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Introduction: Influenza susceptibility difference is a widely existing trait that

has great practical significance for the accurate prevention and control of

influenza.

Methods: Here, we focused on the human susceptibility to the seasonal

influenza A/H3N2 of healthy adults at baseline level. Whole blood expression

data for influenza A/H3N2 susceptibility from GEO were collected firstly (30

symptomatic and 19 asymptomatic). Then to explore the differences at

baseline, a suite of systems biology approaches - the differential expression

analysis, co-expression network analysis, and immune cell frequencies analysis

were utilized.

Results: We found the baseline condition, especially immune condition

between symptomatic and asymptomatic, was different. Co-expression

module that is positively related to asymptomatic is also related to immune

cell type of naïve B cell. Function enrichment analysis showed significantly

correlation with “B cell receptor signaling pathway”, “immune response

−activating cell surface receptor signaling pathway” and so on. Also, modules

that are positively related to symptomatic are also correlated to immune cell

type of neutrophils, with function enrichment analysis showing significantly

correlations with “response to bacterium”, “inflammatory response”, “cAMP

−dependent protein kinase complex” and so on. Responses of symptomatic

and asymptomatic hosts after virus exposure show differences on resisting the
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virus, with more effective frontline defense for asymptomatic hosts. A

prediction model was also built based on only baseline transcription

information to differentiate symptomatic and asymptomatic population with

accuracy of 0.79.

Discussion: The results not only improve our understanding of the immune

system and influenza susceptibility, but also provide a new direction for precise

and targeted prevention and therapy of influenza.
KEYWORDS

influenza A/H3N2, susceptibility, immune response, gene co-expression network,
high-risk population prediction model
Introduction

Influenza virus causes regular seasonal epidemics and

occasional severe pandemics in humans and animals (1–3).

There are about 3 to 5 million cases of severe illness, and

about 290 000 to 650 000 respiratory deaths each year caused

by human seasonal influenza, resulting in a heavy public health

concern worldwide (4). There are different manifestations for

people exposed to the same environment with influenza virus,

indicating individual susceptibility differences to influenza exists

(5, 6). Identifying susceptible population with higher risk of

infection and thus implementing targeted surveillance would be

helpful for reducing the disease burden of human influenza.

The causes of host susceptibility to influenza is a complex

issue, including factors from both virus (e.g. virulence, exposure

dose, etc.) (6) and host (e.g. exposure history (7), genetic factors

(8), age (9–11), nutrition (12), and other factors) (5–7). Most of

the current studies focus on underlying mechanisms for obvious

susceptible population like the elderly, children, pregnant

women. However, for healthy adults, there also seems existing

baseline differences which invoke clearly distinct antiviral and

inflammatory responses (13). Studies have shown that

preexisting influenza-specific CD4+ (14) and CD8+ T cells (15)

in the blood play a protective role by limiting the severity of

influenza illness. What’s more, natural killer (NK) cells were

significantly lower in symptomatic shedders before influenza

exposure at baseline level and KLRD1 as a key predictor used to

predict influenza susceptibility (16). Susceptibility studies for

other respiratory viruses have also been carried out. For

example, the baseline activity of interferon-stimulated genes

(ISG)-mediated defenses impedes infection progression, and

thus it can protect against Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) through activating beforehand by

heterologous antiviral response against another virus (17). At the

same time, a study on susceptibility to Respiratory Syncytial

Virus (RSV) also revealed that the volunteers with neutrophilic
02
inflammation in the airway before RSV exposure are easier to

develop symptomatic infection (18). Taken together, the baseline

conditions, especially the immune conditions, are very

important for preventing the invasion of virus, but the whole

blueprint is not yet very clear.

