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Ischemic stroke (IS) is one of the most fatal diseases. Neuroimmunity,

inflammation, and oxidative stress play important roles in various complex

mechanisms of IS. In particular, the early proinflammatory response resulting

from the overactivation of resident microglia and the infiltration of circulating

monocytes and macrophages in the brain after cerebral ischemia leads to

secondary brain injury. Microglia are innate immune cells in the brain that

constantly monitor the brain microenvironment under normal conditions.

Once ischemia occurs, microglia are activated to produce dual effects of

neurotoxicity and neuroprotection, and the balance of the two effects

determines the fate of damaged neurons. The activation of microglia is

defined as the classical activation (M1 type) or alternative activation (M2 type).

M1 type microglia secrete pro-inflammatory cytokines and neurotoxic

mediators to exacerbate neuronal damage, while M2 type microglia promote

a repairing anti-inflammatory response. Fine regulation of M1/M2 microglial

activation to minimize damage and maximize protection has important

therapeutic value. This review focuses on the interaction between M1/M2

microglia and other immune cells involved in the regulation of IS phenotypic

characteristics, and the mechanism of natural plant components regulating

microglia after IS, providing novel candidate drugs for regulating microglial

balance and IS drug development.
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1 Introduction

Ischemic stroke (IS) is one of the common cerebrovascular

diseases, which seriously affects national health due to its high

morbidity and lethality (1). It is characterized by the pathological

changes of the cerebral arteries or the carotid arteries that

innervate the brain, causing cerebral blood circulation

disorders, which in turn lead to acute or subacute brain

damage. It often causes patients to have varying degrees of

language, motor and sensory dysfunction (2). Among them,

focal rapid-onset cerebral ischemia-hypoxia (or hemispherical in

the case of coma) persists for more than 24 hours or results in

death (3). IS constitutes 87% of strokes, including cryptogenic,

lacunar and thromboembolic strokes (4). The risk factors for IS

include age, smoking, diabetes, high blood pressure and obesity

(5). The pathological mechanism is that ischemia and hypoxia in

the brain can lead to a series of events including calcium

overload, excitatory amino acid neurotoxicity, free radical

generation, activation of apoptotic genes, and immune

inflammation (6). In fact, recent studies have found that the

inflammatory response plays a dual key role in neuroprotection

and neurotoxicity in IS (6). Activation of resident cells, such as

microglia, astrocytes and endothelial cells promotes both brain

regeneration and recovery. It also recruits immune cells that

express inflammatory mediators, leading to blood-brain barrier

(BBB) disruption, neuronal death, brain edema, and

hemorrhagic transformation (6). In this case, clinical treatment

options for acute ischemic stroke remain limited. Intravenous

injection of tissue-type plasminogen activator (t-PA) restores

cerebral perfusion through thrombolysis, which to a certain

extent rescues dying cells in the ischemic penumbra (7).

However, the treatment time window of 3-4.5 hours is too

narrow for practical use of thrombolytics in most parts of the

world. Once the therapeutic window is exceeded, the benefits of

t-PA are outweighed by its risks, with a dramatic increase in the

chance of hemorrhagic transformation (8). Meanwhile, the

choice of medical devices for intra-arterial thrombectomy can

be used as an alternative to clinical thrombolysis, but it may also

cause other complications, so it has great limitations (9). The

current study shows that the regulation of immune cells after

stroke is the key to regulating inflammation and repairing

vascular neural units after stroke (10). As the main body of

neuroimmune inflammation in the brain after stroke, microglia

play functions such as immune recruitment, regulation,

inflammation, phagocytosis, and vascular repair, which in turn

become the key to the development of stroke drugs (11). This

review focuses on the interaction between classical activation

(M1 type) or alternative activation (M2 type) microglia and

other immune cells involved in the regulation of IS phenotypic

characteristics. Meanwhile, Our previous studies have found that

natural compounds and multi-component herbs may treat IS by

regulating microglia (12–16); other teams also explored the
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mechanism by which natural plant active ingredients regulate

microglia after IS (17). Therefore, this review also summarizes

the natural plant compounds that regulate M1/M2 microglia

after IS, in order to provide candidate or lead compounds for the

development of drugs that regulate neuroimmune inflammation

after IS.
2 Pathological mechanisms of
immune inflammation in IS

2.1 Pathological mechanism of IS

Following an ischemic attack, a series of events involving the

central nervous system (CNS) is triggered (18). The pathogenesis

of IS begins in the blood vessels, in part due to arterial occlusion

leading to hypoxia, reactive oxidative species production, and

changes in shear stress on the luminal wall (19, 20). During

hypoxia, shear stress on the vascular endothelium due to

changes in rheology and blood flow stagnation causes

activation of platelets, the complement system and the

coagulation cascade, resulting in endothelial cell destruction

and microvascular occlusion (21). The combined effect of

oxidative stress, inflammatory mediators (such as IL-1b, TNF-
a), down-regulated endothelin, and up-regulated leukocyte- or

vascular-derived proteases increases BBB permeability (22).

Endothelial cell-derived prostaglandins and chemoattractants

also promote leukocyte entry into the infarct site (22). The

increased surface affinity of leukocytes, the activation of integrin

molecules and the up-regulated expression of corresponding

ligands on endothelial cells further promote the infiltration of

neutrophils, macrophages and other leukocytes. Activated

leukocytes produce reactive oxidative species, proteolytic

enzymes, cytokines, platelet-activating factor, which promote

vasoconstriction, platelet aggregation and further neurotoxicity

(19). In the perivascular space, activated macrophages secrete

numerous pro-inflammatory cytokines, leading to the release of

histamine, proteases and TNF-a, and further reducing the

integrity of the BBB (18).

While all of the above processes occur in the vascular and

perivascular spaces, ischemia can also affect the brain

parenchyma. Following the impact of ischemia, a series of

interrelated cytoplasmic and nuclear events, including

bioenergetic exhaustion, excitotoxicity, Ca2+ overload,

oxidative stress, and inflammatory responses, begin to occur at

the damaged site, culminating in neuronal cell death (20).

Excitotoxicity and Ca2+ overload are the main factors leading

to the early stage of ischemic cell death (23). Glutamate overload

results in prolonged activation of AMPA and NMDA ionotropic

receptor subtypes, resulting in an enhanced influx of calcium,

sodium and water to neurons (23). A large influx of calcium

activates protease, lipase and nuclease-mediated catabolic
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processes (24). Increased calcium influx from glutamate receptor

hyperactivation, Ca2+ release from mitochondria, and failure of

Ca2+ efflux mechanisms are known to explain the irreversible

accumulation of intracellular Ca2+ following excitotoxic

stimulation. Meanwhile, oxidative and nitrosative stress are

also potent mediators of ischemic injury. Under normal

physiological conditions, there is a balance between the

production and decomposition of reactive oxygen species

(ROS), but IS disrupts this balance and leads to an increase in

its production (25). The metabolic activity of ROS and reactive

nitrogen species is rapid, and the antioxidant defense capacity of

the brain is limited, so the brain is sensitive to damage caused by

oxidative and nitrosative stress (26). Damage-associated

molecular patterns (DAMPs) released by dying neurons

contribute to a new phase of the inflammatory response (27,

28). Among them, heat shock proteins, high mobility group-

binding protein 1 (HMGB1), mitochondria-derived N-formyl

peptides and peroxidases, activate brain-native immune cells

through pattern recognition receptors (29–31). DAMPs lead to

an inflammatory environment by stimulating immune cells to

produce cytokines, chemokines, adhesion molecules and many

immune effector molecules (32–34).
2.2 Key events and pathways of immune
biological modules involved in the IS
pathological progression

After the occurrence of IS, the immune system starts rapidly,

participates in all aspects of the occurrence, development and

prognosis of stroke, and plays a corresponding role in different

stages of stroke (35). Intracerebral inflammation after IS is not

limited to the surrounding ischemic foci, but spreads to the

whole brain and persists for a long time, continuously affecting

the pathophysiological changes of brain tissue after stroke (36).

Therefore, understanding the changes and roles of immune

responses in different stages of stroke has important guiding

significance for further research on neuroprotection and

neuroreparation in stroke. Previous studies have shown that in

the early stage of IS, various inflammatory cells and factors are

involved in the development of inflammation in the brain and

aggravate secondary brain injury (21, 37). In the subacute phase,

brain injury can remodel the immune system, turning immune

system function from activation to suppression, but it leads to an

increase in post-stroke infections (21, 38). Moreover, the spread

of neuroinflammation in the whole brain after IS can lead to

delayed brain tissue changes (39).

2.2.1 Immune activation after IS
After the occurrence of IS, with the occurrence of

intravascular hypoxia and changes in hemodynamics, platelets,

coagulation and complement systems are activated, and the

inflammatory response first occurs in the blood vessels (40).
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The oxidative stress response and activated complement system

caused by hypoxia directly damage the local vascular system,

leading to necrosis and dissociation of vascular endothelial cells,

destruction of BBB integrity, and exposure of antigens under the

vascular endothelium (41). Immune cells in the blood adhere to

the vessel wall and upregulate the expression of adhesion factors

and chemokines. Innate immune cells such as neutrophils,

monocytes, and macrophages are activated, migrate to

ischemic sites under the action of chemokines and extravasate

into the extravascular space through the damaged BBB (42).

Subsequently, macrophages in the ischemic brain tissue are

activated to further release inflammatory factors and aggravate

the chemotaxis and extravasation of innate immune cells (43).

Meanwhile, immune cells such as neutrophils and mast cells at

the site of ischemic injury release intracellular MMPs, destroy

vascular basement membrane and tight junction proteins,

accelerate the destruction of BBB, and lead to an increase in

cerebral infarct size (44). Neurons are extremely sensitive to

ischemia, hence, ischemia leads to rapid neuronal necrosis.

Necrotic neurons release endogenous factors, called DAMPs.

DAMPs increase the release of chemokines from immune cells

through Toll-like receptors (TLRs) on the surface of immune

cells such as microglia, macrophages, dendritic-like cells, and

exuding neutrophils (45). This further promotes the chemotaxis

of immune cells, activates and amplifies the innate immune

response, accelerates vascular destruction and cell death, and

ultimately forms a vicious cycle of vascular damage,

inflammation, and neuronal death (46). The adaptive immune

response is the second phase of the immune response after

ischemic stroke, which arises from BBB disruption. Normally

immune-isolated central nervous system antigens can contact

antigen-presenting cells (APCs) in peripheral blood to induce

autoimmune responses. DAMPs can promote the interaction

between APCs and receptors to activate adaptive immune

responses, which are mediated by effector T cells (47). Effector

T cells play a role in the adaptive immune response by recruiting

to ischemic areas, traversing the injured BBB, releasing

inflammatory cytokines such as interferon gamma (IFN-g) in

the brain parenchyma, and ultimately leading to delayed

neurotoxicity (39, 48). The immune response after IS is a self-

limiting pathophysiological process that gradually subsides

under the combined action of regulatory T cells and B cells,

preparing for the structural and functional reconstruction of the

later brain injury site. In the process of inflammation resolution,

regulatory T cells play a role through IL-10 and transforming

growth factor-b (TGF-b) secreted by macrophages in the local

tissues, inhibiting helper T cells to further induce inflammation,

thereby promoting the repair of residual neurons (49, 50).

2.2.2 Immunosuppression after IS
After IS, while the immune system is activated,

immunosuppression will occur at the same time. The systemic

immune function is down-regulated within a few hours after
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cerebral ischemia, the cellular immunity is suppressed, the number

of various immune cells such as monocytes, T lymphocytes, B

lymphocytes and natural killer cells is decreased, apoptosis is

increased, or cell dysfunction occurs (51). Meanwhile, a variety of

inflammatory factors, including IL-10, IL-1b, TNF-a, IL-6, etc. are
inhibited. This immunosuppressive state is known as stroke-

induced immunosuppressive syndrome (SIDS) (52). Its

occurrence is related to the activation of the hypothalamic-

pituitary-adrenal axis and the sympathetic nervous system caused

by stress, and the secretion of adrenocortical hormones and

catecholamines increases and plays an immunosuppressive effect

(53). Immune activation and immunosuppression after IS are a

contradictory unity. The former removes necrotic tissue through

inflammatory response to create conditions for nerve repair, and it

can also cause secondary nerve damage due to an excessive

inflammatory response. The latter can reduce the destruction of

neurons by the immune system and play a neuroprotective role, but

excessive immunosuppression inevitably increases the chance of

infection and worsens clinical prognosis (54).
3 Mechanisms of microglia/
macrophages in IS

3.1 Physiological functions of microglia

Microglia account for approximately 10% of the CNS and are

traditionally thought to function as immunocompetent cells of the

brain and spinal cord, and undertake sensory functions of injury

and infection in tissues (55). Microglia is derived from the

primitive c-kit(+) erythroid precursor in the yolk sac, migrates

into the brain during early embryonic development before the

formation of the BBB, and remains there until the BBB is formed

(56). Notably, this is a population of self-maintaining and

renewing cells, and peripheral macrophages only contribute to

this population in disease states, i.e. when the BBB is damaged

(57). Initial studies generally believed that under normal

physiological conditions, the microglia in the brain were

branched with multiple slender protrusions and were in a

resting state. However, recent studies have shown that the

microglia never really rests, and the branched microglia

constantly patrols the brain, using its motor branch as a sentinel

to investigate and scan its nearby microenvironment to detect

changes in brain homeostasis (58). Once a threat is identified,

microglia rapidly activate to an amoeba-like phenotype with large

cell bodies (59). Activated microglia can eliminate cellular debris

through phagocytosis on the one hand, and produce a wide range

of signaling molecules, including cytokines, neurotransmitters,

and extracellular matrix proteins, to regulate neuronal

and synaptic activity and their functional plasticity (58).

