included and the results showed that Tregs (2x106/kg, day-4)

can prevent cGVHD with no need for post-transplant

immunosuppression, and the co-administration of Tconvs

(1x106/kg, day-1) could eradicate minimal residual disease and

ensure relapse free survival (55). These results have been replicated
Frontiers in Immunology 06
in an updated trial conducted by the same group, which combined

and age-adapted myeloablative conditioning regimen, using TBI or

TMLI, with Treg-Tconv adoptive immunotherapy (60). At a

median follow-up of 29 months, moderate/severe cGVHD

occurred in only one patient and 2 patients relapsed.

Considering the low number of Tregs in the peripheral

blood, several groups have explored ex-vivo Treg expansion for

therapeutic application using different protocols while retaining

Treg suppressive activity (67, 68). The first-in-human clinical

trial demonstrating safety and preliminary effectiveness of ex-

vivo expanded Tregs for GVHD prophylaxis in double UCB

transplant was published in 2011 by Brunstein et al. (68).

Cryopreserved UCB-derived Tregs were expanded in culture
TABLE 1 Principal trials on Treg-cell based therapy in GVHD prophylaxis and treatment.

Design Indication
(population included)

Intervention/Treg mean cell dose N. °
pts

PI/Location Status Reference

Phase I,
single center

Prophylaxis
(adults with hematologic
malignancy)

Donor Treg + Tconv - Haplo SCT
(2×106/kg)

28 Di Ianni et al./
Perugia

Completed (5)

Phase II,
single center

Prophylaxis
(adults with high risk AML)

Donor Treg + Tconv - Haplo SCT
(2×106/kg)

43 Martelli et al./
Perugia

Completed (54)

Phase II,
single center

Prophylaxis
(elderly with high risk AML)

Donor Treg + Tconv - Haplo SCT + TMLI
(2×106/kg)

14 Pierini et al./
Perugia

Completed (55)

Phase I,
single center

Prophylaxis
(adults with hematologic
malignancy)

Expanded 3rd party UCB Treg - UCBT
(1-30x105/Kg; 3-10x06/Kg)

23;11 Brunstein et al./
Minnesota

Completed (56, 57)

Phase I/II,
single center

Prophylaxis
(adults with hematologic
malignancy)

Expanded and fucosylated 3rd party UCB
Treg
(1×106/kg)

5 Kellner et al./
Houston

Completed (58)

Phase I/II,
single center

Prophylaxis
(adults with hematologic
malignancy)

Highly purified Treg + Tconv – MAC
(1-3×106/kg)

12 Meyer et al./
Stanford

Completed (59)

Phase II,
single center

Prophylaxis
(child, adult, elder
high risk AML)

Donor Treg + Tconv - Haplo SCT + TMLI/
TBI
(2×106/kg)

50 Pierini et al./
Perugia

Completed (60)

Phase I Treatment cGvHD Expanded donor Treg + IL-2
(1x105 Treg/kg)

2 Trzonkowski et al./
Gdańsk,

Completed (61)

Phase I Treatment cGvHD Expanded donor Treg ± IL-2
(2.4x106 Treg/kg)

5 Theil et al./
Dresden

Completed (62)

Phase I Treatment cGvHD Donor Treg
(1,5x106 Treg/kg)

10 Johnston et al./
Stanford

Completed (63)

Phase I/II
TREGeneration

Treatment cGvHD Donor Treg (dose escalation; MTD) Lacerda et al./
Lisboa

Recruiting –

Phase I
TREGeneration

Treatment cGvHD Donor Treg + IL-2 Koreth et al./
Boston

Completed (64)

Phase I/II,
TREGeneration

Treatment cGvHD Donor Treg (multiple infusion dose
escalation; MTD)

Arpinati et al./
Bologna

Recruiting –

Phase I/II
TREGeneration

Treatment cGvHD Expanded donor naïve Treg Edinger et al./
Regensburg

Recruiting –

Phase I/II,
TREGeneration

Treatment cGvHD Donor Treg + rapamacine and/or IL-2 Baron et al./
Liège

Recruiting –

Phase I
TREGeneration

Treatment cGvHD refractory to
ruxolitinib

Donor Treg Perez Simon et al./
Seville

Recruiting –

Phase II,
multicenter

Treatment cGvHD Autologous T-cell depleted + Treg expanded 17 Ahmad et al./Canada Completed (65)
fro
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with anti-CD3/anti-CD28 antibody-coated beads and

recombinant human IL-2. Twenty-three patients received a

dose of 0.1-30 ×105 Treg/kg at day +1, followed by GVHD

prophylaxis with cyclosporine A (CsA)/sirolimus and

mycophenolate mofetil (MMF). After infusion, Tregs could be

detected for 14 days, with the greatest proportion of circulating

Tregs observed on day + 2. There were no transfusion-related

adverse events and compared with identically treated 108

historical controls, there was a reduced incidence of grade II-

IV aGVHD (43% vs 61%; p=0.05) with no increased risk of

infection, relapse, or early mortality (56).

In 2016 an extended analysis was published, confirming the

safety profile and maximal tolerated dose. Here, in order to

maximize the infused Treg dose and increase Treg potency,

selected CD25+ UCB cells were expanded in cultures with K562

cells modified to express the high-affinity Fc receptor CD64 and

CD86 (CD28L), in the presence of IL-2. Eleven patients received

a dose of 3-100×106 Treg/kg. There were no dose-limiting

infusion adverse events. The incidence of grade II-IV aGVHD

at 100 days was 9% vs 45% (p=0.05) comparing to a non-

randomized Sirolimus/MMF control group. The incidence of

cGVHD at one year was 0 vs 14% (57).