The key point to direct the problem above is to capture the

characteristics of host at baseline before virus infection. The

human influenza challenge experiment (13, 19–22) makes an

ideal design, in which healthy adults are recruited with strict

inclusion and exclusion criteria, and then inoculated with the

same influenza virus, and finally documented with infection

symptoms and virus titers to be recognized as symptomatic or

asymptomatic hosts. This type of design eliminates various

confounding factors especially the virus exposure. However,

conducting this kind of study is difficult due to ethical

concerns. We discovered several trial data from Gene

Expression Omnibus (GEO) which were originally conducted

to explore biological processes after infection. It is of great value

to integrate these small-scale studies to investigate the question

underlying influenza susceptibility, especially from the aspects of

individual immune levels. Another key point lies in the types of

characteristics to outline host susceptibility. Many methods have

been applied in related studies to detect the characteristics of

host: the differentially expressed genes (DEGs) between different

conditions were identified along with their enriched functions

(17, 23). differences in the proportion of immune cells were also

identified based on blood transcriptome (24–26). Also, the

machine learning methods were applied to identify gene

markers for susceptibility of acute respiratory viral infection,

which could distinguish symptomatic response based on gene

expression profiles prior to viral exposure (27). Influenza

susceptibility is a complex trait and methods of systems

biology should be employed. In recent years, complex diseases

or traits are studied more and more from the network level (28–

30), for example, gene co-expression network (31–35), protein-

protein interaction (PPI) network (36–39) and transcription
frontiersin.org
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regulation network (40–42). These methods provide a systematic

view of the core pathways or key interacting genes related to the

concerned traits. Currently, there is hardly any influenza studies

on susceptibility investigation conducted from the perspective of

systems biology and specifically based on baseline information.

In this study, human susceptibility to the seasonal influenza

A/H3N2 is systematically explored based on baseline whole

blood transcriptome of healthy adults from influenza challenge

trials. DEGs, co-expression modules and significant immune

cells were identified and functional annotation were carried out.

Systematic immune functions were identified and prediction

model was built. Findings in this study could shed light on the

detailed mechanisms of influenza susceptibility and provide

clues for precise prevention and treatment of influenza.
Materials and methods

Data collection

Two microarray data sets, GSE73072 (22) and GSE61754

(21), from the Gene Expression Omnibus (GEO) were collected.

Datasets GSE30550 (13) and GSE17156 (19) for influenza A/

H3N2 were not used due to potential overlap with GSE73072.

For the data set GSE61754 (21), only the non-vaccinated subjects

were used here. All of these data sets are from human influenza

challenge experiments. All volunteers provided informed

consent and underwent extensive pre-enrollment health

screening. The volunteers without evidence of influenza H3N2

antibodies were included. Blood samples were collected at

baseline and several other time points after inoculating

volunteers with influenza A/H3N2 viruses and performed

microarray-based transcriptome profiling. The detailed

information for the datasets used in this study is shown in

Table S1. The individuals were defined as symptomatic

(representing susceptible hosts) and asymptomatic

(representing un-susceptible hosts) hosts based on influenza

laboratory tests and symptom status of self-reported modified

Jackson scores (19). Same phenotypic labels in the original

studies were used here. The final dataset includes 49 subjects

(30 symptomatic and 19 asymptomatic).
Data preprocessing

To eliminate the impact of the experimental platforms and

processing methods on the data, pretreatments were carried out

for the integrated dataset from three microarray experiments.

Firstly, after the array probes were annotated, all the data were

combined into a single matrix, where the rows represent the

genes and the columns represent the samples, and the matrix are

logarithmic transformed. Only genes presented in all two data

sets were retained and the final matrix includes 8478 genes from
Frontiers in Immunology 03
49 samples. Secondly, the raw matrix was normalized by the

method of “normalizeBetweenArrays” in R package limma with

default parameters (version 3.48.3) (43–46). Finally, batch effects

were removed using the method of ComBat in R package sva

with the default parameters (version 3.40.0) (47).
Identification of differentially
expressed genes

DEGs between asymptomatic and symptomatic hosts at

baseline level were identified using the method of RankProd

(Version 3.18.0) (48–50) using raw data. Specifically, genes with

percentage of false predictions (pfp) ≤ 0.05 were defined

as DEGs.