Furthermore, when microglia are involved in the degradation of

internalized targets in the phagosome, it may become a major
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source of ROS. If these internalization targets are too large and not

properly processed inside the phagosome, it will result in the

release of toxic molecules, including ROS, from the surrounding

microglia (60). The normal phagocytosis process is accompanied

by the release of several anti-inflammatory cytokines, growth

factors and neurotrophic factors, and reduced release of pro-

inflammatory cytokines (61). As immune effector cells in the CNS,

microglia are continuously active. They monitor the brain

microenvironment in real time through the elongation and

retraction of branches, modulate neural circuits through specific

interactions with neuronal synapses (59, 62), participate in

pruning synapses and clear apoptotic cells in time to maintain

CNS homeostasis (63–65). They play an important role in most

known CNS diseases. A study has monitored the interaction

between neurons and fluorescently labeled microglia in

transgenic mice by intravital two-photon microscopy imaging

(66). They found that microglia made direct contact with neuronal

synapses during imaging every 5 minutes for 1 hour. Microglia

can rapidly change their phenotype in active response to

perturbation of CNS homeostasis and are often activated based

on changes in their morphology or cell surface antigen expression

(67–69).
3.2 Activation and differentiation of
microglia/macrophages regulate
immune inflammation

3.2.1 Activation of microglia/macrophages
after IS

M2-type microglia mainly regulate the repair of brain injury

after IS. It mainly promotes the survival and recovery of injured

neurons by secreting brain-derived neurotrophic factors, insulin

secretion factors and transforming growth factors, and at the

same time enhances the ability of neurons to withstand

stimulation and damage (70, 71). It produces cytokines IL-10,

TGF-b, IL-4, IL-13, IGF-1, etc., which cooperate with the

clearance of infiltrating neutrophils, thereby preventing

neuronal damage caused by cytotoxic substances (72, 73).

Unlike M2-type microglia, which inhibit inflammation, M1-

type microglia will produce a large number of pro-inflammatory

cytokines IFN-g, IL-1b, TNF-a, IL-6, etc. to activate the

inflammatory cascade, and promote the activation of T and B

lymphocytes to regulate immune responses. It can also increase

the release of vasoactive factors, causing vasoconstriction and

aggravating ischemic cerebral edema (74). M1 type acts on the

extracellular matrix through the production of ROS and NO

production as well as proteolytic enzymes (MMP9, MMP3),

resulting in the decomposition of BBB (39, 75). M1 type also

generates reactive oxygen species through nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase, which further

aggravates the damage of cerebral ischemia (76, 77). Therefore,
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regulating the homeostasis of M1/M2 type may become an

important strategy for the treatment of IS.

3.2.2 Activation and differentiation of M1/M2
type microglia/macrophages

As the first line of defense of the immune system in the

brain, microglia are rapidly activated within minutes of the acute

phase of ischemic stroke, peak around day 2/3 of activation, and

persist for several weeks after the onset of IS (78). At the core of

ischemic injury, microglia activation is essentially triggered by

excitotoxic signals generated during the ischemic cascade. In the

peri-infarct region, the activation of microglia is associated with

several innate immune receptors that can be activated by DAMP

stimulation (79). For example, purinergic receptors, especially

P2X7 and P2Y12, regulate microglial activation and mediate

neurotoxicity, and similarly, pharmacological inhibition of P2X7

and P2Y12 reduces brain damage in experimental stroke models

(80). Several other innate immune receptors involved in

microglial activation include TLR, CD36 scavenger receptor,

and receptor for advanced glycation end products (RAGE) (81).

In addition to morphological changes, activated microglia also

showed altered gene expression patterns, polarizing toward

functionally distinct phenotypes: “classically activated” M1 and

“alternatively activated” M2.

At present, the main signal pathways that contribute to the

polarization of M1/M2 microglia are as follows: (1) IFN-g
secreted by helper T cells 1 (Th1) induces the transformation

of microglia into M1 phenotype by activating JAK1/JAK2 and

STAT (82). (2) Another pathway to induce M1 activation is

triggered by lipopolysaccharide (LPS) or DAMP stimulation of

TLR4. Subsequently, an “activation complex” composed of

myeloid differentiation factor 88 (Myd88), nuclear factor-KB

(NF-KB), p65, p38 and interferon regulatory factor 3 (IRF3) is

formed (83). This complex in turn regulates the expression of

inflammatory mediators of M1-inducible nitric oxide synthase

(iNOS), CD16, CD32, etc. and cell surface markers-

histocompatibility complex (MHC-II), CD86, etc. Microglial

polarization of the M1 phenotype is characterized by high

expression of IL-12, high expression of IL-23 and low

expression of IL-10 (84). M2-type microglial replacement

activation is usually induced by IL4 or IL-10 and IL-13, and is

usually characterized by high expression of IL-12, high

expression of IL-23b, and low expression of IL-10. To activate

M2-type microglia, IL4 or IL-13 binds to IL4Rx or IL-13Ra1 to

activate transcription factors, such as STAT6, peroxisome

proliferator-activated receptor gamma (PPARg), Jumonji

domain-containing protein 3 (Jmjd3), and IRF4, respectively.

This subsequently causes M2-type microglia to release cytokines

such as IL-10, transforming growth factor B (TGFb), IL-1
receptor agonists, CD302, CD163 and other inflammatory

mediators such as platelet-derived growth factor (PDGF),

fibronectin 1 and arginase 1 (Arg1), etc. (84).
Frontiers in Immunology 05
3.2.3 Activation of microglia and activation,
recruitment and polarization of blood-derived
macrophages after IS

After IS, intracerebral microglia are rapidly activated within

minutes of injury (85), while disruption of BBB integrity allows

macrophages to infiltrate the injury site (86, 87). Cerebral

ischemia results in dramatic changes in the morphology,

density, and function of branched microglia, including

processes such as cell body enlargement, debranching, and cell

wall thickening. It eventually becomes “amebic”, produces

inflammatory prote ins , and undergoes changes in

proliferation, migration, and phagocytosis (88). Because

microg l i a and b lood-migra t ing mac rophages a re

morphologically indistinguishable and perform similar

functions, they are represented as microglia/macrophages in

many studies. The current single-cell transcriptomic

sequencing also found that the two have similar phenotypes

(89). Activated microglia/macrophages have been found to

produce a variety of mediators, including iNOS (90),

inflammatory cytokines (such as TNF-a, IL-1b, TGF-b, IL-10)
(86), nerve growth and trophic factors (such as IGF-1, bFGF,

PDGF, BDNF) (91).

Many surface receptors involved in regulating the activation

and function of microglia/macrophages have been found: (1)

TLRs: TLRs represent a series of pattern-recognition

transmembrane receptors that recognize relevant molecular

patterns on the surface of pathogens. It is an essential

component of the innate immune response of microglia and

induces microglia to produce neurotoxic factors that contribute

to the microglia response to neuronal damage (92, 93). Studies

have found that stimulation of TLR2 and TLR4 activates

microglia, produces pro-inflammatory cytokines, and

exacerbates brain damage after focal cerebral ischemia (94–

99). Knockdown of TLR2 or TLR4 reduces the production of

TNF-a, iNOS and cyclooxygenase-2 (COX-2), contributing to

smaller cerebral infarct volume (100, 101). (2) Purinergic

receptors: Purinergic receptors consist of P1 adenosine

receptors and P2ATP receptors (102). Among P1 adenosine

receptors, A2A receptors are upregulated in microglia after focal

cerebral ischemia and are involved in the control of microglial

proliferation and BDNF release induced by LPS stimulation

(103). The use of A2A receptor antagonists attenuates ischemia-

induced brain damage (104). P2ATP receptors are composed of

P2X and P2Y receptors, each containing distinct subunit

subtypes (105, 106). Among them, the P2X7 receptor mediates

microglia activation after ischemic stroke (107, 108). P2X7

recep tor ac t i va t ion induces mic rog l i a to re l ea se

proinflammatory cytokines such as TNF-a, IL-1b, NO,

CXCL2 and CCL (109, 110). In addition, P2Y12 is another

purinoceptor expressed on microglia, and P2Y12 is down-

regulated upon activation of microglia. The accumulation of

microglia in the infarcted area was reduced after knockout of the
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P2Y12 receptor, while attenuating neuronal death following

cerebral ischemia in mice (80). (3) CCR2: CCR2 is present in

almost all immune cells and highly inflammatory mononuclear

MPs (111). However, under normal conditions, CCR2 is poorly

expressed in brain microglia (102, 112). CCR2 and its ligand

monocyte chemoattractant protein-1 (MCP-1) are upregulated

in microglia and migrating macrophages after ischemic stroke

(113). Activation of CCR2 enhances cerebral inflammatory

responses and significantly increases the volume of cerebral

infarcts (114). Deletion of CCR2 in mice reduces blood

immune cell recruitment, but does not affect microglia

activation after transient MCAO (115). Thus, CCR2 appears to

be critical for blood immune cell recruitment, but has little effect

on microglia activation after focal cerebral ischemia. (4)

Receptor for advanced glycation end products (RAGE): RAGE

is another receptor that mediates the activation of microglia/

macrophages and plays an important role in the inflammatory

response of many diseases (116, 117). In IS patients, RAGE is

upregulated in brain and plasma (117, 118). In vitro studies have

shown that the interaction between RAGE and its ligand high

mobility group box 1 (HMGB1) is critical for neuronal death

induced by microglia activation (119).

3.2.4 Molecular mechanisms of signaling
pathway transduction of M1 and M2
polarization under IS

Microglia/macrophages are activated and polarized upon an

ischemic injury, and the degree of polarization changes with

pathophysiological conditions (102, 120, 121). Different

phenotypes of microglia/macrophages can differentially

regulate dying cells after brain injury, possibly aggravating

neuronal death or promoting damaged tissue repair (122, 123).

Among them, iNOS, IL-1b, IL-6, TNF-a, etc. can be used as

molecular markers of M1-type microglia/macrophages. IL-10,

IL-4, TGF-b, CD206, Ym1, etc. can be used as molecular

markers of M2-type microglia/macrophages. Studies on the

progression of IS over time found that on day 1, the M2

phenotype marker Ym1 was highly upregulated in border

regions, which induces an M2-type response that provides a

protective function for the damaged brain; on day 7, it performs

a phagocytic function (124). Further studies showed that M1/M2

microglia participate in different stages of IS. Among them, M2

type mainly appeared in the early stage of cerebral ischemia,

appeared 1 to 3 days after ischemia, rose to the highest peak in 3

to 5 days, and returned to the low level before injury on the 14th

day. Then it gradually transformed into M1 type on the 3rd day,

and maintained a high level for 14 days after ischemia (31). In

addition, microglia/macrophages are susceptible to ischemia-

induced injury, which may be related to the purinoceptors P2X4

and P2X7, resulting in reduced numbers and suppressed activity

of microglia/macrophages in the ischemic core (125, 126). Thus,

low levels of microglia/macrophages in the ischemic core and

high proportions of M1 and M2 phenotype cells in the peri-
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infarct area may contribute to the pathological process of

ischemic injury.

The signaling molecules associated with M1 phenotype

polarization mainly include the following: (1) NF-kB: NF-kB
is a traditional transcription factor that is activated by LPS and

regulates the expression of most M1 phenotype marker genes.

Substantial evidence suggests that the NF-kB signaling cascade

adversely affects cerebral ischemia because of its role in

regulating pro-inflammatory mediators, including IL-1, IL-2,

IL-6, IL-12, TNF-a, iNOS and cyclooxygenase-2 (COX-2)

(127, 128). In addition, NF-kB regulates the expression and

activation of MMPs, leading to leakage of the BBB and

exacerbating the inflammatory response (129, 130). (2) Notch

signaling: Notch signaling in response to LPS activation

enhances IFN-g production by co-recruiting p50 and c-Rel

(131, 132). Notch signaling exacerbates ischemic brain injury

by prolonging NF-kB activation with concomitant persistent

inflammation and enhancing microglia/macrophage-induced

neurotoxicity (131, 133). (3) Signal transducers and activators

of transcription (STAT1 and STAT3): STAT1 and STAT3 can

increase the expression of NF-kB/p65 (134). Inhibition of the

activation of STAT1 and STAT3 attenuates the inflammatory

response induced by cerebral ischemia while improving infarct

volume (135, 136). (4) Glycogen synthase kinase-3b (GSK-3b):
Cerebral ischemia-induced dephosphorylation and activation of

GSK-3b reduces cAMP response element-binding protein

(CREB) activity while enhancing NF-kB signaling to initiate

pro-inflammatory capacity (137, 138). (5) Prostaglandin E2

(PGE2): PGE2 is the main product of cyclooxygenase and

prostaglandin E synthase, and is considered to be a typical

pro-inflammatory mediator in the brain. PGE2 activates its

downstream signaling pathways through the G protein-

coupled E-prostaglandin (EP) receptors EP1-EP4 (139). The

EP1 receptor is expressed in microglia, and EP1 deletion

inhibits microglial activity and phagocytosis. Although EP2 is

expressed in neurons and not in microglia, loss of EP2 results in

increased activation of M1-type microglia, suggesting that EP2

mediates the interaction between neurons and microglia (140,

141). (6) mTORC1: mTORC1 is a protein complex downstream

of the PI3K-AKt pathway, and is one of the participants in the

dysregulation after ischemia and OGD. Maria J et al. (142)

showed that blocking mTORC1 can reduce lesion size, improve

motor function, significantly reduce the production of pro-

inflammatory cytokines and chemokines, and reduce the

number of M1-type microglia. Thus, mTORC1 blockade

attenuates behavioral deficits and post-stroke inflammation

after MCAO by preventing the polarization of microglia

towards the M1 type. (7) Related microRNAs: Recent studies

have also identified the role of microRNAs (miRNAs) in

microglial polarization (143). Current studies have shown that

miRNAs involved in the positive regulation of microglial

activation and M1 transformation after IS include: miR-689,

miR-124, miR-155, miRNAlet-7c-5p, miRNA-200b, MiR-377,
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etc. These may be related to pro-inflammatory pathways and

M1-type polarization (144, 145).