Another approach to expanded UCB-derived Tregs for

GVHD prophylaxis was developed using fucosylation of the

expanded human Tregs in order to improve their trafficking

pattern. Tregs bind endothelial E- and P-selectins for trafficking

to sites of inflammation, and the incubation of Tregs with

fucosyltransferase-VI has shown to effectively increased their

homing in severe immunodeficient mice (69). Based on these

results, Kellner et al. designed a pilot study of adoptive therapy

with fucosylated ex-vivo expanded UCB-derived Tregs in allo-

HSCT patients. Five patients were included and a dose of 1 x106

Treg/kg was infused at day -1. Although all patients developed

grade II-IV aGVHD, there was no evidence of cGVHD at a

median follow up of 25 months (58).

Despite the different protocols, the purity of Treg products

has been difficult to control, which can limit the efficacy of Treg

infusion due to contamination with effector cells. In order to

increase Treg purity, Meyer et al. developed a strategy of double

Treg selection using immunomagnetic selection and high-speed

flow cytometric sorting. This protocol was used in 12 patients

with various hematologic malignancies after a myeloablative

transplant (59). A purity of 91%-96% was obtained and Tregs

were infused on day 0 (1-3x106/Kg) followed by Tconv infusion

at 1:1 ratio on day +2. The first 5 patients received cryopreserved

Tregs, with 2 patients developing grade II-IV aGVHD. Seven

patients received fresh Tregs and single-agent GVHD

prophylaxis, with no acute nor cGVHD development at a

median of 501 days post HSCT (59). These results suggest that

there is a reduced functionality of Tregs after cryopreservation,

and that highly purified Tregs may avoid Treg expansion.
Frontiers in Immunology 07
2.2.2 Tregs for cGVHD treatment
Although adoptive Treg therapy has been mainly tested in

GVHD prevention, ongoing and completed clinical trials

investigate the safety and efficacy of polyclonal Treg infusion in

the treatment of SR cGVHD. The first-in-human clinical study

suggesting Treg infusion as an adjuvant therapy in refractory

GVHD was published in 2009 by Trzonkowski et al. (61). Donor-

Tregs were incubated with anti-CD3/CD28 beads and expanded

with high dose IL-2; the results show significant alleviation of

symptoms, allowing reduction of immunosuppression.

In 2015, Theil et al. used adoptive therapy with donor-expanded

Tregs to treat refractory cGVHD in patients with AML who

underwent allo-HSCT (62). After incubation with anti-CD3/CD28

and expansionwith high dose IL-2 and rapamycin for 2–3weeks, the

final products contained mean quantity of 2.4x106 Treg/kg with an

average purity of 84.1%. The expanded cells showed suppressive

function in vitro andwere infused at amedian time of 35weeks post-

transplant. Five patients were infused; 2/5 patients had an increase of

circulating Tregs and partial response of cGVHD. Three patients

were alive at the endof the follow-upperiod and2patients developed

skin cancers after 4 and 11 months of Treg infusion (62).

Later on, Johnston et al. accessed the safety and tolerability

of Treg therapy for SR cGVHD in matched related donor

recipients, using highly purified donor-derived Tregs, through

clinical scale high speed cell sorting. Tregs were administered in

a single infusion, at three different doses. The maximum feasible

dose attainable without ex vivo expansion was 1.5 x106 Treg/kg,

resulting in encouraging preliminary clinical responses (63).

In 2015, the clinical consortium TREGeneration, coordinated

by João Lacerda Lab in Lisbon, was created with the primary aim to

explore the safety (phase 1) and preliminary efficacy (phase 2) of

different donor-derived Treg products for the treatment of patients

with SR cGVHD after allo-HSCT. This research is running in

parallel in several institutions, using different protocols for Treg

preparation and/or administration (Table 1). Results from the

phase 1 study conducted at the Dana Farber Cancer Institute-

Boston were recently published. This group showed that a single

infusion of polyclonal Treg-enriched lymphocytes, from the

original stem cell donor, followed by daily low-dose IL-2 was safe

and well tolerated, with clinical benefit, including in those with

inadequate responses to IL-2 alone (64). Furthermore, therewas an

increase inTreg repertoire diversity, with expansion and long-term

persistence of infused Treg clonotypes.

Overall, the safety of Treg adoptive immunotherapy has

been successfully validated. However, new questions were raised

concerning the ideal source, isolation method, dose and timing

of Treg infusion. Ongoing clinical trials investigating the efficacy

of Treg infusion for GVHD prevention and treatment in larger

populations will help clarify these questions and will give us

important additional information about the clinical

implementation of these cells in the near future.
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2.2.3 CAR-Tregs
Finally, in this new era of gene and cell therapy we anticipate

that the use of polyclonal Treg-based therapy will shift towards

engineered antigen-specific Tregs, likely able to generate more

potent responses, without the concerns of off-target effects (51). In

this setting, the development of CAR-Tregs appears to be a

promising strategy. In two pre-clinical models, CAR-Tregs

demonstrated effectiveness in controlling GVHD manifestations.