In addition, R Package limma (version=3.50.3) (45, 46, 51)

was used to screen for differentially expressed genes between

baseline and the following time points. The data set of

GSE73072-DEE2 was used here, which included samples’

expression at multiple time points (5h, 12h, 22h, 36h, 46h,

53h, 60h,70h, 77h, 84h, 94h, 101h, 108h, 118h, 125h, 132h,

142h, 166h). The lmFit function fits a linear model with time as a

factor and the subject as a blocking variable. The genes with an

adjusted P (adjust.method = “BH”) ≤ 0.05 and |log2FC| > 0 were

identified as differentially expressed genes (DEGs).
Gene ontology (GO) enrichment analysis
and KEGG pathway enrichment analysis

R package ClusterProfiler (version= 4.0.5) (52) was used to

conduct gene ontology (GO) analysis and KEGG pathway

enrichment analysis for DEGs and modules. All the genes in

the gene expression profile (totally 8478 genes) were used as the

background. The overrepresentation terms were determined

with adjust p value less than 0.05 (Benjamini-Hochberg

method). And minimum of 5 genes per ontology was chosen.
Co-expression network analysis

After integrating and preprocessing the data, an 8478×49

(gene×subjects) expression profile was obtained. The variance of

the expression value of each gene were calculated by function var

of R, and sorted in descending order. And the top 20% variance

genes (1696 genes) were selected for constructing co-expression

network by using the R package WGCNA (31, 53). Firstly, to

check whether there are outliers, samples were clustered using

the method of hierarchical clustering by Hclust function in R.

Secondly, to build a scale-free network, the soft thresholding

power b was calculated by the function pickSoftThreshold in the

R package of WGCNA. The threshold b was set at 6 with the

scale independence reaching 0.90 and the average connectivity
frontiersin.org
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relatively high, which according to the standard of scale-free

network. Thirdly, Pearson correlation was calculated and used to

construct a weighted adjacency matrix with the soft thresholding

power b. Then the weighted adjacency matrix was transformed

into a topological overlap measure (TOM) by the function of

blockwiseModules. TOM can be used to estimate the network

connectivity of a gene. Lastly, average linkage hierarchical

clustering was performed based on the TOM-based

dissimilarity measure and the genes with the similar

expression pattern were divided into modules. The other

related parameters were set as following: TOMType =

“unsigned”, minModuleSize = 15, reassignThreshold = 0,

mergeCutHeight = 0.2, deepSplit = 4.
Module-trait relationships analysis

To find the modules significantly correlated with the traits

interested, module-trait relationships analysis was performed.

To identify the modules related to influenza susceptibility,

asymptomatic and symptomatic were regarded as two clinical

phenotypes to calculate the correlation with module eigengenes

(54) . The p-value was calculated by the funct ion

“corPvalueStudent” in the R package of WGCNA. And the

significance of modules was determined with p ≤ 0.1. In

addition, to study the relationship between the co-expression

models and basic immune condition, immune cells frequencies

were also seen as clinical phenotypes to calculate the correlation

with module eigengenes (35). Similarly, the p-value was

calculated by the function “corPvalueStudent” in the R

package of WGCNA and the significance of modules were

determined with p ≤ 0.1.
Immune cells frequencies estimation

To estimate the fraction of immune cells for the samples

collected, R package CIBERSORT was used (24, 26). Frequencies

for 18 types of immune cells were higher than 0 and p ≤ 0.05 in

this study, although 22 types of immune cell were included in

CIBERSORT. To test whether there are immune cell differences

between asymptomatic and symptomatic hosts, the fraction of

each immune cell type was compared using the method of

Wilcoxon rank-sum test in R with p ≤ 0.1.
Module-based classifier

The algorithm of random forest based on the Python

package sklearn was used to build a classification model to

differentiate host status for susceptibility of influenza A/H3N2

based on baseline characteristics. To prevent potential over

fitting due to limited data, feature selection should be done
Frontiers in Immunology 04
first. Therefore, a module-based feature selection was proposed

considering the biological significance represented by the co-

expression modules. The philosophy behind is that genes in the

module are functional related ones and be representative for the

specific function. Representing genes from the significant co-

expression modules were selected as follows:
1. In order to further narrow list, the intersection genes

between co-expression modules and differentially

expressed ones were selected.