The signaling molecules associated with M2 phenotype

polarization mainly include the following: (1) Peroxisome

proliferator-activated receptor g (PPARg): In the inflammatory

response, PPARg can inhibit the inflammatory response by

competitively inhibiting the inflammatory signaling pathway

and the generation of inflammatory mediators. Among them,

the crosstalk between Notch and NF-kB signaling pathway can

inhibit the expression of PPARg, which will decrease the

expression of PPARg after stroke, thereby aggravating the

inflammatory response (146, 147). (2) cAMP response element

binding protein (CREB): CREB cooperates with C/EBPb and

amplifies the expression of M2 phenotype-specific genes such as

IL-10 and Arg1, promoting tissue repair (148), while the

expression of M1 phenotype genes encoding pro-inflammatory

molecules is also regulated by C/EBPb (149). The dual role of C/

EBPb in regulating gene expression of M1 and M2 phenotypes

may result from the competition between CREB and NF-kB for

binding to C/EBP (148, 150). (3) Interferon regulatory factor-3

(IRF-3): In response to TLR activation, PI3K/Akt signaling

initiates phosphorylated IRF-3. Activated IRF-3 translocates

into the nucleus and drives polarization of the M2 phenotype

by interacting with CREB-binding protein (CBP) (151, 152). (4)

Related microRNAs: Current studies have shown that miR-124,

miR-711, miR-145, miRNA203 and miRNA27a, which are

involved in the positive regulation of microglial activation and

M2 transformation after ischemic stroke, may be involved in the

regulation of anti-inflammatory pathways and M2-type

polarization (144, 145). Among them, miR-146a can not only

inhibit the LPS-induced M1-type polarization of microglia, but

also promote the M2-type polarization of microglia (145).
3.3 Regulation of cellular interactions
between microglia/macrophages,
neurons, and other immune-
inflammatory cells after IS

3.3.1 The effect of the interactive regulation of
microglia/macrophages and neurons on brain
injury after IS

After IS, a large number of nerve cells die due to reduced

blood flow and insufficient supply of glucose and oxygen. Dying

neuronal cells release injury-associated ligands and excitotoxic

glutamate to promote microglia/macrophage activation (153),

thereby exacerbating neuronal damage (154). However,

ischemia-induced neuronal injury can release IL-4, which can

enhance the expression of IL-4 receptors in microglia/

macrophages and promote microglia/macrophage polarization

to the M2 phenotype. IL-4-activated PPARg enhances the

phagocytosis of apoptotic neurons by microglia/macrophages

(155). The release of glutamate enables neurons to secrete
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soluble fractalkine (sFKN), which enhances the ability of

microglia/macrophages to clear neuronal debris (156). These

studies suggest that damaged neurons can promote microglia/

macrophage protection to help neurons survive ischemic

conditions (154, 157–159). Microglia/macrophages play a

beneficial role in tissue remodeling and regeneration after IS

by eliminating dead or dying neurons (160). A study of the

infiltration of microglia and macrophages in the brain of

chimeric mice found that microglia in the brain could

phagocytose neuronal debris as early as day 1, and reached a

peak on day 2, while infiltrating macrophages began to clear

neuronal debris on day 4 after MCAO. They found that

microglia in the brain are more sensitive and important in

defense against ischemia by eliminating dead neurons (115).

3.3.2 The effect of interaction between
microglia/macrophages and astrocytes on
brain injury after IS

Microglia and astrocytes play important roles in the innate

immune environment of the brain. In two-photon microscopy-

based time-lapse imaging recordings, it was found that microglia

directly contact astrocytes by extending their branches toward

the astrocytes (161). When the brain microenvironment is

disrupted, microglia/macrophages and astrocytes play

important roles in various pathological states such as IS (162–

164). Among them, modulators such as IL-1b, TNF-a, TGF-b,
adenosine, ATP and glutamate contribute to functional

communication between microglia/macrophages and

astrocytes (165–168), which is critical for immune responses

in the brain (163). In the CNS, astrocytes mainly secrete

cytokines such as IL-6, IL-1b, and IL-10. In addition,

astrocytes secrete many chemokines, such as CCL2, CXCL1,

CXCL10, and CXCL12, etc., and several chemokines have been

found to be involved in microglial activation and polarization, as

well as M1 and M2 phenotype switching. In vitro studies found

that CCL2 released by primary astrocytes contributed to the

polarization of M1-type microglia. The proinflammatory

mediator lysophosphatidylcholine (LPC) produced by neurons

and astrocytes after IS stimulates microglia/macrophages to

upregulate the mRNA expression of Mcp-1 and Ccr2, which is

involved in mediating the inflammatory response after cerebral

ischemia (113). Therefore, there is a complex communication

between microglia/macrophages and astrocytes.

3.3.3 The effect of the interaction between
microglia/macrophages and T cells on brain
injury after IS

After cerebral ischemia, T cells activate and infiltrate into

brain tissue, release cytokines and ROS, and induce brain injury

by inducing early inflammatory response (169). However, some

T cell subtypes have protective effects on brain cells in the early

stage of cerebral ischemia. Existing evidence shows that T cells

also play an important role in the repair and regeneration of
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brain tissue in the late stage of stroke (170). T cells include a

variety of functional subsets, mainly pro-inflammatory Th1 and

Th17 subsets and anti-inflammatory Th2 and Treg subsets.

Different T cell subsets play different roles in ischemic brain

injury (171). Among them, Th1 can secrete pro-inflammatory

cytokines IL-2, IL-12, INF-g and TNF-a, and play an important

role in IS; while Th2 can exert neuroprotective effects by

secreting anti-inflammatory cytokines IL-4, IL-10, IL-5 and IL-

13 (172). Th17 mainly secretes IL-17, which can promote the

occurrence of inflammation (172). IL-10 secreted by Treg is also

an important brain protective mediator, which exerts

neuroprotective effects mainly by inhibiting the secretion of

pro-inflammatory cytokines TNF-a and INF-g. Treg inhibits

secondary infarct enlargement by inhibiting the production of

pro-inflammatory cytokines, regulating lymphocyte activation

and/or human invasion of ischemic brain tissue (172, 173). After

IS, activated microglia and secreted cytokines promote the

differentiation of T cells into different functional subsets (6).

Among them, M1-type microglia promote the proliferation and

differentiation of Th1, while M2-type microglia induce the

production of Treg with strong inhibitory function. The

interaction between them exerts pro-inflammatory and anti-

inflammatory effects, respectively, after stroke, thereby

inhibiting the occurrence of the disease or promoting the

recovery of the disease (174). Immunofluorescence double-

staining of IS brain tissue found that there was a certain

interaction between microglia and T cells, indicating that T

cells also had a certain regulatory effect on the mutual

transformation of M1/M2 microglia (175, 176).

(1) Interaction between M1-type microglia and Th1/Th17:

After ischemia, M1-type microglia can produce pro-

inflammatory cytokines leading to BBB disruption (177). Both

Th1 andM1microglia can produce pro-inflammatory cytokines,

and iNOS is closely related to inflammatory cells. Cerebral

ischemia can induce the up-regulation of iNOS mRNA and

protein expression in inflammatory cells, enhance iNOS activity,

and promote the production of NO, which can further generate

peroxynitrite, thereby aggravating brain damage (178, 179).

Studies have shown that Th1 can produce IFN-g and promote

the transformation of microglia into M1 type, thereby

aggravating secondary ischemic injury (180). In addition, M1-

type microglia can induce Th1 to secrete pro-inflammatory

cytokines IL-12 and TNF-a (181–183), and the chemokines

(CXCL9, CXCL10) they express can mobilize Th1 to participate

in the inflammatory response. Therefore, Th1 and M1-type

microglia interact after cerebral ischemia, and can

simultaneously promote inflammatory response and aggravate

brain injury. IL-17 secreted by Th17 is a powerful pro-

inflammatory cytokine that induces the expression of other

pro-inflammatory cytokines (such as IL-6 and TNF-a),
chemokines, and MMPs, causing inflammatory cell infiltration

and tissue destruction. Meanwhile, M1-type microglia induce

Th17 differentiation by secreting IL6 and IL-23, which together
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promote immune response (181–183). Therefore, M1-type

microglia and Th17 act as pro-inflammatory effects of brain

injury after cerebral ischemia.

(2) Interaction between M2-type microglia and Th2/Treg:

After cerebral ischemia, the expression of inflammatory

mediators is up-regulated, which induces the accumulation of

microglia to the injured area and breaks the dynamic balance

between M1 and M2 types. The anti-inflammatory cytokines IL4

and IL-10 secreted by Th2 can further promote the polarization

of microglia to M2 type (184, 185). This indicates that there is an

interaction between M2-type microglia and Th2 cells, which

together play an anti-inflammatory role after cerebral ischemia

(186). After cerebral ischemia, Treg inhibits the activation of

microglia and reduces the inflammatory response in the brain by

secreting IL-10 and TGF-b (187). In addition, Treg cell-derived

osteopontin acts through integrin receptors on microglia to

enhance the repair activity of microglia, thereby promoting

oligodendrogliosis and white matter repair (188). Treg can

induce the polarization of microglia to M2 type through the

IL-10/GSK3 b/PTEN signaling pathway, thereby reducing the

inflammatory injury caused by cerebral hemorrhage (189–191).

Treg regulates the expression of other cytokines and inhibits the

activation of microglia by releasing IL-10 in the late stage of

cerebral infarction. In addition, studies on amyotrophic lateral

sclerosis show that Treg can promote the transformation of

microglia to M2 type. This suggests that Treg can change its

effect from neurotoxicity to neuroprotection without changing

the number of microglia (189). After cerebral ischemia, Treg can

reduce infarct volume and improve neurological function by

reducing T cell infiltration, reducing microglia/monocyte

activation, or promoting M2-type polarization of microglia

(187). The key inflammatory responses after ischemic stroke

are summarized in Figure 1.
4 Modulatory effects of natural
botanical components on microglia-
mediated immune inflammation in IS

4.1 Natural botanical
component monomer

4.1.1 Polyphenols and phenols
(1) Gastrodin: Gastrodin is an organic compound extracted from

the dried roots of Gastrodia elata Bl (192). Gastrodin has a good

sedative and sleeping effect on neurasthenia, insomnia, headache

symptoms have eased. Gastrodia elata Bl. Is able to treat pain,

dizziness, limb numbness, and convulsions. Clinically, Gastrodia

elata Bl. is generally used to treat vertebrobasilar insufficiency,

vestibular neuritis and vertigo (193). Gastrodin is one of the

main effective monomer components of Gastrodia elata Bl. It is

currently widely used in clinical applications, and can exert

neuroprotective effects in neurological diseases through multiple
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pathways such as anti-oxidative stress, anti-neuroinflammatory

response, regulation of neurotransmitters, regulation of neural

remodeling, anti-apoptosis and anti-autophagy. The study found

that gastrodin pretreatment can significantly improve the

neurological function of MCAO rats after 72h of reperfusion,

and reduce the volume of cerebral infarction and BBB

permeability. Gastrodin at 100 mg/kg in vivo and 40 mmol/L

in vitro can inhibit microglia MMP2, MMP9 and AQP4, and

increase ZO-1 expression, thereby exerting its protective effect

on ischemia-reperfusion injury in MCAO and OGD/R models.

In addition, OGD/R and MCAO can significantly increase the

expression of SOX4 in microglia in vitro and in vivo, and

pretreatment with gastrodin can inhibit the trend of increasing

SOX4. Overexpression of SOX4 could reverse the effects of

gastrodin on MMP2, MMP9, AQP4, and ZO-1 in OGD/R

microglia, suggesting that gastrodin could regulate MMP2,

MMP9, AQP4, and ZO-1 through SOX4 to exer t

neuroprotective effects (194).

(2) Malibatol A: Malibatol A is a natural resveratrol oligomer

purified from the leaves of serrata with antioxidant activity. Yang

et al. (195) found that Malibatol A improved mitochondrial

dysfunction induced by middle cerebral artery occlusion. Pan

et al. (196) found that Malibatol A significantly reduced the
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infarct size of mice with MCAO and improve neurological

function. Weng et al. (197) found that Malibatol A can

attenuate OGD/R-induced BV2 cell damage and promote M2

microglial polarization, which may be related to the inhibition of

mammalian Ste20-like kinase 1 phosphorylation.