In 2016, MacDonald et al. generated alloantigen-specific anti-

HLA-A2 CAR-Tregs. The authors demonstrated that CAR-Tregs

performed better than untransduced Tregs in suppressing the in

vitro proliferation of HLA-A2 PBMCs. Strikingly, only anti-HLA-

A2 CAR-Tregs were able to efficiently prevent the onset of

xenogenic GVHD in a mouse model of HSCT (70). Similar

results were published in 2017 by Pierini et al. The authors

generated customizable CAR-Tregs, specific against CXCL12

and MAdCAM-1 to localize the cells in the gut. Engineered

Tregs managed to efficiently suppress the inflammatory

response in a mouse model of intestinal acute GVHD, thus

ameliorating the clinical picture (71). In addition, Imura et al. in

2020 proved the efficacy of anti-CD19 CAR-Tregs in controlling

the clinical manifestations in a mouse model of xeno-GvHD (72).

It is well established that Tregs can preserve the immune

tolerance by directly killing activated target cells, e.g. Tconvs and

APCs. However, the exact mechanisms are not fully elucidated due

to contradictory results, which have been extensively discussed

elsewhere (73). A direct cytotoxic effect might represent a potential

concern for theuseof engineeredTregs, limiting the employmentof

CAR-Tregs redirected against self-antigens and healthy tissues.

Several CAR-Treg studies reported a negligible cytotoxic effect of

engineered cells both in vitro and in vivo. Some authors described a

minimal cytotoxicity only in vitro culturing the cells at high

effector-to-target ratios and only with specific CAR molecules

(74–76). It is still not clear whether this might be dependent on

the manufacturing protocol, Treg selection, CAR structure or the

CAR target. Although a potential cytotoxicity might represent a

limitation for the use of anti-self CAR-Tregs, this capacitymight be

useful in specific circumstances. Indeed, the direct killing of

pathogenic cells and the suppression of by-stander ones might

help to better control the inflammatory response in GvHD. This is

supported by some publications that demonstrated how CAR-

Tregs might control GvHD, while preserving the Graft-versus-

Tumor (GvT) effect in mice (77). Further studies are required to

better elucidate the suppression mechanisms of CAR-Tregs and

their regulation.
3 NK cells

NK cells are the first lymphocytes to reconstitute after both

autologous or allogeneic HSCT, as well as after UCB
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transplantation. NK cells have been well studied in terms of

acute GVHD, where they appear to protect from disease by

targeting alloreactive T cells. There are fewer studies on NK cells

in the context of cGVHD, and still inconclusive whether they

contribute to or protect from disease. As such, there are

currently no NK cell-based therapies, but strategies targeting

or utilizing NK cells should be explored.

An early study reported that patients with extensive cGVHD

had low blood NK cell counts (78), and another study showed

that there were fewer NK cells in skin lesions of cGVHD patients

compared to aGVHD patients in a cohort of patients receiving

allo-HSCT from HLA-matched siblings (79). These finding

suggest that low blood NK cell counts may not reflect

increased tissue re-localization and infiltration of NK cells into

sites of cGVHD. This notion is supported by studies showing

correlations of NK cell numbers and their functional capacities

with cGVHD outcome. A study comparing UCB with peripheral

blood HSCT reported a higher increase of NK cells in recipients

of UCB, with concomitant lower rate of cGVHD (80), although

the authors could not demonstrate any direct association of risk

to NK cell parameters. Another study in pediatric UCB

transplant patients, reported that early detection of NK cells

with functional capacity was a contributing factor for low

incidence of cGVHD (81).

As to any direct role in cGVHD pathology, an early study

suggested that NK cells in collaboration with suppressive CD8+ T

cells could contribute to suppression of autoantibody-producing B

cells, and that this function may be compromised in autoimmune

diseases (82). Other studies strongly point to involvement of the

MICA-NKG2D axis that could be detrimental in terms of cGVHD.

Elevated soluble MICA levels in plasma have been associated to

cGVHD susceptibility, in particular the MICA-129Val

polymorphism (83). The MICA-NKG2D axis is well characterized

in the context of cancer, where engagement ofMICA on tumor cells

by NKG2D unleash NK cell cytotoxicity. Elevated soluble MICA

levels in a pro-inflammatory milieu in cGVHD could drive

pathogenic IFN-g from NK cells contributing to exacerbating

cGVHD, as suggested in a study by Boukouaci and colleagues (84).

Production of INF-g by donor effector cells associate to onset of

cGVHD, and IFN-g promotes secretion of BAFF from monocytes

that promote B cell activation and autoantibody production (85).

Thus, dampening IFN-g production byNK cells through theMICA-

NKG2D axis could be a therapeutic option.

A perhaps more feasible avenue is to explore CAR NK cells,

in analogy to the use of CAR-T cells described above. Potentially,

CAR NK cells targeting CD19 or CD20 could be exploited in

cGVHD as a potentially safer alternative to CAR-T cells. The use

of CAR NK cells against cancer has shown great promise, and

CD19 or CD20 CAR NK-92 cells or allogeneic primary NK cells

have successfully been used to eradicate B cell malignancies (86–

88). There are currently no trials on CAR NK cells in context of
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cGVHD, but it is obvious that CAR NK cells could have utility in

targeting and eradicating pathologic B cells in cGVHD patients.
4 Invariant NKT cells

Invariant NKT cells, also known as classical or type I NKT

cells, is a group of T cells with innate properties. The cells

express a semi-invariant TCR a-chain (V a 24Ja18 paiting with
b11 in humans, or Va14Ja18 in mice pairing with a restricted

set of TCRb chains (89), together with NK cell receptors. iNKT

cells produce high amounts of IL-4 and IFN-g, and their

development is dependent on the transcription factor

promyelocytic leukemia zink finger (PLZF). Their TCR

recognize glycolipids presented by the non-polymorphic

MHC-1-like molecule CD1d (90). Although they are normally

in low numbers in peripheral blood, they represent an important

population of immunoregulatory cells.