2. For each targeted co-expression module with significant

correlation to the susceptibility status, every 2

representative genes from this module were feed into

the model that includes additional all the genes from

other co-expression modules. Based on the model

performance, the two genes with the highest accuracy

were chosen as the representative genes of targeted co-

expression module.

3. Repeated step 2 for 1000 times, and gene pair with

mostly frequency was chosen as the representative genes

of the target module to fed into the final model.

4. The representative genes for each co-expression module

with significant correlation to the susceptibility status

are merged as the final set of features. Parameter

opt imiza t ion was done us ing the method-

GridSearchCV. And the parameter of class_weight was

set as “balanced”. 5-fold cross-validation were used to

evaluate the model and accuracy, precision, recall, F1

score, area under the receiver operating characteristics

(ROC) curve (AUC) were calculated.
For strict validation, GSE73032 (with 22 symptomatic and

16 asymptomatic cases) was first chosen as the training set and

the remaining one, GSE61754 with 8 symptomatic and 3

asymptomatic cases, as the external independent test set. At

the same time, a final model was also trained on the bigger

dataset that include all the two data sets used in this study.
Results

Data description

Microarray data from influenza challenge experiments

(GSE73072 (22), GSE61754 (21)) were collected from Gene

Expression Omnibus (GEO) (Table S1). Healthy adults from

18 to 45 years old were recruited and screened according to strict

inclusion and exclusion principles (Detailed information has

been reported previously (13, 19, 20, 22)). All the volunteers

included were without evidence of influenza H3N2 antibodies.

Blood samples were collected at baseline and several time points

after infection and sequenced for quantifying whole blood gene

expression. Subjects were defined as symptomatic (represent
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1048774
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2022.1048774
susceptible individuals) and asymptomatic (represent un-

susceptible individuals) hosts based on influenza laboratory

tests and symptom status by self-reported modified Jackson

scores (19). Considering the heterogeneity among different

influenza subtypes and as well as data volume in GEO, H3N2

subtype was chosen as the target in this study, which included 30

symptomatic and 19 asymptomatic subjects (see methods).

Unified pretreatment was carried out, including filtering,

standardization, batch effect removal (Supplementary Figure 1,

see methods). Finally, a dataset with 8478 human genes and

from 49 subjects (30 symptomatic and 19 asymptomatic

subjects) for human influenza A/H3N2 virus was constructed

for further analysis in this study.
DEGs between asymptomatic and
symptomatic hosts at baseline level with
distinct biological processes

To check whether there are baseline genes associated with

susceptibility of human influenza A/H3N2 infection, DEGs

between asymptomatic and symptomatic hosts were identified

using RankProd. A total of 223 DEGs were identified, of which,

87 were up-regulated and 136 were down-regulated

(asymptomatic versus symptomatic, percentage of false

predictions (pfp) ≤ 0.05, see methods) (Figure 1A).

Gene ontology (GO) enrichment analysis was further

performed for up-regulated and down-regulated genes as regard

with biological process (BP). The up-regulated genes tend to be

enriched in immune related functions, such as, “defense response

to virus”, “defense response to symbiont”, “response to virus”, etc.