(3) Resveratrol: Resveratrol, a non-flavonoid polyphenolic

organic compound, is an antitoxin produced by many plants

when stimulated, with a chemical formula of C14H12O3. It can

be synthesized in grape leaves and grape skins and is a bioactive

component in wine and grape juice (198). In vitro and animal

experiments have shown that resveratrol has anti-oxidation,

anti-inflammatory, inhibition of platelet formation, blood clot

adhesion to the vascular wall, anti-cancer and cardiovascular

protection (199–201). Resveratrol reduces glial cell activation

and prevents delayed neuronal cell death in MCAO rats (202). In

addition, resveratrol may protect cranial nerves by reducing the

production of inflammatory mediators such as IL-1b, TNF-a
and ROS in the ischemic cortex, possibly mediated by

attenuating the activation of microglia (203).

(4) 6-Shogaol: 6-shogaol, an active substance isolated from

ginger, has a variety of biological activities, including

anticancer, anti-inflammatory and antioxidant. For example,

6-shogaol reduced diethylnitrosamine (DEN)-mediated
FIGURE 1

Summary of key inflammatory responses after ischemic stroke (BBB, blood brain barrier; IRF, interferon regulatory factor; STAT, signal
transducer and activator of transcription; NF-kB, nuclear factor-kB; IFN, Interferon; NMDA, N-methyl-D-aspartate receptor; MAMPs,
Metabolism-related molecular patterns; LPS, Lipopolysaccharide; GM-CSF, granulocyte-macrophage colony stimulating factor).
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elevation of serum aspartate aminotransferase and alanine

aminotransferase and DEN-induced hepatic lipid peroxidation.

The induction of Nrf2 and HO-1 by 6-shogaol was also

confirmed in mice. 6-shogaol also restores the decreased

activity of DEN and the protein expression of liver antioxidant

enzymes such as superoxide dismutase, glutathione peroxidase

and catalase in mice (204–206). 6-Shogaol also reduces

inflammatory biomarkers levels in LPS-activated microglia and

neuroinflammation in the brain. It also attenuates iNOS, NO,

COX-2, PGE2, TNF-a and IL-1b production by downregulating

MAPK (p38, JNK and ERK)/NF-kB signaling. The inhibition of

microglial activation and inflammatory mediators by 6-Shogaol

contributes to its neuroprotective effect (207).

(5) 6-Paradoll: 6-Paradoll reduces tMCAO-induced cerebral

infarction, neurological deficit, and the inflammatory cascade

in the ischemic brain, which is mainly mediated by inhibition of

microglia/macrophage activation (208).

(6) Honokiol: Honokiol is derived from the bark, root bark and

branches of Magnolia officinalis Rehd. et Wils. or M. officinalis

Rehd. et Wils. var. biloba Rehd. et Wils (209). Honokiol has

obvious and long-lasting central muscle relaxation, central

nervous system inhibition, anti-inflammatory, antibacterial,

anti-pathogenic microorganisms, anti-ulcer, antioxidant, anti-

aging, ant i- tumor, cholesterol- lowering and other

pharmacological effects. It is used to treat acute enteritis,

bacterial or amoebic dysentery, chronic gastritis, etc. (210,

211). Honokiol inhibits inflammatory biomarkers in the

ischemic brain, including NF-kB transcriptional activation,

NO, and TNF-a production (212), which are mainly produced

by activated glial cells and infiltrating macrophages.

(7) Indole-3-propionic acid: Indole-3-propionic acid treatment

not only inhibited glial (astrocyte and microglia) activation in

the ischemic brain, but also reduced lipid peroxidation, neuronal

DNA damage. Its neuroprotective efficacy is mainly related to

the fight against glial cell activation (213).

(8) Paeonol: Paeonol is a monomer extracted from the dried

roots of Paeonia suffruticosa Andr. or Cynanchum paniculatum

(Bge.) Kitag., which has various pharmacological effects (214).

Paeonol has the effect of treating cardiovascular and

cerebrovascular diseases, such as lipid-lowering and anti-

atherosclerosis, vasodilation and blood pressure lowering, anti-

arrhythmia, anti-cerebral ischemia-reperfusion injury and

neuroprotection. It also has anti-hepatic injury and liver

fibrosis, anti-inflammatory, antibacterial activity, anti-

inflammatory activity, antioxidant activity and anti-tumor

act iv i ty (215–217) . Paeonol a l so decreased IL-1b
immunoreactive cell numbers and microglia/macrophage

activation in the ischemic brain (218).

(9) Epigallocatechin gallate: Epigallocatechin gallate is a component

extracted from green tea. It is the main active and water-soluble

component of green tea and is a component of catechins (219).

Catechins are mainly divided into four categories: epicatechin,

epigallocatechin, epicatechin gallate, epigallocatechin gallate (220).
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Epigallocatechin gallate has the activity of protecting dopaminergic

neurons, inhibiting inflammation, inhibiting oxidative stress, anti-

oxidation, protecting nervous system, anti-tumor and protecting

cardiovascular and cerebrovascular (221, 222). Epigallocatechin

gallate reduces infarct volume by reducing microglia/macrophage

activation (223).

(10) Theaflavins: Theaflavins generally refers to tea yellow

pigment, is a golden yellow pigment in black tea, is the

product of tea fermentation. In biochemistry, tea yellow

pigment is a class of polyphenols hydroxyl benzophenone

structure of the material, with inhibition of inflammation,

anti-oxidative stress and the neuroprotective effect (224–226).

Theaflavins reduce infarct and edema volume by reducing

microglial inflammatory mediators such as COX-2, iNOS, and

ICAM-1 in the damaged brain (227).

(11) Propofol: Propofol reduces infarct volume and improves

neurological function by reducing microglia/macrophage CD68

and Emr1 levels and inhibiting proinflammatory cytokines

including TNF-a, IL-6, and IL-1b. Inhibition of microglial

proinflammatory cytokine production during propofol-

mediated MCAO contributes to neuroprotection against

IS (228).

(12) Probucol: The neuroprotective effect of probucol is related

to its anti-inflammatory effect in microglia. It downregulates

NF-kB, MAPKs and AP-1 signaling pathways in LPS-activated

microglia to reduce inflammatory mediators such as NO, PGE2,

IL-1b and IL-6. It also reduces iNOS, COX-2, IL-1 and IL-6 in

the brains of MCAO mice (229).

4.1.2 Anthraquinones
(1) Emodin: Emodin, an active ingredient extracted from the

Rheum palmatum L., has a wide range of pharmacological

properties, including anticancer, hepatoprotective, anti-

inflammatory, antioxidant and antibacterial activities (230).

Previous studies have shown that (231, 232) emodin has

neuroprotective effects, antagonizes CIRI, and prevents the

formation of atherosclerotic plaques. However, i ts

neuroprotective mechanism remains unclear. Cai et al. found

that emodin may play a role in brain protection by inhibiting the

activation of microglia and the release of inflammatory factors

mediated by the TLR4/NF-kB pathway (233).

(2) Chrysophanol: Zhang et al. found that Iba-1 positive cells in

the cerebral ischemic penumbra of MCAO model rats increased

significantly, and were amoeba-shaped or round; the

neurological deficit score, the percentage of cerebral infarction

and the relative expression of Notch-1, TNF-a and ICAM-1

proteins in the ischemic penumbra were significantly increased

(234). However, after chrysophanol intervention, Iba-1-positive

cells in the cerebral ischemic penumbra were reduced; the

neurological deficit score, the percentage of cerebral infarction

and the relative expression of Notch-1, TNF-a and ICAM-1

proteins in the ischemic penumbra were significantly decreased

(234). This suggests that chrysophanol has a certain cerebral
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protective effect on cerebral ischemia injury model rats, and can

reduce its nerve damage, and its mechanism may be related to

the inhibition of Notch signaling pathway-mediated activation

of microglia and the expression of inflammatory factors. In

addition, some studies have used a neuroinflammation model of

LPS-induced microglial activation, and found that chrysophanol

can inhibit LPS-induced microglial inflammatory response and

promote the transformation of microglial M1 type to M2 type.

The mechanismmay be related to down-regulation of TLR4/NF-

kB signaling pathway (235).

4.1.3 Terpenes and alkaloids
(1) Astragaloside IV: Astragaloside IV is an organic compound

with a chemical formula of C41H68O14. It is a white crystalline

powder and is extracted from the herbal medicine Astragali

radix. The main active ingredients in Astragali radix are

astragalus polysaccharides, astragalussaponins and isoflavones.

Astragaloside IV is mainly used as a quality control standard to

evaluate the quality of Astragali radix (236, 237). Studies have

shown that astragaloside IV can reduce cerebral infarct volume,

down-regulate the M1-type microglia/macrophage markers

CD86, iNOS, TNF-a, IL-1b and IL-6 mRNA, and up-regulate

the M2-type microglia/macrophage markers CD206, Arg-1,

YM1/2, IL-10 and TGF-b mRNAs. Astragaloside IV can also

reduce the number of CD16/32+/Iba1+ cells and increase the

number of CD206+/Iba1+ cells in the ischemic area of the brain.

This suggests that astragaloside IV has a protective effect on

cerebral ischemia injury in rats, which may be related to

promoting the transformation of microglia/macrophages from

M1 type to M2 type and inhibiting the inflammatory response

(238). In addition, studies have shown that astragaloside IV can

inhibit IFN-g-induced activation of microglia. This is related to

inhibiting the activation of STAT1/IkB/NF-kB signaling

pathway, reducing the gene expression of IL-1b, TNF-a and

iNOS in microglia under inflammatory state, thereby reducing

the production of NO and TNF-a (239).

(2) Cycloastragenol: Cycloastragenol is directly extracted from

the dried roots of Astragalus membranaceus (Fisch.)

Bge . va r .mongho l i cu s (Bge . ) Hs iao or As t r aga lu s

membranaceus (Fisch.) Bge., or obtained by hydrolysis of

Astragaloside IV (240, 241). It has oral safety, a wide range of

pharmacological effects, anti-oxidation, anti-inflammatory, anti-

aging, anti-apoptosis and cardiovascular protection (242, 243).

Li et al. found that Cycloastragenol dose-dependently reduced

cerebral infarct volume, significantly ameliorated functional

deficits, and prevented neuronal cell loss in MCAO mice.

Meanwhile, Cycloastragenol significantly reduced the activity

of MMP9, prevented the degradation of tight junctions, and

subsequently ameliorated the disruption of the BBB.

Furthermore, Cycloastragenol significantly upregulated the

expression of SIRT1 in the ischemic brain, but did not directly

activate its enzymatic activity. Concomitant with SIRT1

upregulation, Cycloastragenol reduces p53 acetylation and Bax
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to Bcl-2 ratio in the ischemic brain. Cycloastragenol also inhibits

NF-kB p65 nuclear translocation. In summary, Cycloastragenol

inhibits the expression of proinflammatory cytokines including

TNF-a and IL-1bmRNA and inhibits the activation of microglia

and astrocytes in the ischemic brain (243).

(3) Triptolide: Tripterygium is derived from the root bark of the

traditional Chinese medicine Tripterygium wilfordii, which has

anti-inflammatory, antioxidant and anti-cancer effects.

Triptolide has been used in the treatment of various diseases,

such as tumors [colorectal cancer (244), hepatocellular

carcinoma (245)], autoimmune-related diseases [rheumatoid

arthritis (246)], obesity (247), etc. Triptolide exerts anti-

inflammatory and neuroprotective effects on cerebral ischemia

rats through the nuclear factor-KB signaling pathway (248).

Jiang et al. found that triptolide reduced neuronal apoptosis and

inflammatory factor expression in rats with cerebral ischemia

through IL-33/growth-stimulating expression gene 2 protein-

mediated polarization of M2 microglia, thereby reducing

cerebral infarct volume (249).

(4) Artesunate: Artesunate is a derivative of artemisinin with

high water solubility and can pass through the BBB for the

treatment of cerebral and other types of severe malaria (250).

Artesunate can also maintain a high concentration in the

nervous system, showing high efficiency and low toxicity (251–

254). Studies have shown that artesunate may exert multiple

functions, including anti-inflammatory, immunomodulatory,

BBB protection, antibacterial and antitumor effects (253, 254).

Studies have shown that the anti-inflammatory effects of

artesunate are mediated by NF-kB and inflammatory cytokine

inhibition. Lai et al. found that artesunate could alleviate liver

fibrosis and inflammation by inhibiting the LPS/TLR4/NF-kB
pathway (255). Okorji and Olajide found that artesunate reduced

proinflammatory cytokine production by inhibiting the p38

MAPK-NF-kB signaling pathway in activated BV2 microglia

(256). Artesunate also exerts a protective effect in CIRI and

inhibits the expression of TNF-a and IL-1b (257). Liu et al.

found that artesunate significantly improved neurological deficit

score and infarct volume, and improved inflammation by

reducing neutrophil infiltration, inhibiting microglial

activation, and downregulating the expression of TNF-a and

IL-1b. In addition, artesunate inhibits nuclear translocation of

NF-kB and inhibits protein a proteolysis. In summary,

artesunate may protect against inflammatory injury by

reducing neutrophil infiltration and microglial activation,

inhibiting inflammatory cytokines and inhibiting NF-kB
pathway. Therefore, artesunate is a potential IS treatment

drug (258).