Studies on the relationship of doses of different immune cell

populations in allografts have demonstrated that the dose of

iNKT cells, as well as Tregs, impact both disease-free survival

and overall survival (91). Early studies showed that expanding

iNKT cells in murine models of GVHD protected against GVHD

through polarization towards a Th2 response and donor Treg

expansion, effects that were dependent on IL-4 produced by the

iNKT cells (92). Recent studies have demonstrated that iNKT

represent a promising candidate for cellular therapy of cGvHD.

Adoptive transfer of donor iNKT cells to mice were shown to

prevent cGVHD and even reverse lung cGVHD, and the authors

suggested this was linked to increased frequencies of follicular

Tregs via production of IL-4 from the iNKT cells (93). In terms

of their future clinical use, several studies have shown the

feasibility of expanding iNKT cells using IL-2 and the

synthetic ligand a-GalCer (94).
5 Innate lymphoid cells

ILCs comprise a group of cells with lymphoid morphology

and various functions, ranging from important roles in tissue

homeostasis and autoimmunity to immune defense against

invading pathogens (95, 96). Depending on the pattern of

cytokine secretion and the expression of transcription factors,

ILC1, ILC2 and ILC3 have been described with different

functions for immunity and tissue integrity. While ILC1 are

proinflammatory IFN-g-producing cells (97), ILC2 play a role in
atopic diseases and tissue repair (98), and ILC3 are important for

tissue homeostasis and can inhibit pathological T cell responses

(99, 100). Given their involvement in tissue repair and

homeostasis, ILC are optimal cellular targets in GVHD, as

tissue damage and impaired tissue homeostasis are the main

factors in GVHD pathophysiology and drivers of the disease, in

addition to autoreactive immune components (101).
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Indeed, evidence from mouse models of GVHD suggests

that ILC play a role in the pathogenesis of GVHD. Elegant

mouse models showed that IL-23-responsive ILC3 produce IL-

22, which protects intestinal cells from tissue damage and acts as

critical regulator for GVHD (102). ILC-derived IL-22 reduced

the severity of acute GVHD and GVHD-related mortality in this

mouse model (102). A similar effect was shown in another

mouse model with ILC2, which were severely affected by

conditioning regimens (103). However, upon infusion of

donor ILC2, gastrointestinal tract homeostasis was restored,

Th1 and Th17 cells were reduced, while GVL was still

preserved (103). Importantly, these effects were also observed

upon adoptive transfer of ILC2 in mice with established GVHD,

suggesting that ILC2 can be used not only to prevent GVHD, but

also in a therapeutic setting (103).

In humans, correlations of ILC activation and incidence of

GVHD in patients after allo-HSCT suggest that ILC recovery

affects the development of GVHD (104). Furthermore, ILC3 are

reduced in SR GVHD and can be restored by fecal microbiota

transplantation correlating with the response to this experimental

treatment (105). A subtle balance between proinflammatory Th17

and cytotoxic T cells on the one side and regulatory T cells and

ILC3 on the other side seems to be important for the success of

fecal microbiota transplantation (105). Besides their positive effect

on tissue damage and restoring homeostasis, a subset of ILC3

expressing the ectoenzymes CD39 and CD73 can directly suppress

T cell responses via the production of adenosine (106). This subset

of ILC3 is depleted in patients with GVHD (106), which could be

another factor contributing to the development of GVHD. As the

presence of ILC3 in HCT grafts is associated with a reduced risk

for GVHD (107), this cell population could be a candidate for

adoptive transfer as GVHD-preventive or -therapeutic strategy.

Taken together, ILC2 and ILC3 positively affect GVHD and,

together with other cellular targets, might represent a novel

immune cell population to be utilized for therapeutic intervention.
6 Mesenchymal stromal cells

MSCs are fibroblast-like multipotent progenitor cells with

immunosuppressive properties in vitro and in vivo (108).

Although MSCs have extensively been used in clinical trials

for GVHD therapy and have shown some efficacy, some studies

did not reach statistical significance. Indeed, overall response

rates of MSC for aGVHD range from 30-80% (109). This may

be due to the fact that many trial patients had been heavily pre-

treated, and due to different application procedures, doses, as

well as production protocol (110). Furthermore, the source of

MSCs may be critical for the therapeutic efficacy, as pre-clinical

in vivo and in vitro studies have shown. Finally, the

identification of adequate biomarkers could help to

personalize and adapt effective cGVHD therapy or even

prevention (111, 112).
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6.1 Prophylactic use of MSCs in cGVHD