In contrast, the down-regulated genes did not significantly enrich
Frontiers in Immunology 05
in any functions (Figure 1B, Table S2). These results indicate that

there are different bases, especially the immune basis between

symptomatic and asymptomatic hosts.
Identification of influenza susceptibility-
related gene modules based on
weighted co-expression networks

In the above analysis, traditional method of DEG analysis was

used from the perspective of single gene. However, influenza

susceptibility is a complex trait, which may not be well explained

from the perspective of a single host gene or several genes. Thus,

in order to explore influenza susceptibility from a systematic

perspective, a co-expression network was constructed by using

weighted gene co-expression network analysis (WGCNA). Genes

with certain expression variation (top 20%, 1696 genes) were

selected to construct the weighted co-expression network (check

Methods for more details). The sample clustering tree was drawn

based on the Pearson’s correlation coefficients (Supplementary

Figure 2A). Based on the soft threshold of 6 (R2 ≥ 0.9)

(Supplementary Figures 2B, C), a co-expression network was

constructed with 21 modules identified (Supplementary

Figure 3A, Table S3). The number of genes included in these

modules ranged from 19 to 406 (Supplementary Figure 3B).

To detect the relationship between the susceptibility and

modules, module-trait relationships were explored. Module

Puple (r = 0.24, p = 9.7×10-2) was significantly positively related

to asymptomatic phenotype. Modules Lightgreen (r = 0.25, p =

7.7×10-2) and Lightcyan (r = 0.25, p = 0.1) were significantly

positively related to symptomatic phenotype (Figure 2A). These

co-expression modules were significantly enriched in several
A B

FIGURE 1

Differentially expressed genes at baseline level between asymptomatic and symptomatic hosts. (A) Volcano plot showing logarithmically
converted fold change of gene expression between asymptomatic and symptomatic hosts on the x-axis against logarithmically converted values
of pfp on the y-axis. The red points are up-regulated genes, and the blue points are down-regulated genes and the grey points are stable genes
(asymptomatic vs symptomatic hosts). (B) Bar plot showing the GO biological process terms enriched for the up- (red) and down- (blue)
regulated genes. The x-axis represents the logarithmically transformed Padjust value.
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functions, especially immune related functions, based on further

functional enrichment analysis. Specifically, module Purple shows

significant GO functions enrichment in immune response and B

cell related functions, such as, “B cell receptor signaling pathway”,

“immune response−activating cell surface receptor signaling

pathway”, “immune response−activating signal transduction”

and so on (Figure 2B, Table S4). Also, module Purple shows

significant KEGG pathways enrichment in “B cell receptor

signaling pathway” (Figure 2C, Table S5). Although the module

Lightgreen is not enriched in any KEGG pathways, it is enriched

in GO terms of “response to bacterium”, “inflammatory

response”, (Figures 2B, C, Table S4-5). At the same time, the

module Lightcyan is enriched in functions of “cAMP−dependent

protein kinase complex”, “nucleosome” and “DNA packaging

complex”, et al. (Figure 2B, Table S4) and pathways of

“Neutrophil extracellular trap formation” (Figure 2C, Table S5).

These results are not only consistent with the results of baseline

differential expression analysis above, but also further relate the

basic differences at the baseline level, especially the immune

differences, to the susceptible traits.
Different baseline immune
microenvironment presents in
asymptomatic and symptomatic hosts

Both of the differential expression analysis and co-

expression network analysis showed that susceptibility to
Frontiers in Immunology 06
influenza A/H3N2 may be related to host immune status,

with different immune basic environment between

asymptomatic and symptomatic hosts. To test this,

preexisting immune cell frequencies were estimated by

CIBERSORT (24, 26). 18 of 22 types of immune cells were

identified in these 49 samples (Figure 3A, detailed proportions

in Supplementary Figure 4). Then the immune cell proportions

were compared between the symptomatic and asymptomatic

hosts. B cell naïve, neutrophils were significantly different

between these two groups (Figure 3A, Wilcoxon rank-sum

test, with p-value of 5.20×10-2, 6.30×10-2, respectively).

What ’s more, the proportion of B cell naïve (mean

proportion of 3.00×10-3 and 5.66×10-3 in symptomatic and

asymptomatic hosts) were higher in asymptomatic hosts

(Figure 3A, Supplementary Figure 4). While the proportion

of neutrophils (mean proportion of 2.77×10-1 and 2.25×10-1 in

symptomatic and asymptomatic hosts) seem have a higher

proportion in symptomatic hosts (Figure 3A, Supplementary

Figure 4). There results were consistent with the above DEGs

and co-expression network analysis (Figures 1B, 2B, C).