(5) Neo-Minophagen C: Glycyrrhizin is derived from the

glycosides of Glycyrrhizae radix et rhizoma, among which

Neo-Minophagen C has ant i - inflammatory e ffec t ,

immunomodulatory effect, inhibitory effect on experimental

liver cell injury, inhibition of virus proliferation and

inactivation of virus (259, 260). Neo-Minophagen C reduces
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infarct volume and improves motor function and neurological

deficits. The neuroprotective effect of Neo-Minophagen C is

mediated by reducing neutrophil infiltration and microglial

activation after ischemia. Neo-Minophagen C reduces

inflammatory mediators and pro-inflammatory cytokines in

LPS-activated microglia. Inhibition of microglial activation and

inflammatory mediators contributes to the neuroprotective

effect of neophage C after cerebral ischemia (261).

(6) Hyperforin: Hyperforin, as an active ingredient of

Hypericum perforatum L, is used to alleviate mild to moderate

depression and has a significant antidepressant effect (262).

Further studies have shown that hyperforin has good anti-

inflammatory, anti-tumor and neuroprotective effects (263,

264). Hyperforin reduces infarct size and improves nerve

damage by inhibiting inflammatory microglial activation and

promoting microglial polarization towards an anti-

inflammatory M2 phenotype in the peri-infarct striatum (265).

(7) Ilexonin A: Ilexonin A is a water-soluble compound, 3-

succinyl-18-dehydroursolic acid disodium salt, prepared by

succinylation of 18-dehydroursolic acid isolated from the

rhizome or root bark of Ilex pubescens Hook.et Arn (266).

Ilexonin A is an antithrombotic drug whose chemical structure

is different from the currently known antiplatelet aggregation

drugs. Ilexonin A is effective in the treatment of ischemic

cerebrovascular disease, coronary heart disease, central retinal

choroiditis, peripheral vascular disease, etc., especially for the

treatment of acute ischemic cerebrovascular disease (267, 268).

Meanwhile, Ilexonin A reduces inflammatory microglial

activation in the ischemic brain. Its neuroprotective effects

may be related to neuronal regeneration, inhibition of

microglial activation and increased angiogenesis (269).

(8) Huperzine A: Huperzine A is an alkaloid extracted from

Huperzinaserrata (Thumb.) Trev. It is a potent cholinesterase

reversible inhibitor. Its characteristics are similar to neostigmine,

but the duration of action is longer than the latter (270, 271).

Huperzine A can effectively prevent brain neurasthenia

in middle-aged and elderly people, restore brain nerve

function, and activate brain nerve transmission substances

(272). Huperzine A may inhibit NF-kB activity and pro-

inflammatory mediator production in the cerebral cortex and

striatum of MCAO rats. It reduces neurological deficits and glial

cell activation after ischemic injury mainly through its anti-

inflammatory effect in the post-ischemic brain (232). Huperzine

A can also down-regulate MAPK signaling, especially JNK and

p38, to reduce the level of the inflammatory factor TNF-a.
Huperzine A exerts neuroprotection against 2-VO-induced

cognitive impairment by promoting an anti-inflammatory

response in the brain (273).

(9) Berberine: Berberine, a quaternary ammonium alkaloid

isolated from COPTIDIS RHIZOMA, is the main active

ingredient in COPTIDIS RHIZOMA for antimicrobial activity.

Studies have shown that berberine regulates immune and

inflammatory mechanisms (274, 275). Berberine also improves
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ischemia-induced short-term memory impairment by reducing

neuronal apoptosis, microglial activation and oxidative stress.

Berberine exerts neuroprotective effects against ischemic injury

by increasing the activation of the PI3K/Akt pathway through its

phosphorylation in the hippocampus of ischemic gerbils (276).

(10) Sinomenine: Sinomenine is the main active ingredient

isolated from Sinomenium acutum (Thunb.) Rehd.et Wils

(277), which is a kind of morpholine alkaloids, molecular

formula is C19H23NO4. It has anti- inflammatory,

antihypertensive, analgesic, anti-arrhythmic and other

pharmacological activities, and also plays an important role in

the treatment of chronic nephritis, anti-oxidation, anti-tumor,

detoxification and so on (278, 279). Sinomenine also reduces

glial cell activation by inhibiting the NLRP3-ASC-Caspase-1

inflammasome in mixed glial cultures exposed to OGD as well

as in MCAO mice. Sinomenine also reduces OGD-induced K

phosphorylation in A macrophages in vitro. The inhibition of

NLRP3 and A-macrophage K activation in activated glial cells by

sinomenine is a key cellular mechanism for its neuroprotective

effect against stroke (280).

4.1.4 Flavonoids
(1) Icariin: Icariin is the main active ingredient of Epimedii

folium, which is an 8-prenyl flavonoid glycoside compound

(281). Icariin can increase cardiovascular and cerebrovascular

blood flow, inhibit inflammation, resist oxidative stress, regulate

immunity, promote hematopoietic function, immune function

and bone metabolism, and also has the effects of tonifying kidney

and strengthening yang, anti-aging and so on (282–284). Tang

et al. found that after icariin treatment, the neurological function

score and cerebral infarction rate of MCAO model rats were

improved, the activation of Iba1 and TLR4 in microglia

decreased, the NF-kB p65 protein level decreased, and the

content of inflammatory factors IL-1a and TNF-a decreased

significantly. This suggests that icariin may play a role in brain

protection by regulating the activation of microglia, inhibiting

the activation of TLR4 and its downstream NF-kB signaling

pathway, and reducing the expression of related inflammatory

factors IL-1a and TNF-a (285).

(2) Eupatilin: Eupatilin, a lipophilic flavonoid isolated from

ARTEMISIAE ARGYI FOLIUM, is a PPARa agonist with

anti-apoptotic, anti-oxidant and anti-inflammatory effects

(286–288). Eupatilin may inhibit pro-inflammatory mediators

including nitrite, PGE2, TNF-a and IL-6 in activated microglia

in vitro and in vivo to combat focal cerebral ischemia. In the

post-ischemic brain of mice challenged with tMCAO, eupatin

significantly improved neurological function and reduced

cerebral infarction. It also significantly reduced Iba1-

immunopositive cells, microglia/macrophage proliferation, NF-

kB signaling, IKKa/b phosphorylation, IkBa phosphorylation,

and IkBa degradation in the tMCAO-attacked brain. This

suggests its powerful effect on counteracting the inflammatory

response of microglia/macrophages in the ischemic brain (289).
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(3) Heptamethoxyflavonoids: Heptamethoxyflavone protects

neuronal cells from ischemia-induced injury by increasing

BDNF production, CaMK II phosphorylation, and reducing

microglia/macrophage activation (290).

(4) Wogonin: Wogonin is a flavonoid extracted from the root of

Scutellaria baicalensis Georgi (291). Wogonin has attracted

attention because of its various pharmacological activities,

including antioxidant activity, anti-inflammatory, immune

regulation, and cardiovascular protection. It also has

neuroprotective effects during cerebral ischemia (292, 293).

Wogonin reduces LPS-induced microglial activation by

attenuating the production of inflammatory biomarkers,

including iNOS, nitrite, IL-1b, TNF-a and NF-kB in

microglia. Furthermore, wogonin treatment down-regulated

hippocampal neuronal death by reducing inflammatory

mediators such as iNOS and TNF-a after systemic ischemia. It

also inhibited the level of microglia-specific isolectin B4 staining,

suggesting its role in inhibiting microglial activation (294).

(5) Puerarin: Puerarin is the main active ingredient extracted

from Pueraria lobata (Willd.) Ohwi (295). It has the effect of

protecting cardiovascular and cerebrovascular and nerve cells,

and can dilate blood vessels, lower blood pressure, lower blood

sugar, anti-tumor, improve immunity, anti-oxidation, anti-

inflammatory and regulate bone metabolism (296–298).

Puerarin also reduces ischemia-induced COX-2 expression and

reduces cerebral infarction in MCAO rats by inhibiting

microglia and astrocyte activation (299).

(6) Quercetin: Quercetin is a naturally occurring phytochemical

with good biological activity. It mainly exists in vegetables, fruits,

tea and wine in the form of glycosides and has a healthy effect

(300, 301). The anti-diabetic, anti-hypertensive, anti-

Alzheimer’s disease, anti-arthritis, anti-influenza virus, anti-

microbial infection, anti-aging, autophagy and cardiovascular

protective effects of quercetin have been extensively studied

(302–304). Quercetin may reduce neuroinflammation and

apoptosis by reducing the expression of iNOS and caspase-3,

which is associated with hippocampal neuroprotection after

systemic ischemia in rats (299).

(7) Fisetin: Fisetin is a compound extracted from natural plants

with pharmacological effects against different pathological

processes (305). The concentration of Fisetin in food is 2 ~

160mg/g. The content of Fisetin in strawberry, apple and

persimmon is high, and fisetin is also abundant in various

legume trees and shrubs (306). Studies have shown that Fisetin

has a certain therapeutic effect on neurological abnormalities,

cardiovascular disease, diabetes, obesity, lung disease, immune

disease, cancer and other inflammatory diseases (307, 308).

Fisetin may reduce the infiltration of macrophages and

dendritic cells into the ischemic hemisphere and reduces

immune cell activation in the brain, as evidenced by decreased

TNF-a levels. Fisetin significantly downregulates inflammation

in LPS-activated microglia and macrophages by reducing NF-kB
signaling and reducing TNF-a production. This anti-
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inflammatory effect of Fisetin is associated with reduced

neurotoxicity and neuroprotection by activated microglia and

macrophages following ischemic injury (309).

(8) Breviscapine: Breviscapine is the extract of Erigeron

breviscapus (Vant.) Hand.-Mazz. It is composed of flavonoids,

lignans, coumarins, terpenoids, phytosterols and other chemical

components (310). Modern pharmacological studies have shown

that Breviscapine has a wide range of pharmacological effects,

including anti-oxidation, anti-fibrosis, anti-inflammatory, anti-

aging, anti-platelet aggregation, reducing blood lipids, increasing

blood flow, improving microcirculation, preventing and treating

tumors, and anti-brain injury. At present, Breviscapine has been

widely used in the treatment of diabetes, cerebral insufficiency,

sequelae caused by a cerebral hemorrhage, hyperviscosity,

cerebral thrombosis, nephropathy, liver disease, Alzheimer’s

disease and other complex diseases (311–313). Breviscapine

reduces microglial activation by inhibiting inflammatory

biomarkers (such as ROS, NO, and iNOS) in LPS-activated

microglia. It also inhibited pro-inflammatory cytokines,

especially TNF-a, in the rat brain after ischemia (314).

Breviscapine reduces levels of NF-kB, MCP-1 and Notch-1

signaling in vitro and in vivo in animal models of ischemia. It

also reduced microglial migration and adhesion. Breviscapine

also inhibits the inflammatory microglia/macrophage phenotype

through the Notch pathway and contributes to neuroprotection

against ischemia/stroke (315).

(9) Chrysin: Chrysin is a flavonoid found in plant species such as

Oroxylum indicum (L.) Vent. It is mainly used for intervention

in the treatment of hyperlipidemia, cardiovascular and

cerebrovascular diseases, anxiety, inflammation, gout, cancer,

muscle enhancement, etc. (316–318). Chrysin may reduce the

number of activated glial cells, production of pro-inflammatory

cytokines, iNOS, COX-2, and NF-kB signaling in the brain after

ischemia. Through this anti-inflammatory mechanism, chrysin

reduces infarct size and improves neurological deficits (319).

(10) Epicatechin: Epicatechin is a natural plant flavanol

compound, chemical formula C15H14O6, with epigallocatechin,

catechin gallate, epicatechin gallate, epigallocatechin gallate

collectively referred to as catechin compounds (320, 321).

Epicatechin and other flavonoids have the effects of anti-

oxidation, scavenging free radicals, enhancing metabolism,

regulating immunity and anti-tumor (322, 323). Epicatechin

reduces oxidative stress by activating the antioxidant Nrf2

pathway, thereby increasing neuronal viability against OGD-

mediated injury. In MCAO, epicatechin down-regulates motor

dysfunction by down-regulating microglia/macrophage

activation (324).

4.1.5 Glycosides
(1) Salidroside: Salidroside is a phenylpropanol glycoside

extracted from Rhodiola rosea L., which has good anti-

inflammatory and antioxidant effects (325). Han et al. (326)

found that salidroside can reduce the size of cerebral infarction
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in IS rats and improve neurological function and histological

changes in rats, which may involve the activation of Nrtf2

pathway and its endogenous antioxidant system. Liu et al.

(327) found that in the IS mouse model, salidroside decreased

the expression of M1-type markers, increased the expression of

M2-type markers, and induced the transformation of microglia

from M1 phenotype to M2 phenotype. Salidroside can also

inhibit LPS-induced BV2 microglia inflammatory response,

mainly by activating PI3K/Akt signaling pathway, promoting

Akt phosphorylation, inhibiting NF-kB p50 nuclear

transcription, and then inhibiting cytokines. In addition, in a

model of neuroinflammation after spinal cord injury, Li et al.

found that salidroside can restore motor function in rats,

increase the M2/M1 polarization ratio in the spinal cord,

reduce the expression of Bax, NF-kB, iNOS and COX-2

mRNA, increase the expression of Bcl-2, p-AMPK, and reduce

the expression of p-mTOR.