The prophylactic use of MSCs for cGVHD is summarized in

a review by Morata-Tarifa et al. (113). Their meta-analysis

confirms that the prophylactic administration of allogeneic

bone marrow and umbilical cord MSCs can increase survival

of pediatric and adult patients undergoing HSCT by reducing

the incidence of cGVHD in 148 treated patients as compared to

236 controls. There was a significant heterogeneity in the overall

survival across the individual studies indicating that there must

be additional factors determining the survival rate (113). These

could include the level of HLA-mismatch between donor and

recipient (114), conditioning regimens (115), length and nature

of immunosuppression (116, 117), as well as the number of

repeated MSC doses (113). These diversifying factors given

above may have caused a certain publication bias which can

overcome by a standardization in the manufacturing process as

well as adequately powered prospective studies. Both may help

to confirm efficacy and safety of cGVHD treatment with MSC

and thus improve the consistency of future clinical trials

(118, 119).
6.2 Treatment of cGVHD with MSC

To our knowledge the first report on treatment of SR

cGVHD with MSCs enclosed 19 patients (120). They received

a median dose of bone marrow-derived MSCs from healthy

donors with 0.6 x 106 cells/kg. 73.3% of the patients responded

well with 4 complete and 10 partial remissions whereas 5

patients died from relapse (n=2) and cGVHD-related

complications (n=3). No patients experienced adverse events

during or immediately after MSC administration. Interestingly,

the clinical improvement was accompanied by an increased ratio

of CD5+/CD5- B cells and CD28-/CD28+ T cells, respectively,

suggesting a shift to the more tolerant immunological

phenotype. The authors conclude that MSC administration

can be an effective salvage therapy for refractory cGVHD (120).

Recently, Li et al. reviewed and meta-analyzed 6 randomized

and 13 non-randomized controlled trials comparing MSC co-

transplantation in allo-HSCT with allo-HSCT alone (121).

Generally, a co-infusion of MSCs improved engraftment and

reduced the risk of cGVHD, notably less pronounced for

aGVHD and non-relapse mortality. Specifically, the data

obtained support the application of MSCs co-transplanted

with HLA-nonidentical HSCT in children and young

individuals (121). The data corroborates a previous study

demonstrating that MSC therapy led to substantial

improvements in terms of complete response and overall

survival for cGVHD, with less influence, again, on aGVHD

incidence, relapse or death (122).
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MSCs may also work in patients with severe refractory

cGVHD and still induce durable responses. In a recent study

by Boberg et al. 11 patients received repeated infusions of

allogeneic bone-marrow-derived MSCs over 6 to 12 months. 6

patients responded to MSC treatment following National

Institutes of Health response criteria, accompanied by

improvement in GVHD-related symptoms and quality of life.

Of note, MSC treatment was associated with significant increases

in naïve T cells, B cells, and Tregs 7 days after each infusion.

Even prior to treatment responders had higher levels of naïve T

and B cells. In addition, CXCL9 and CXCL10 chemokine levels

were strongly elevated in responders as compared to non-

responders, rendering them as potential new biomarkers of

MSC therapy outcome (123).

An alternative mechanism of action howMSCs could benefit

patients with cGVHD may be the induction of CD5+ regulatory

B cells. In a prospective clinical study 23 refractory cGVHD

patients were treated with 3rd party bone marrow MSCs. 20/23

patients had a complete or partial response over a 12-month

follow-up period. Clinical improvement was accompanied by a

significantly increased number of IL-10-producing CD5+ B cells.

Importantly, CD5+ B cells from cGVHD patients showed

increased IL-10 expression after MSC treatment, which was

associated with reduced inflammatory cytokine production by

T cells (124).

It is well established that the vascular endothelium plays a

pivotal role in the establishment of cGVHD and that endothelial

cells can be targets of cGVHD-mediated immune responses

(125, 126). There is in vitro evidence that some of these immune

responses are not just allo-, but strictly endothelial-specific and

cannot be controlled by the usual mechanisms, such as Tregs

(127, 128). Allogeneic MSCs from different sources (bone

marrow, umbilical cord, amniotic epithelium) have turned out

to be protective against CD8+ endothelial-specific cytotoxic T

cells (129), which may be another mechanism of action on how

MSCs act.

A great deal of work has been spent on priming of MSCs to

ameliorate their immunomodulatory/protective function. For

example, pre-clinical data suggest that priming of MSCs with

interferon gamma and hypoxia (130) or even with aGVHD and

cGVHD-derived plasma (131) can significantly enhance MSC

performance. Furthermore, in a humanized mouse model,

umbilical cord-derived MSC primed with hypoxia and calcium

ions attenuated GVHD significantly better than their naïve

counterparts (132). It remains to be elucidated if this approach

will also work for clinical cGVHD.

In conclusion, MSCs generally qualify for prophylaxis and/

or treatment of refractory cGVHD, but larger randomised

controlled trials with repeated doses of cells accompanied by

well-designed biomarker studies will be necessary to further

advance this therapeutic option.
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6.3 MSC-derived extracellular vesicles

Despite their beneficial properties as a cellular therapy for

aGVHD, MSCs have demonstrated a lack of correlation between

functional improvement and engraftment as well as

differentiation at the site of tissue damage or injury. Many

hypotheses now center around the belief that it is not the

MSCs themselves, but rather their secretome, including

extracellular vesicles (EVs) that are driving their therapeutic

efficacy. Thus, known as the ‘paracrine hypothesis’. Indeed, co-

culture of MSCs with Tconvs in a non-direct transwell system

results in Treg induction (133). The potency attainable by MSC

may also be inferior to MSC-EV. For instance, MSC suppressed

T cell expansion to a lesser extent than MSC-EVs derived from

the same number of MSC cells (134). Overall, MSC-EV have

been shown to exert an inhibitory effect on T-cell activation and

differentiation, as well as reducing T-cell proliferation and IFN-g
release (135). Although the full beneficial use of MSC-EV as a

GVHD therapeutic is still being explored, several studies are

indicating promising results.