Additionally, the relationship between these significant three

types of immune cells (naïve B cells, neutrophils) and three co-

expression modules identified above were explored.

Specifically, both module Lightgreen and Lightcyan were

significantly positively correlated with neutrophils; module

Purple were significantly positively correlated with B cell

naïve (Figure 3B), which were consistent with the enriched

functions of those modules (Figure 2B, Table S4).
A B C

FIGURE 2

Core modules and their enriched functions. (A) Heatmap of Module-trait’s correlation, in which traits on the x-axis against the co-expression
modules on the y-axis. The corresponding correlation was shown in the cells and color coded. The significantly related modules with the
significant level were indicated by number of asterisks (* for p ≤ 0.1) and highlighted by red rectangles. (B) Bubble chart displaying the GO terms
enriched for the three significant modules (Lightgreen, Lightcyan, Purple). Dot sizes are scaled to the enrichment significance. Different colors
represent different modules. (C) Bubble chart displaying the KEGG pathways enriched for the two significant modules (Lightcyan, Purple). Dot
sizes are scaled to the enrichment significance. Different colors represent different modules.
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Differential response after influenza
infection presents in asymptomatic and
symptomatic hosts

In the above analysis, differences were observed in basic

d e f en s e env i r onmen t b e tween symp toma t i c and

asymptomatic individuals. Next, we explored how hosts

with different defense basis respond to influenza invasion

differently. Dataset of GSE73072-DEE2 (9 symptomatic and 8

asymptomatic hosts) that includes gene expression data at

baseline and multiple time points (5h, 12h, 22h, 36h, 46h,

53h, 60h, 70h, 77h, 84h, 94h, 101h, 108h, 118h, 125h, 132h,

142h, 166h) after infection was selected for this analysis. To

track the host response after infection, changes of the number

of DEGs compared to baseline were extracted for each time

point. Number of up-regulated and down-regulated genes

firstly increased and then decreased with time in a fluctuation

way, which’s highest peak at 60h in symptomatic hosts

(Figure 4A). In the asymptomatic hosts, not only DEGs

were identified at part of the time points (time points

70h,108h,118h for up-regulated genes and 60h,108h,118h,
Frontiers in Immunology 07
132h for down-regulated genes), but also the number of

DEGs at these time points was much less than that in the

symptomatic hosts (Figure 4A). Overall, the symptomatic

hosts had a stronger response to virus invasion than the

asymptomatic hosts.

Next, function enrichment analysis for the DEGs at each

time point were carried out (Figure 4B). Asymptomatic and

symptomatic hosts induced clearly different ways of antiviral

responses. For the symptomatic hosts, at the 36h, the down-

regulated genes begin to significantly enrich functions, such as

“asymmetric cell division”, “NK T cell differentiation”,

“regulation of NK T cell differentiation” and so on.

Subsequently, the up-regulated genes also began to enrich

functions significantly, for example, “response to virus”,

“defense response to virus”, “defense response to symbiont”,

“negative regulation of viral process” and so on (Figure 4B, Table

S6). But for the asymptomatic hosts, both up-regulated genes

and down-regulated genes activated individual functions

sporadically due to their limited number of genes. In general,

symptomatic and asymptomatic individuals elicited completely

different responses.
A B

FIGURE 3

Immune cell proportions’ differences between asymptomatic and symptomatic hosts and their relationships with co-expression modules.
(A) Boxplot showing the immune cell proportions in asymptomatic (blue) and symptomatic (red) hosts. Wilcoxon rank-sum test was used to
determine significant differences between asymptomatic and symptomatic hosts. The significant level was indicated by number of asterisks (ns
for p >0.1, * for p ≤0.1, ** for p ≤ 0.01, and *** for p ≤ 0.001) and highlighted by red rectangle. (B) Heatmap of Module-trait’s correlation, in
which immune cell types on the x-axis against the co-expression modules on the y-axis. The corresponding correlation was shown in the cells
and color coded. The significantly related modules were indicated by number of asterisks (* for p ≤ 0.1 and **** for p ≤ 0.0001) and highlighted
by red rectangles.
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A