(2) Forsythin: Forsythin is the dried fruit of Forsythia suspensa

(Thunb.) Vahl (328, 329). Modern pharmacological studies have

shown that Forsythia suspense has antibacterial, anti-

inflammatory, antiviral, hepatoprotective, anti-tumor, immune

regulation and antioxidant effects (328). Studies have found that

Forsythia suspensa (Thunb.) Vahl and its constituents have

significant effects in improving neurodegenerative diseases and

other neuroprotection in the elderly (330). Meanwhile, forsythin

may protect neuronal cells in the CA1 region of the

hippocampus after ischemia by attenuating glial activation.

Forsythin also reduces the levels of pro-inflammatory

cytokines such as IL-1b and TNF-a (331).

(3) Ginsenosides: Ginsenoside is a steroid compound, also

known as triterpenoid saponins, which mainly exists in Panax

L (332). The experimental results showed that Ginsenoside

inhibited the formation of lipid peroxide in the brain and

liver, reduced the content of lipofuscin in the cerebral cortex

and liver, and also increased the content of superoxide dismutase

and catalase in the blood (333, 334). In addition, some monomer

saponins in Ginsenoside such as rb1, rb2, rd, rc, re, rg1, rg2, rh1,

etc.can reduce the content of free radicals in the body to varying

degrees. Ginsenoside can delay neuronal senescence and reduce

memory impairment in the elderly, and has a stable membrane

structure and increased protein synthesis, thereby improving the

memory ability of the elderly (332, 335). The inhibitory effect of

ginsenoside Rd on inflammation was demonstrated by reducing

microglial activation and inflammatory biomarkers, including

iNOS and COX-2, to exert neuroprotective effects against

transient focal ischemia (336). Ginsenoside Rb1 improves

neurological deficit and reduces infarct size by reducing

microglia activation. Ginsenoside Rb1 treatment reduces the

mRNA levels of proinflammatory cytokines such as IL-6, TNF-a
by downregulating NF-kB-mediated transcription in the

ischemic brain. This suggests that its neuroprotective efficacy

is exerted by down-regulating the inflammatory response of

activated glia (337).
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(4) Kaempferol glycosides: Kaempferol is a flavonoid compound

mainly derived from the rhizome of Kaempferol galanga L,

which is widely found in various fruits, vegetables and

beverages (338, 339). It has been widely concerned because of

its anti-cancer, anti-cancer, anti-inflammatory, antioxidant,

antibacterial, antiviral and other effects (340–342). Kaempferol

glycosides, kaempferol-3-O-rutinoside and kaempferol-3-O-

glucoside significantly reduced infarct volume, neurological

deficits, neuronal and axonal damage in the brains of tMCAO-

injured rats. Furthermore, these glycosides inhibit inflammation

by reducing transcription mediated by GFAP, OX-42,

phosphorylated STAT3, and NF-kB. These glycosides also

inhibit macrophage O, iNOS, TNF-a, IL-1b, ICAM-1 and

MMP-9 production for neuroprotective effects (343).

(5) Paeoniflorin: Paeoniflorin is derived from the roots of

Paeonia albiflora Pall, P. suffersticosa Andr and P. delarayi

Franch, and its content is high in P. lactiflora (344). Its

pharmacological effects of paeoniflorin has significant

analgesic, sedative, anticonvulsant effect, antithrombotic effect,

anti-platelet aggregation, anti-hyperlipidemia effect, etc. (345,

346). Paeoniflorin ameliorates learning and memory

impairment by reducing morphological and structural changes

in the CA1 region of brain injury in rats with cerebral

hypoperfusion. This neuroprotective efficacy was associated

with reductions in inflammatory mediators (eg, NO) and

proinflammatory cytokines (eg, IL-1b, TNF-a, and IL-6), and

increases in anti-inflammatory cytokines (IL-10 and TGF-b1).
Thus, down-regulation of the pro-inflammatory phenotype and

increased anti-inflammatory phenotype of activated microglia/

macrophages are associated with the neuroprotective efficacy of

paeoniflorin (347).

4.1.6 Others
(1) Fingolimod (FTY720): FTY720 is a high affinity agonist for

sphingosine 1-phosphate (S1P) receptors and was developed

from a sphingosine analogue extracted from Ophiocordyceps

sinensis (Berk.) G.H. Sung, J.M.Sung, Hywel-Jones & Spatafora

as a lead compound; it is approved by the US Food and Drug

Administration for the treatment of relapsing-remitting multiple

sclerosis (348). Among the four S1P receptor subtypes targeted

by FTY720, the current study found that S1P1 and S1P3 are

associated with cerebral ischemia (349). The therapeutic

mechanism of FTY720 for ischemic stroke is not fully

understood. Li et al. (350) found that FTY720 can activate the

mammalian target of rapamycin/p70S6 signaling pathway and

inhibit neuronal autophagy activity. Many scholars believe that

(351, 352), the beneficial effect of FTY720 on IS has nothing to

do with direct neuronal protection, but is anti-inflammatory and

vascular protection by reducing the invasion of brain

lymphocytes. Gaire et al. (349) found that FTY720 inhibits

S1P3, thereby inhibiting the transformation of microglia to M1

type. Qin et al. (352) found that FTY720 activates signal
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transducer and activator of transcription 3 and promotes the

polarization of microglia from M1 to M2.

(2) 3-N-butylphthalide (NBP): NBP is a compound isolated

from celery seeds, and there are three types of derivatives: L-

NBP, D-NBP and DL-NBP (353). L-NBP has been approved for

use in China. Among the three derivatives, L-NBP has the

strongest biological effect and the best safety (353). NBP has

neuroprotective effects on ischemic stroke animal models by

inhibiting oxidative damage, neuronal apoptosis and glial cell

activation, increasing the level of circulating endothelial

progenitor cells (354, 355). Li et al. (356) observed that L-NBP

could enhance the M2 polarization of microglia in animal

models of cerebral ischemia and inhibit the M1 polarization.

(3) Danshenol bornanyl ester: Danshenol bornanyl ester is a new

compound with anti-cerebral ischemia effect, which is designed

and synthesized based on the active ingredient of Salvia

miltiorrhiza Bge.and the effective structural fragment of

borneol by using the principle of modern drug design (357,

358). Danshenol bornanyl ester significantly inhibits NF-kB
activity, inhibits the production of pro-inflammatory

mediators, and simultaneously promotes the expression of M2

mediators in LPS-stimulated BV2 cells and mouse primary

microglia. Danshenol bornanyl ester also exhibits antioxidant

activity by enhancing Nrf2 nuclear accumulation and

transcriptional activity, increasing HO-1 and NQO1

expression, and inhibiting LPS-induced ROS production in

BV2 cells. The aforementioned anti-neuroinflammatory and

antioxidant effects could be reversed by Nrf2 knockdown. In

addition, Danshenol bornanyl ester improves disease behavior in

mice with neuroinflammation induced by systemic LPS

administration, significantly reduces infarct volume in rats

with transient MCAO (tMCAO), and improves sensorimotor

and cognitive function. Danshenol bornanyl ester also restores

microglia morphological changes and alters M1/M2

polarization (359).

(4) Arctigenin: Arctigenin is a lignan compound from Arctium

lappa L., which can effectively inhibit the release of inflammatory

factors. It inhibits the proliferation, migration and angiogenesis

of human umbilical vein endothelial cells (HUVECs) induced by

high glucose, and plays a protective and anti-oxidative stress role

in HUVECs injury (360–362). Arctigenin reduces the activation

of microglia by reducing the release of TNF-a and IL-1b in rats

with ischemic injury. This anti-inflammatory effect of arctigenin

contributes to its neuroprotective effect (363).

(5) Sesamin: Sesamin mainly comes from the roots of

Acanthopanax sessiliflorus (Rupr.et Maxim.) Seem., the seeds

or seed oil of Sesamum indicumDC., and the wood of Paulownia

tomentosa (Thunb.) Steud. Its main pharmacological effects are

inhibition of inflammation and anti-oxidative stress (364, 365).

Current research found that sesamin may inhibit oxidative stress

and reduces cleaved-caspase-3 activation, lipid peroxidation and

increases GSH activity. It also inhibited inflammatory mediators

such as peroxynitrite, iNOS, COX-2, Iba1, Nox-2 in the brains of
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MCAO-challenged mice to exert their neuroprotective

effects (366).

(6) Edaravone: Edaravone ameliorates cognitive decline and

delays neuronal death after focal cerebral ischemia by

inhibiting inflammatory biomarkers including iNOS, NO,

ROS, IL-1b and TNF-a production. In addition, inhibition of

inflammation, oxidative stress, and astrocyte activation are

thought to be relevant mechanisms for the neuroprotective

effect of edaravone against ischemic injury (314, 367).

(7) Tetramethylpyrazine (Ligustrazine): Ligustrazine is an alkyl

pyrazine extracted from Ligusticum wallichii (368). It has

potential anti-neural and anti-inflammatory activity in rats,

can protect vascular endothelial cells, reduce capillary

permeability, reduce vascular resistance in anesthetized dogs,

and increase blood flow in brain, cerebral arteries and lower

limbs (369, 370). Ligustrazine can also reduce the damage of

neurons and microvascular endothelial cells and improve

neurological signs. It has a short-term improvement effect on

complete cerebral ischemia, and has a certain degree of

promoting cerebral resuscitation, antagonizing systemic

circulation and pulmonary blood pressure after cerebral

ischemia (371). Ligustrazine has a strong inhibitory effect on

rabbit platelet aggregation induced by ADP, collagen and

thrombin in vitro, and inhibits the production of platelet

malondialdehyde. I ts mechanism is to inhibit the

phosphorylation of phosphatidylinositol 4-phosphate (PIP)

kinase and 20K protein in platelets (87). Ligustrazine can also

reduce whole blood viscosity, red blood cell and platelet

electrophoresis speed up, reduce fibrinogen, inhibit thrombosis

(372). In regulating microglia, ligustrazine can reduce the

activation of microglia/macrophages, lymphocyte infiltration

and the production of inflammatory mediators in the brain

after ischemia. It also reduces inflammatory responses and

increases antioxidant/anti-inflammatory responses in

microglia/macrophages and post-ischemic neurons via Nrf2/

HO-1 (373).

(8) Cannabidiol: Cannabidiol is an ingredient extracted from

Cannabis sativa L (374, 375). At present, its main

pharmacological effects are analgesic and anti-inflammatory,

inhibition of nerve growth factor-induced mast cell

degranulation and neutrophil aggregation to inhibit allergic

inflammation, and thus mediate immunosuppression (376,

377). Cannabidiol inhibits hippocampal neurodegeneration,

cognitive and memory impairment, glial responses, and white

matter damage against BCCAO. It also induces BDNF

production in the hippocampus, promoting neurogenesis and

dendritic reorganization in BCCAO mice (378).

(9) Ligustolide: Ligustolide is the main active ingredient in the

volatile oil of Angelica sinensis (379). The current

pharmacological Ligustolide can inhibit the proliferation of

vascular smooth muscle cells and cell cycle progression, and

inhibit vasoconstriction (380). It also increases vasodilation,

antithrombotic and serotoninergic activity, and reduces
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platelet aggregation (381, 382). Currently, Ligustolide is widely

used in the research and treatment of cardiovascular and

cerebrovascular diseases and ischemic brain injury (383).

Ligustolide can inhibit neuroinflammation and oxidative stress

on CIRI damage (384) and reduces cerebral infarct volume and

improves neurological function. Ligustolide-induced

neuroprotection was accompanied by amelioration of

neuropathological changes, decreased activation of microglia

and macrophages, infiltration of neutrophils and lymphocytes,

and downregulation of inflammatory mediators. This anti-

inflammatory effect is controlled by the ERK/NF-kB signaling

axis in the ischemic brain. Ligustolide-mediated inhibition of

TLR4/Prx6 signaling induces neuroprotection against ischemic

stroke (384).

4.2 Herb Extracts
4.2.1 Salvia Polyphenolic Acid

Salvia Polyphenolic Acid is an active ingredient extracted

from Salvia miltiorrhiza Bge. Its main function is to improve the

viscous state of blood, with blood circulation, blood stasis, and

good clinical tolerance (385, 386). Current studies have shown

that its mechanism of action is to inhibit the inflammatory

response of endothelial cells, improve energy metabolism,

promote vascular endothelial cell migration, and improve

ischemia-reperfusion injury (380, 387, 388). Studies have

shown that salvianolic acid can reduce the inflammatory

factors (such as ICAM-1, IL-1b, IL-18 and TNF-a) in the

cerebral cortex of the rat brain MCAO/R model, and reduce

the apoptosis of cortical neurons. Salvianolic acid can alleviate

the cell damage of oxygen glucose deprivation/reoxygenation

(OGD/R)-treated neurons alone and co-cultured with microglia,

improve cell viability, and reduce the rate of apoptosis,

suggesting that salvianolic acid may reduce the cytotoxicity of

microglia to neurons. Salvianolic acid can reduce the expression

of NLRP3 in microglia after cerebral ischemia-reperfusion injury

(CIRI) in rats, and inhibit the expression of pro-inflammatory

factors such as IL-1b and IL-18 in the brain. It can also inhibit

the cleavage of the pyroptosis-related protein GSDMD in

microglia after CIRI, and reduce the expression of NLRP3,

ASC, caspase1, and IL-1b mRNA in microglia. Salvianolic acid

can also reduce the number of Iba1 and P2X7 double-labeled

microglia in the MCAO/R model rat cerebral cortex, and can

reduce the expression of P2X7 protein and mRNA in

microglia (194).