MSCs have been shown to secrete the main subcategories of

EV, including microvesicles (136), microparticles (137) and

exosomes (138). MSC-derived EVs are enriched in bioactive

molecules including lipids, proteins, mRNA, tRNA, lncRNA,
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microRNA and mitochondrial DNA (139) and have been

proposed to interact with heterogeneous cell types as a

communication vesicle to maintain a dynamic and homeostatic

tissue environment (140) (Figure 3).

MSC-EV demonstrate great potential as therapeutic agents,

as they carry a number of advantages over their parental cells.

From a practical perspective, MSC-EV can be easily isolated

from healthy adult tissues and they have great ex vivo expansion

capacity. Their small size and robust membrane makes them

easier to handle than cells, and freezing, thawing and storage

conditions are less critical (141). Furthermore, as they are

produced from cell supernatants and not the cells themselves,

large scale production is more feasible (141).

MSC-EV are less likely to trigger an adverse immune

response compared to their parental cells, due to their lack of

major histocompatibility complex class I/II molecules, which

makes them attractive as a safer therapy (142). Indeed, they have

proven to be safe in both human and animal models, with no

observed side effects (143, 144). As MSC-EV are nano-sized in

nature, they can migrate through most physiological barriers,

allowing effective concentrations to accumulate in target tissues

(145). As EVs are non-viable and non-replicating they may

avoid the risk of unregulated cell growth, autoimmune disease

and occlusion in the microvasculature (145, 146). Furthermore,
FIGURE 3

Origin of mesenchymal stromal cell extracellular vesicles and putative role for GVHD. Mesenchymal stromal cells (MSC) may be derived from a
variety of sources, including bone marrow, adipose tissue, muscle, neonatal tissues, dental pulp and skin. The MSC release extracellular vesicles
(EV) by inward budding of the plasma membrane and formation of intracellular multivesicular bodies (MVB), followed by exocytosis. MSC-
derived EVs are enriched in various proteins with multiple functions, such as biogenesis-related proteins (e.g., TSG101, ALIX), common surface
markers (e.g., CD9, CD81, CD29, CD44 and CD90), membrane transporter and fusion proteins (e.g., Rab GTPases and annexins), integrins, heat
shock proteins (e.g., HSP60, HSP70 and HSP90) and MHC class I and II proteins, DNA, RNA and noncoding RNA (ncRNA), including miRNA,
lncRNA, and circRNA. The MSC-EVs may modulate acute or chronic GVHD by acting on diverse immune cells.
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the biological activity and functional properties of MSC-EV may

be more precisely defined compared to their parental MSCs, as

they lack complex metabolic activity and as such, the risk of

reprogramming by the environment is reduced (141).

The nano-size of MSC-EV allows for sterilization by filtration.

This should effectively minimize the risk of biological

contamination, and accordingly, the regulatory requirements for

clinical grade production of EVs may not be as restrictive as for

cellular therapy (147). Indeed, since MSC-EV from conventional

MSC do not contain a nucleus or transgenic product they do not

fall into a currently defined advanced therapy medicinal product

(ATMP) category. They are therefore exempt from regulations

under the European Medicines Agency (EMA), and guidelines for

their standardized production and quality assurance are not

yet defined.

However, the use of MSC-EV comes with some caveats. To

date, recommendations concerning the production and

application of EV-based therapies have been advised by the

International Society for Extracellular Vesicles (ISEV), but these

are simply guidelines and not currently regulated (148). Although

MSC-EVs possess potent immunomodulatory properties, their

immunosuppressive capacity is not constitutive. In addition, there

is no standardization surrounding the optimal protocols for

isolation of MSC-EV and identifying or characterizing MSC-EV

phenotypes (145). Much work is required between researchers,

clinicians and the regulatory authorities in order to stand arise all

aspects relating to production of EV-based therapeutics prior to

routine clinical application, including but not limited to the source

of the starting material, EV isolation and storage methods, quality

control aspects and in vivo analyses/EV application, as

summarized in an eloquent position paper by the International

Society for Extracellular Vesicles (ISEV) (141).
6.4 MSC-EVs for treatment of cGvHD

MSC-EVs are immunologically active and induce elevated

expression of anti-inflammatory IL10 and TGFb1, and reduced

levels of pro-inflammatory IL1b, IL6, TNFA and IL12P40.

Furthermore, they can induce Tregs both in vitro and in vivo,

andMSC-EV infusion has been shown to enhance the survival of

allogeneic skin grafts in mice (149). Studies by Zhang et al.

demonstrated that the immunosuppressive activities of MSC-

EVs are mediated in part by activation of MYD88-dependant

signaling in monocytes to induce an anti-inflammatory M2-like

phenotype via a TLR-dependent signaling pathway (149).

Activated monocytes then polarize activated Tconvs to Tregs,

inducing Treg expansion and an attenuated activated immune

system (149).