B

FIGURE 4

Response of hosts with different immune basis after inoculation of influenza virus. (A) Line chart displaying the number of up-regulated (left) and
down-regulated (right) genes in the asymptomatic (blue) and symptomatic (red) hosts at different time points, respectively. (B) Bubble chart
displaying the GO biological process terms enriched for up-regulated or down-regulated genes in the asymptomatic (blue) and symptomatic
(red) hosts at different time points, respectively. Dot sizes are scaled to the enrichment significance. Different colors represent different groups.
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Classification model for identifying high-
risk susceptible individuals

Based on the above analyses, it seems that there are different

host immune signatures for susceptibility of human seasonal

influenza A/H3N2 at the baseline level. The following question is

whether these baseline characteristics can help to differentiate host

status of influenza susceptibility. Before building the final model,

sensitivity analysis was carried out to make sure analyses here are

robust. Accordingly, GSE73072 (with 22 symptomatic and 16

asymptomatic cases) were first chosen as the training set and the

remaining one as the external independent test set (GSE61754, with

8 symptomatic and 3 asymptomatic cases). Based on the training

dataset, the differential expression analysis (Supplementary

Figure 5), co-expression network analysis (Supplementary

Figures 6–8) and immune cell proportion analysis

(Supplementary Figures 9, 10) were carried out again, revealing

consistent overall pattern. Then, random forest classification model

was constructed based on identified significant modules (check

Methods for more details), with AUC of 0.78 from the cross

validation (check Table S7 for more details). The model was also

validated on the independent testing dataset with AUC of 0.875

(Supplementary Figure 11A, with selected genes from the modules

shown in Supplementary Figure 11B). The final model was trained

on all two data sets, with AUC of 0.78 and accuracy of 0.79 (Table 1,

with selected genes shown in Supplementary Figure 12).
Discussion

In this study, attempts were carried out to reveal baseline host

molecular features for susceptibility of influenza A/H3N2.

Accordingly, baseline differences, especially immune conditions,

between symptomatic and asymptomatic were identified based on

blood transcriptomes (Figure 1B). The co-expression module

Purple is not only positively related to asymptomatic status, but

also immune cell type of naïve B cell. And further function

enrichment analysis showed significantly related to “B cell

receptor signaling pathway”, “immune response−activating cell

surface receptor signaling pathway” and so on (Figures 2, 3).

Modules Lightgreen and Lightcyan are not only positively related

to symptomatic status, but also immune cell type of Neutrophils,

with further function enrichment analysis significantly related to

“response to bacterium”, “inflammatory response”, “cAMP

−dependent protein kinase complex” and so on (Figures 2, 3).

Further time-series investigation shows differences in response

after exposure to influenza A/H3N2 between symptomatic and
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asymptomatic hosts, with the defense of asymptomatic hosts more

effective at baseline and no need to mobilize large immune

response from the view of whole blood. A classification model

was also constructed with limited number of reprehensive key

genes and was helpful for efficiently identifying high-risk

susceptible people towards influenza A/H3N2.

Interestingly, higher co-expression modules or a higher

proportion of cells associated with innate immunity were

found in symptomatic hosts, but this seemingly stronger

immune status did not successfully prevent the invasion of the

virus (Figures 2, 3). At the same time, for asymptomatic hosts,

there seems a higher level for the proportion of NK cells resting

(mean proportion of 1.42×10-1 and 1.72×10-1 in symptomatic

and asymptomatic hosts, not statistically significant), which is

consistent with previous study (16). This may be related to the

double-sided role of innate immunity. For example, neutrophils

as a first-line member to defend against pathogen invasion,

neutrophils are undoubtedly very important (55). However, it is

more and more clear recently that neutrophils contribute to the

pathology of disease (56). Besides, the double-sided role of

neutrophils seems to be applicable to a variety of virus-related

respiratory diseases. Growing evidences have linked overactivity

of neutrophils to severe disease of influenza (57), COVID-19

(58–62) and increased susceptibility of RSV (18). What’s more,

neutrophils are closely related to inflammation (63–65).