4.2.2 Panax notoginseng saponins

Panax notoginseng saponins are the main active ingredients

of Panax notoginseng (Burkill) F. H. Chen ex C. H., mainly

containing ginsenoside Rb1, ginsenoside Rg1, notoginsenoside

R1 and other components (389). It can inhibit platelet

aggregation in rabbits caused by ADP, and can also dilate

cerebral vessels and increase cerebral blood flow (390, 391).
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Current studies have shown that Panax notoginseng saponins

have a wide range of functions in the central nervous system,

cardiovascular system, blood system, immune system, anti-

fibrosis, anti-aging, anti-tumor, etc. (392–394). Jia et al. found

that Panax notoginseng saponins can improve cerebral blood

flow, neurological deficits, tissue morphology, and neuronal

damage. It can also promote the expression of CD206/Iba-1 in

M2-type microglia, and up-regulate the expression of CD206,

TGF-b and IL-10 protein; inhibit the expression of CD16/Iba-1

in M1 type microglia cells and down-regulate the expressions of

IL-1b, IL-6, TNF-a and iNOS protein. This suggests that Panax

notoginseng saponins may promote the transition fromM1-type

polarization to M2-type in microglia (395).

4.2.3 Omega-3 polyunsaturated fatty acids (n-3 PUFA)

n-3 PUFA is one of the members of the PUFA family, mainly

derived from deep-sea fish and some plants, among which

eicosapentaenoic acid and docosahexaenoic acid are most

involved in the regulation of human physiology. n-3 PUFAs

play a role in the prevention and treatment of ischemic stroke

(396, 397) can promote neurogenesis, increase peri-infarct

vascular formation, improve glial scarring after cerebral

ischemia, reduce mitochondrial dysfunction, reduce

neuroinflammation, etc. (398, 399). Jiang et al. (400) found

that n-3 PUFAs can switch the phenotype of microglia from

M1 to M2 in mice with cerebral ischemia, which helps to

improve white matter integrity and sensorimotor recovery.

4.2.4 Notoginseng leaf triterpenes

Notoginseng leaf triterpenes, as a valuable drug, have been

found to have neuroprotective effects. It can reduce the

expression of HMGB1, inhibit the inflammation caused by

HMGB1, and inhibit the activation of microglia (IBA1) in

hippocampus and cortex, thereby reducing the concentration

of inflammatory cytokines including VCAM-1, MMP-9 and

MMP-2 and ICAM-1 of IS in a dose-dependent manner. In

addition, it can inhibit the activation of MAPKs and NF-kB,
thereby ameliorating the neuropathological changes induced by

CIRI (401).

4.2.5 Fructus Gardenia Extracts

Fructus Gardenia is a TCM with various pharmacological

effects, such as anti-inflammatory, antidepressant, improving

cognition and ischemic brain injury. GJ-4 is a natural extract

from Fructus Gardenia, GJ-4 can significantly improve memory

impairment, cerebral infarction and neurological deficit in

MCAO/R-induced vascular dementia (VD) rats. Further

studies showed that GJ-4 attenuated VD-induced neuronal

damage. In addition, GJ-4 can protect the synapses of VD rats

by up-regulating the expression of synaptophysin, postsynaptic

density 95 protein (PSD95) and down-regulating the expression

of N-methyl-D-aspartate receptor 1 (NMDAR1). Subsequent
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investigations into the underlying mechanism found that GJ-4

could inhibit neuroinflammatory responses, supported by

inhibiting microglia activation and reducing the expression of

inflammatory proteins, ultimately exerting neuroprotective

effects on VD (402).

The structures of those components are shown in Figure 2.

The effects of natural botanical components on microglia/

macrophages after cerebral ischemia are summarized in

Table 1 and Figure 3.
5 Prospect

Microglia play a biphasic regulatory role in ischemic

stroke. After IS, microglia were activated, migrated, and

exerted pro-inflammatory and anti-inflammatory effects

through M1/M2 phenotype polarization, respectively, and at

the same time played a protective role by inhibiting M1

phenotype polarization or promoting M2 phenotype

polarization. However, the research on induced cell

polarization is limited to animal experiments and in vitro

experiments, and the potential mechanism still needs further

research. Apoptosis after IS involves many complex signaling

pathways. Regulating the programmed death of neurons in the

ischemic penumbra can save dying neurons to the greatest

extent and promote the recovery of neural function. In

addition, activation of SIPRs, TLRs, NLRPs, PPARs, and

P2X7R may be the potential mechanisms for regulating
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microglia after IS, however, the mechanisms need to be

further studied.

Natural plant compounds may have great potential as

therapeutic agents to reduce pro-inflammatory responses after

cerebral ischemia. As can be seen from the foregoing, most of the

current studies describe M1/M2 polarization, but most studies

show a mixed signature of M1 or M2 microglial/macrophage

phenotypes after cerebral ischemia. An urgent need to address is

the need to define the M1 or M2 microglia/macrophage

phenotype in experiments with these natural compounds.

Furthermore, the markers currently used to differentiate M1

and M2 phenotypes are not microglia or macrophage specific.

Therefore, technologies that can separate M1 from M2

microglia/macrophages (such as microfluidics and single-cell

transcriptomics to identify novel microglia-specific biomarkers)

are needed in the future.

The limitation of this review is that this review focuses on the

detailed mechanisms of microglia/macrophages in IS and the

mechanisms of natural compound intervention, but lacks a

summary of other immune cells such as T cells, B cells, and

neutrophils in IS. Since immune cells such as T cells and B cells

also play an important role in the pathophysiological process of

IS, it is recommended to review the mechanism of these immune

cells in IS in the future (39, 169, 172).

In summary, it can be seen that not only single-component

natural botanical components can exert a therapeutic effect on IS

by regulating microglia, but multi-component natural botanical

components also show potential synergistic effects in regulating
FIGURE 2

The structure of main natural botanical components.
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TABLE 1 Summary of the role of natural botanical components on IS.

Natural botanical
component

Effects Ischemia
type

Category Reference

Gastrodin The volume of cerebral infarction and BBB permeability ↓; MMP2, MMP9,
AQP4, IL-1b, COX-2 and iNOS↓; ZO-1↑

MCAO/R and
OGD/R

Polyphenols
and Phenols

(194)

Malibatol A Promoting M2 microglial polarization OGD/R Polyphenols
and Phenols

(195–197)

Emodin MMP-9, TLR4, NF-kB, TNF-a, ICAM-1 ↓ MCAO Anthraquinones (230–233)

Chrysophanol Notch-1, TNF-a and ICAM-1 protein ↓; Iba-1 positive cells↓; promoting the
transformation of microglial M1 type to M2 type

MCAO Anthraquinones (234, 235)

Salidroside CD16, CD32, CD11b, iNOS↓; CD206, Arg-1, TGF-b, Ym-1/2 ↑ MCAO Glycosides (326, 327)

Icariin the activation of Iba1 and TLR4 in microglia ↓NF-kB p65 protein ↓; IL-1a and
TNF-a ↓

MCAO Flavonoids (285)

Salvia Polyphenolic Acid ICAM-1, IL-1b, IL-18, TNF-a, NLRP3, GSDMD, ASC, CASP1↓; Iba1/P2X7
double-labeled microglia↓

MCAO/R and
OGD/R

Polyphenols
and Phenols

(194)

Panax notoginseng
saponins

CD206, TGF-b and IL-10↑;IL-1b, IL-6, TNF-a and iNOS↓;Promoting the
expression of CD206/Iba-1 in M2-type microglia; Inhibiting the expression of
CD16/Iba-1 in M1 type microglia cells

MCAO/R Glycosides (395)

Notoginseng leaf
triterpenes

ICAM-1, VCAM-1, MMP-9, MMP-2, HMGB1 ↓ MCAO/R Terpenes and
Alkaloids

(401)

Omega-3
polyunsaturated fatty
acid

Promoting the phenotype of microglia from M1 to M2. MCAO Lipids (398–400)

Fingolimod promoting the polarization of microglia from M1 to M2 Bilateral
carotid artery
stenosis

Other (349–352,
403)

3-N-butylphthalide Inhibiting oxidative damage, neuronal apoptosis and glial cell activation,
increasing the level of circulating endothelial progenitor cells; promoting the M2-
type polarization of microglia, inhibiting the M1-type polarization

IS patients;
MCAO animal

Other (356)

Danshenol bornanyl
ester

HO-1 and NQO1↑; NF-kB ↓ Altering M1/M2 polarization MCAO/R Other (359)

Astragaloside IV M1-type microglia/macrophage markers CD86, iNOS, TNF-a, IL-1b and IL-6
mRNA ↓; M2-type microglia/macrophage markers CD206, Arg-1, YM1/2, IL-10
and TGF-b mRNAs ↑; the number of CD16/32+/Iba1+ cells↓; the number of
CD206+/Iba1+ cells ↑; IL-1b, TNF-a and iNOS↓

MCAO Terpenes and
Alkaloids

(238, 239)

Cycloastragenol SIRT1↑; p53, Bax/Bax ratio ↓;TNF-a and IL-1b mRNA↓; Inhibiting NF-kB p65
nuclear translocation; Inhibiting the activation of microglia and astrocytes

MCAO Terpenes and
Alkaloids

(243)

Triptolide IL-1b, IL-6, TNF-a, IL-33, IL-10 ↓; promoting the M2-type polarization IS paitents;
MCAO/R and
OGD/R
animal

Terpenes and
Alkaloids

(248, 249)

Artesunate TNF-a and IL-1b ↓; Inhibiting microglial activation MCAO Terpenes and
Alkaloids

(255–258)

6-Paradol Iba1 ↓; TNF-a and iNOS↓; Inhibiting microglia/macrophages MCAO/R Polyphenols
and Phenols

(208)

Honokiol NF-kB, NO, and TNF-a↓; Inhibiting the M1 phenotypes 2 vessel
occlusion/
reperfusing

Polyphenols
and Phenols

(212)

Indole-3-propionic acid Iba1 ↓; Inhibiting microglia; Inhibiting the M1 phenotypes 2 vessel
occlusion/
reperfusing

Polyphenols
and Phenols

(213)

(Continued)
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microglia. This suggests that the combination of natural

botanical components to treat multiple inflammatory models

(including macrophages and microglia) is a promising direction,

and we can see that the combination of natural botanical

components will be more effective to achieve the desired

therapeutic effect.
6 Conclusion

Intervention of natural botanical components and their

derivatives in microglia-mediated neuroinflammation in IS is a

promising research direction. In the absence of effective
Frontiers in Immunology 19
neuroprotective drugs, we should pay more attention to the

mechanisms of natural botanical components in regulating

microglia-mediated neuroinflammatory diseases such as IS. Future

research directions are suggested as follows: (1) Differentiate

between microglia and macrophages through new techniques

(such as single-cell transcriptomics and its derivatives) to more

accurately determine the regulatory effects of natural compounds.

(2) Amore standardized and stable IS model is needed to determine

the effects of drugs. (3) Using spatiotemporal omics to map the

dynamic continuity state of microglia in natural botanical

components intervening in IS. (4) Validate the long-term brain-

protective effects of natural botanical components and the

mechanisms regulating microglia in rodent and mammalian IS
TABLE 1 Continued

Natural botanical
component

Effects Ischemia
type

Category Reference

Resveratrol Iba1 ↓; IL-1b and TNF-a↓Inhibiting microglia; Inhibiting the M1 phenotypes MCAO/R;
Bilateral
common
carotid artery
occlusion

Polyphenols
and Phenols

(202, 203)

Paeonol IL-1b↓; Inhibiting microglia; Inhibiting the M1 phenotypes MCAO/R Polyphenols
and Phenols

(218)

Epigallocatechin gallate iNOS↓; Inhibiting the M1 phenotypes MCAO/R Polyphenols
and Phenols

(223)

Theaflavin COX-2, iNOS↓; Inhibiting the M1 phenotypes MCAO/R Polyphenols
and Phenols

(227)

Propofol IL-1b, IL-6, TNF-a↓Inhibiting microglia; Inhibiting the M1 phenotypes MCAO/R Polyphenols
and Phenols

(314)

Probucol COX-2, IL-1b, IL-7, iNOS↓; Inhibiting the M1 phenotypes MCAO/R Polyphenols
and Phenols

(229)

6-Shogaol Iba1 ↓; Inhibiting microglia 2 vessel
occlusion/
reperfusing

Polyphenols
and Phenols

(207)

Eupatilin Iba1 ↓; Inhibiting microglia; Inhibiting the M1 phenotypes MCAO/R Flavonoids (289)

Heptamethoxyflavonoids BDNF↑;Iba1 ↓; Inhibiting microglia; Promoting the M2 phenotypes 2 vessel
occlusion

Flavonoids (290)

Wogonin TNF-a, iNOS↓; Inhibiting microglia; Inhibiting the M1 phenotypes MCAO Flavonoids (294)

Puerarin COX-2↓; Inhibiting microglia; Inhibiting the M1 phenotypes 4 vessel
occlusion

Flavonoids (299)

Quercetin iNOS↓; Inhibiting the M1 phenotypes Bilateral
common
carotid artery
occlusion

Flavonoids (299)

Fisetin TNF-a↓; Inhibiting the M1 phenotypes MCAO/R Flavonoids (309)

Breviscapine TNF-a, NF-kB, Notch-1, MCP-1, Hes-1 and iNOS↓; Inhibiting microglia;
Inhibiting the M1 phenotypes

MCAO Flavonoids (314, 315)

Chrysin Iba1, iNOS, COX-2, CD68, IL-1b, IL-6, IL-12, IL-1a, IL-17a, IFN-g, and TNF-a
↓; Ym-1↑; Inhibiting microglia; Inhibiting the M1 phenotypes

MCAO/R Flavonoids (319)

Epicatechin Iba1 ↓; Inhibiting the M1 phenotypes MCAO Flavonoids (324)
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models. (5) Pay attention to the pharmacokinetics,

pharmacodynamics, and toxicological properties of natural

botanical components. (6) Explore the synergistic effect of natural

botanical components in inhibiting neuroinflammation. (7) If all

results are favorable, the next step is to conduct clinical trials of

potential phytochemicals to investigate their neuroprotective effects

on cerebral ischemia/stroke (For example, the team is currently

conducting a clinical trial of Naotai Fang in the treatment of cerebral

small vessel disease: ChiCTR1900024524).
Author contributions

TB, and JZ are responsible for the study concept and design.