MSC-EVs have been shown to replicate the therapeutic

effects of MSC cells in models of acute lung injury, skin

wounds and myocardial ischemia (150, 151). Although studies

relating to the therapeutic effect of MSC-EV in cGVHD are in
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their infancy, MSC-EV have been demonstrated as a promising

therapeutic tool for treating pulmonary complications of

cGVHD (145) and exhibit potent suppression of autoreactive

T cell activation and migration, which is essential in the

pathogenesis of cGVHD (145).

In their seminal 2014 study, Kordelas et al. administered

MSC derived EVs to a SR GVHD patient, with the hypothesis

that MSC-EVs may offer improved outcome compared to MSC

therapy (143). The MSC-EV fractions from four unrelated bone

marrow donors were tested for their effect on patient derived

PBMC cytokine secretion. MSC-EV fraction 1 contained the

highest content of anti-inflammatory molecules, and a mixed

lymphocyte reaction (MLR) with patient PBMC’s resulted in

immunosuppressive action by reducing IL-1b, TNF-a and IFN-

ɣ expression (143). Following patient administration, all

applications were tolerated well with no detected side effects.

During the course of MSC-EV therapy, the patient’s pro-

inflammatory cytokine response were reduced (IL-1b, TNF-a
and IFN-ɣ) and the clinical symptoms of GVHD improved,

including indications of cutaneous and mucosal GVHD, which

was stable 4 months following completion of therapy (147).

In a follow up clinical case report, Norooznezhad et al. used

human placental MSC (hPMSC)-derived EVs to treat a patient with

cutaneous cGVHD that was unresponsive to ECP and high-dose

corticosterioids (152). The patient received 4 treatments at a weekly

interval, comprising of 1.9-2.6 x 1011 EV particles administered in

saline, and treatment was well tolerated with no side-effects

observed. 15 days-post treatment, skin hyperpigmentation was

reduced and the frequency and severity of ulcers, wounds and

keratotic lesions was decreased. Monocyte levels were also

significantly reduced from 18% to 5%, and clinical changes were

sustained for 5 months of follow up assessment (152). This study

further highlights the potential of MSC-EV therapy for cGVHD

and strengthens the need for follow up larger scale trials, as well as

investigation of the impact of MSC source for EV harvesting.

In mouse model pre-clinical studies to assess mechanisms of

MSC-EV action, Lai et al. employed a cGVHDmouse model and

tail vein injected bone marrow derived MSC-EV on day 22

following BMT (145). The EV injections were administered once

per week for 6 weeks and test mice were compared to control

mice injected with human dermal fibroblast EVs, or blank

control mice injected with equal volumes of PBS (145). They

observed that MSC-EV treatment effectively prolonged the

survival of cGVHD mice and diminished the clinical and

pathological cGVHD scores (145). The activation and lung

infiltration of CD4+ T cells was reduced, and skin, lung and

l iver fibros i s was amel io ra ted (145) . The potent

immunomodulatory effects observed were shown to be via

inhibition of IL-17-expressing pathogenic T cells and

induction of IL-10 regulatory cells (145). By 35 days post-

BMT, the MSC-EV mice demonstrated few clinical GVHD

features, low disease and skin scores of cGVHD pathology and

significantly improved survival compared to control mice, which
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demonstrated characteristic clinical signs of cGVHD, suggesting

MSC-EV to have an inhibitory effect on cGVHD. The activation

and infiltration of CD4+ T cells in target organs was also

inhibited, and CCR6 expression was reduced, which normally

functions to recruit Th17 cells (145). Reduced Th17 frequency

and upregulated IL-10 and FOXP3 was also observed in the

splenocytes and lymph nodes of MSC-EV treated mice (145). Lai

et al. also assessed the effect of MSC-EV on pro-inflammatory

cytokine production and observed significantly lower levels of

IL-17A, IL-22 and IL-21 and IL-2 in MSC-EV treated mice,

while IL-10 levels were increased 2-fold (145). Importantly, the

effect of MSC-EV on human PBMCs was tested in vitro. The

authors showed that MSC-EV are taken up by CD3 cells and

upregulate the percentage of CD25+Foxp3+CD4+ Treg in

PBMCs from normal donors. When the same PBMCs were

cultured under Th17 conditions, MSC-EV suppressed Th17

differentiation. In PBMCs from patients with active GVHD,

IL-17 expressing CD4+ T cells were reduced and IL-10

production was increased upon MSC-EV treatment. Finally,

MSC-EV suppressed expression of RORɣt and Stat3, while

upregulating production of Foxp3 (145). These important

findings indicate that MSC-EV’s therapeutic action in cGVHD

may be attributed to expansion of Tregs while inhibiting pro-

inflammatory Th17 cells, suppressing migration and infiltration

of CD4+ T cells into target organs. The MSC-EV also exert

immunosuppressive effects on cytokine production (145).

However, despite these informative results, the group did not

explore the molecular cargo of the MSC-EV in order to fully

elucidate their immunomodulatory effects in the mouse model

of cGVHD studied, or the Th17/Treg differentiation

modulation observed.