TB, JZ, KY, SW,WX, XZ, AG, LZ, JG are responsible for the data

collection, data analysis and interpretation; JZ and KY drafted

the paper; JG supervised the study; all authors participated in the

analysis and interpretation of data and approved the final paper.
Funding

This work is supported by the National Natural Science

Foundation of China (81774174), the National Key Research
Frontiers in Immunology 20
and Development Project of China (No. 2018YFC1704904),

National Natural Science Foundation of Hunan Province,

China (2020JJ5424 and 2020JJ5442), Hunan University of

Chinese Medicine “Double First-Class” Discipline Open Fund

Project of Integrated Traditional Chinese and Western Medicine

(2020ZXYJH08 and 2020ZXYJH09), Hunan Provincial

Department of Education Youth Fund Project (21B0386).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Feske SK. Ischemic stroke. Am J Med (2021) 134(12):1457–64. doi: 10.1016/
j.amjmed.2021.07.027

2. Herpich F, Rincon F. Management of acute ischemic stroke. Crit Care Med
(2020) 48(11):1654–63. doi: 10.1097/CCM.0000000000004597

3. Putaala J. Ischemic stroke in young adults. Continuum (MinneapMinn)
(2020) 26(2):386–414. doi: 10.1212/CON.0000000000000833
4. Mendelson SJ, Prabhakaran S. Diagnosis and management of transient
ischemic attack and acute ischemic stroke: A review. JAMA (2021) 325
(11):1088–98. doi: 10.1001/jama.2020.26867

5. GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke
and its risk factors, 1990-2019: a systematic analysis for the global burden of disease
study 2019. Lancet Neurol (2021) 20(10):795–820. doi: 10.1016/S1474-4422(21)00252-0
FIGURE 3

Effects of Natural botanical components on microglia/macrophages after cerebral ischemia (MAMPs, Metabolism-related molecular patterns;
LPS, Lipopolysaccharide; GM-CSF, granulocyte-macrophage colony stimulating factor; IL, interleukin; TGF, transforming growth factor).
frontiersin.org

https://doi.org/10.1016/j.amjmed.2021.07.027
https://doi.org/10.1016/j.amjmed.2021.07.027
https://doi.org/10.1097/CCM.0000000000004597
https://doi.org/10.1212/CON.0000000000000833
https://doi.org/10.1001/jama.2020.26867
https://doi.org/10.1016/S1474-4422(21)00252-0
https://doi.org/10.3389/fimmu.2022.1047550
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zeng et al. 10.3389/fimmu.2022.1047550
6. Xu S, Lu J, Shao A, Zhang JH, Zhang J. Glial cells: Role of the immune
response in ischemic stroke. Front Immunol (2020) 11:294. doi: 10.3389/
fimmu.2020.00294

7. Kim JS. tPA helpers in the treatment of acute ischemic stroke: Are they ready
for clinical use? J Stroke (2019) 21(2):160–74. doi: 10.5853/jos.2019.00584

8. Hollist M, Morgan L, Cabatbat R, Au K, Kirmani MF, Kirmani BF. Acute
stroke management: Overview and recent updates. Aging Dis (2021) 12(4):1000–9.
doi: 10.14336/AD.2021.0311

9. Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the
treatment of ischemic stroke: An overview of clinical and preclinical studies. Exp
Neurol (2021) 335:113518. doi: 10.1016/j.expneurol.2020.113518

10. Qin C, Zhou LQ, Ma XT, Hu ZW, Yang S, Chen M, et al. Dual functions of
microglia in ischemic stroke. Neurosci Bull (2019) 35(5):921–33. doi: 10.1007/
s12264-019-00388-3

11. Li LZ, Huang YY, Yang ZH, Zhang SJ, Han ZP, Luo YM. Potential
microglia-based interventions for stroke. CNS NeurosciTher (2020) 26(3):288–96.
doi: 10.1111/cns.13291

12. Jiang J, Bai Q, He C, Li Z, Song Z, Cheng S, et al. Dihuang-Yinzi Decoction
Contained Serum Suppresses LPS-induced BV2 Cells Inflammatory Response
Through PPARg/NF-kB Signaling Pathway. World Sci Technology-China
Modernization Med (2021) 23(05):1610–6. doi: 10.11842/wst.20210104003

13. Zhang X, Lei C, Liu Y, Ge J, Meng P, Zhangyu, et al. The regulatory effect of
naotaifang II drug-containing serum on LPS-induced microglial polarization.
J Beijing Univ Traditional Chin Med (2020) 43(05):408–13. doi: CNKI:SUN:
JZYB.0.2020-05-010

14. Zuo L. The effect of annao pingchong recipe on inflammatory response after
cerebral hemorrhage from the P2X7R/NLRP3 pathway[D]. Hunan Univ
Traditional Chin Med (2020). doi: 10.27138/d.cnki.ghuzc.2020.000171

15. He C, Yu W, Yang M, Li Z, Xia X, Li P, et al. Baicalin inhibits
lipopolysaccharide/interferon g-induced inflammatory response in BV2 cells via
TREM2/TLR4/NF-kB signaling pathway. China J Traditional Chin Med (2022) 47
(06):1603–10. doi: 10.19540/j.cnki.cjcmm.20211103.401

16. Wang XJ, Hu R, Huang QY, Peng QH, Yu J. Gynostemma glycosides protect
retinal ganglion cells in rats with chronic high intraocular pressure by regulating
the STAT3/JAK2 signaling pathway and inhibiting astrocyte and microglia
activation. Evid Based Complement Alternat Med (2022) 2022:9963754.
doi: 10.1155/2022/9963754.P

17. Chen M, Lai X, Wang X, Ying J, Zhang L, Zhou B, et al. Long non-coding
RNAs and circular RNAs: Insights into microglia and astrocyte mediated
neurological diseases. Front Mol Neurosci (2021) 14:745066. doi: 10.3389/
fnmol.2021.745066

18. Di Napoli M, Elkind MS, Godoy DA, Singh P, Papa F, Popa-Wagner A. Role
of c-reactive protein in cerebrovascular disease: a critical review. Expert Rev
Cardiovasc Ther (2011) 9(12):1565–84. doi: 10.1586/erc.11.159

19. Kissa K, Herbomel P. Blood stem cells emerge from aortic endothelium by
ael type of cell transition. Nature (2010) 464(7285):112–5. doi: 10.1038/
nature08761

20. Lichanska AM, Browne CM, Henkel GW, Murphy KM, Ostrowski MC,
McKercher SR, et al. Differentiation of the mononuclear phagocyte system during
mouse embryogenesis: the role of transcription factor PU. 1 Blood (1999) 94
(1):127–38. doi: 10.1182/blood.V94.1.127.413k07_127_138

21. Iadecola C, Anrather J. The immunology of stroke: from mechanisms to
translation. Nat Med (2011) 17(7):796–808. doi: 10.1038/nm.2399

22. Endres M, Moro MA, Nolte CH, Dames C, Buckwalter MS, Meisel A.
Immune pathways in etiology, acute phase, and chronic sequelae of ischemic
stroke. Circ Res (2022) 130(8):1167–86. doi: 10.1161/CIRCRESAHA.121.319994

23. Liu R, Song P, Gu X, Liang W, Sun W, Hua Q, et al. Comprehensive
landscape of immune infiltration and aberrant pathway activation in ischemic
stroke. Front Immunol (2022) 12:766724. doi: 10.3389/fimmu.2021.766724

24. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton
SA, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis
depending on mitochondrial function. Neuron (1995) 15(4):961–73. doi: 10.1016/
0896-6273(95)90186-8

25. Rana AK, Singh D. Targeting glycogen synthase kinase-3 for oxidative stress
and neuroinflammation: Opportunities, challenges and future directions for
cerebral stroke management. Neuropharmacology (2018) 139:124–36.
doi: 10.1016/j.neuropharm.2018.07.006

26. Adibhatla RM, Hatcher JF. Lipid oxidation and peroxidation in CNS health
and disease: from molecular mechanisms to therapeutic opportunities. Antioxid
Redox Signal (2010) 12(1):125–69. doi: 10.1089/ars.2009.2668

27. Gomez Perdiguero E, Geissmann F. Myb-independent macrophages: a
family of cells that develops with their tissue of residence and is involved in its
homeostasis. Cold Spring Harb Symp Quant Biol (2013) 78:91–100. doi: 10.1101/
sqb.2013.78.020032
Frontiers in Immunology 21
28. Gomez Perdiguero E, Schulz C, Geissmann F. Development and
homeostasis of "resident" myeloid cells: the case of the microglia. Glia (2013) 61
(1):112–20. doi: 10.1002/glia.22393

29. Zeyu Z, Yuanjian F, Cameron L, Sheng C. The role of immune inflammation
in aneurysmal subarachnoid hemorrhage. Exp Neurol (2021) 336:113535.
doi: 10.1016/j.expneurol.2020.113535

30. Garcia-Bonilla L, Iadecola C. Peroxiredoxin sets the brain on fire after
stroke. Nat Med (2012) 18(6):858–9. doi: 10.1038/nm.2797

31. Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ. Inflammatory
disequilibrium in stroke. Circ Res (2016) 119(1):142–58. doi: 10.1161/
CIRCRESAHA.116.308022

32. Sánchez KE, Rosenberg GA. Shared inflammatory pathology of stroke and
COVID-19. Int J Mol Sci (2022) 23(9):5150. doi: 10.3390/ijms23095150

33. DeLong JH, Ohashi SN, O'Connor KC, Sansing LH. Inflammatory
responses after ischemic stroke. Semin Immunopathol (2022) 44 (5):625–48.
doi: 10.1007/s00281-022-00943-7

34. Guo J, Wang J, Sun W, Liu X. The advances of post-stroke depression: 2021
update. J Neurol (2022) 269(3):1236–49. doi: 10.1007/s00415-021-10597-4

35. Levard D, Buendia I, Lanquetin A, Glavan M, Vivien D, Rubio M. Filling the
gaps on stroke research: Focus on inflammation and immunity. Brain Behav
Immun (2021) 91:649–67. doi: 10.1016/j.bbi.2020.09.025

36. Iadecola C, Buckwalter MS, Anrather J. Immune responses to stroke:
mechanisms, modulation, and therapeutic potential. J Clin Invest (2020) 130
(6):2777–88. doi: 10.1172/JCI135530

37. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA.
Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflamm (2019)
16(1):142. doi: 10.1186/s12974-019-1516-2

38. Stanzione R, Forte M, Cotugno M, Bianchi F, Marchitti S, Rubattu S. Role of
DAMPs and of leukocytes infiltration in ischemic stroke: Insights from animal
models and translation to the human disease. Cell Mol Neurobiol (2022) 42(3):545–
56. doi: 10.1007/s10571-020-00966-4

39. Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, et al. Immune
cells in the BBB disruption after acute ischemic stroke: Targets for immune
therapy? Front Immunol (2021) 12:678744. doi: 10.3389/fimmu.2021.678744

40. Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain
inflammation in stroke. Lancet Neurol (2019) 18(11):1058–66. doi: 10.1016/S1474-
4422(19)30078-X
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Phagocytosis executes delayed neuronal death after focal brain ischemia. Proc Natl
Acad Sci U S A (2013) 110(43):E4098–107. doi: 10.1073/pnas.1308679110

155. Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J. Neuronal
interleukin-4 as a modulator of microglial pathways and ischemic brain damage.
J Neurosci (2015) 35(32):11281–91. doi: 10.1523/JNEUROSCI.1685-15.2015

156. Noda M, Doi Y, Liang J, Kawanokuchi J, Sonobe Y, Takeuchi H, et al.
Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged
neurons and antioxidant enzyme heme oxygenase-1 expression. J Biol Chem (2016)
291(27):14388. doi: 10.1074/jbc.A110.169839
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