In a further pre-clinical study, Fujii et al. also investigated the

mechanisms by which MSC-EV may ameliorate GVHD-

associated complications, based on an acute model of disease

(134). They used MSC-EVs from the bone marrow of healthy

volunteers and assessed the effect of EVs on functional T cell

subsets in vitro. In the presence of MSC-EVs, analysis of

peripheral blood T cell revealed suppression of CD8+ T cell

expansion, a decreased frequency of effector T cells and

increased frequency and number of naïve T cells, suggesting

an overall suppression of functional differentiation of T cells

from a naïve to effector phenotype (134). MSC-EV suppressed T

cell expansion, while B cell, NK cell and mature myeloid cell

populations were not affected. The MSC-EV treated mice

demonstrated prolonged survival, and mitigated GVHD-

associated pathology in the skin and large bowel. Interestingly,

authors performed some limited assessment of the MSC-EV

cargo and microarray analysis identified 336 microRNAs that

were upregulated and 337 microRNAs that were downregulated

compared to normal human dermal fibroblast EVs (NHDF-EV),

including miR-125a-3p which was the most highly upregulated

microRNA in MSC-EV (134). GO enrichment analysis revealed

the most highly up and down-regulated microRNAs in MSC-
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EVs were predicted to target proliferation-related genes, while

KEGG pathway analysis revealed genes with a role in cell cycle

regulation, T cell receptor signalling and GVHD.

In a pre-clinical model to investigate prevention of GVHD,

Zhang et al. showed that MSC-EVs can replicate the paracrine

potency of MSCs in generating Tregs, in a capacity mediated by

antigen presenting cells (146). This was corroborated in a

chimeric hu-SCID mouse of GVHD, whereby GVHD

symptoms and survival were improved by MSC-EV treatment,

with surviving mice demonstrating higher Treg levels in both the

blood and spleen (146). Wang et al. demonstrated that human

umbilical cord-derived EVs (hUC-MSC-EVs) had the capacity

to act prophylactically against aGVHD following intravenous

administration to a mouse model of allo-HSCT on days 0 and 7

post-HSCT (153). Indeed, treated mice showed significantly

lower frequencies and absolute numbers of CD8+ T cells,

reduced serum IL-2, TNF-a and IFN-g levels, a higher ratio of

CD4+ and CD8+ T cells and higher serum IL-10 levels,

strengthening the prophylactic use of MSC-EV in order to

modulate immune responses. Overall, the severity of GVHD

manifestations were reduced at day 28 post-HSCT, with reduced

weight loss, improved GVHD score, prolonged survival and

reduced histology scores for GVHD-associated changes (153).

Despite these numerous reports highlighting the beneficial

potential of MSC-EV for GVHD prevention and treatment, as

well as their role in informing on the pathophysiology of GVHD,

use of MSC-EV prevents several caveats. Indeed, the field of EVs

is still in its infancy, for which several Task Force groups within

the International Society for Extracellular Vesicles are working

to address fundamental issues supporting their use. Many of

these issues are comprehensively described elsewhere (141, 148,

154, 155) and are beyond the scope of this review, but when

considering MSC-EV for therapy, special attention should be

given to factors such as MSC source (e.g bone marrow, adipose

tissue, synovial membrane, umbilical cord), EV production (eg.

culture system, medium composition, cell-adherence support,

bioreactors, stimulation), EV isolation (e.g. centrifugation

techniques, size-based fractionation, ultrafiltration), quality

controls, EV dosage and storage, and stability. Thus, the

heterogeneity of MSCs used for EV production as well as of

the isolated EVs requires extensive further consideration and

will be the focus of researchers, clinicians and regulatory

authorities prior to any approved industrial or clinical use of

MSC-EV.
7 Safety aspects associated with
cellular therapy

Cell and gene therapy ATMPs are extensively regulated by a

number of regulatory bodies world-wide. These include the US

Food and Drug Administration (FDA) and EMA. The FDA and
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EMA both interact via the International Council for

Harmonisation of Technical Requirements for Pharmaceuticals

for Human Use (ICH) with the aim to ensure adequate

guidelines and procedures for the development of advanced

investigational medicinal products for clinical trial use. Apart

from the manufacturing safety considerations, which include

batch consistency, detection of impurities, specificity and purity

of the product, specific safety aspects associated with each type of

ATMP needs to be considered.

Within this review we have discussed T cells, NK cells, iNKT

cells, ILCs, and mesenchymal cells. Although some of these

cellular therapies have very good safety indications, such as

Tregs, anti-viral T cell products, NK cells, and MSC-EV, other

therapies such as CAR-T cells have been associated with bystander

effects such as cytokine release syndrome, graft versus host disease

(if an allogeneic product) and neurotoxicity. Consideration

therefore needs to be given to the development of novel human

based in vitro models to predict and understand some of these

safety issues prior to clinical trial development.

The current guidelines from EMA, FDA and ICH detail

safety requirements for clinical trials based on that ensuring

patient safety and clear risk assessment strategies are well

documented1. Although immunogenicity risks are clearly

defined for pharmaceuticals, the types of in vitro testing

requirements are less clear within the guidelines and not

specified especially with regard to cellular therapies. There is a

current consensus that in vitro testing using human cells or

tissues, if validated and have clear indications of predicting

clinical outcome, should be used in preference to animal

model experimentation. This has been further advocated by

the passing of the FDA Modernization Act of 2021 in June 2022

in the US House2, ending the outdated mandate that all drugs

must be tested on animals for registration dossiers. More

research is needed, for example to develop assays for the more
1 https://www.ema.europa.eu/en/documents/scientific-guideline/

guideline-strategies-identify-mitigate-risks-first-human-early-clinical-

trials-investigational_en.pdf.

Frontiers in Immunology 14
complex toxicities, such as neurotoxicity which will need

collaborations between both and commercial and academic

groups in order to achieve safe and effective ATMP

development in the future.
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