Inflammatory response not only prevent viral infection by

preventing the replication and spread of the virus but may also

cause intense lung injury and death because of overreaction (66,

67). There has been a lot of report suggested that the severity of

influenza infection has a tight association with high levels of

inflammation (67–70). And many anti-inflammatory drugs have

been developed to treat influenza (66). This provides insights for

innate immune related genes or cells or functions to be a medical

target in prevention and treatment of influenza.

At the other side, the asymptomatic hosts with higher co-

expression modules or a higher proportion of cells related to B

cell (naïve B cell from the immune cell type analysis) may be

more dominant in resisting virus invasion. Traditionally, B cells

have been well known as mainly participants in adaptive

immunity by differentiating into antibody-secreting cells (71),

but here it is not necessarily suitable. Actually, B cells also play a

key role as a regulator of innate immunity, such as B cells can

regulate immune response by producing interleukin-10 (IL-10)

and IL-35 (72–74). And also, except B cell related functions, the

other functions, such as “defense response to virus”, “immune

response−activating cell surface receptor signaling pathway”,

“activation of immune response”, etc. were identified in
TABLE 1 The performance of Random Forest model to predict susceptible groups of influenza A/H3N2.

Classification Model Accuracy Precision Recall F1-score AUC

Random Forest 0.79 0.81 0.87 0.83 0.78
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Figures 1B, 2B, C. Therefore, we speculate that here the whole

immune state is active and ready. However, the detailed

dynamics and specific mechanism needs to be further explored.

This study provides helpful insights in susceptibility of

influenza A/H3N2. However, there are still several limitations

and more intensive work needs to be done. Firstly, the sample

size is a limitation of this work. Actually, due to ethical and

security considerations, relevant data are very scarce, not to

mention the detailed clinical controls (e.g., age, gender, BMI,

location, time, etc.). This greatly limits the study of susceptibility,

and the power of analysis in this work. Even more, in the future,

for better mechanistic exploration for the susceptibility of

influenza and other pathogens, not only transcriptomes, but

also genomes, epigenomes, proteomes, metabolomes and other

omics data and high-quality clinical data need to be

accumulated. Secondly, this work focuses on the transcriptome

characteristics in peripheral blood at the baseline level, which is

more general for clinical use. However, local mucosa such as

nasal mucosa is usually the first encountering location for

influenza virus invasion (75, 76), whose transcriptome

characteristics at baseline and sequential times after virus

invasion, roles in the susceptibility of influenza and differences

from peripheral blood, need in-depth investigation. In this

study, we only showed hints for susceptibility of influenza A/

H3N2 from the view of whole blood and hopefully pave the way

for further future investigations. Thirdly, this study focuses on

one subtype of influenza (A/H3N2) and reveals characteristics of

susceptibility seemingly alike to other respiratory virus-related

diseases. However, there are still possible heterogeneities in

virus-host interactions for hosts with different genetic/

environment background and different pathogens (various

subtypes of influenza and as well as various types of viruses).

So the findings in our study should be careful to extrapolate to

other population and other influenza subtypes or types of

respiratory viruses. In the future, comprehensive comparison

studies should be carried out for a variety of respiratory virus to

obtain the common and specific features for the susceptibility of

respiratory related viruses. Finally, further analytical and

functional studies are warranted to explain the causes for the

immune differences observed here (e.g., different genetic

backgrounds or epigenetic changes, etc.) and reveal the

intrinsic mechanism for the susceptibility of influenza virus.
Conclusion

In summary, potential susceptibility mechanisms were explored

by comparing baseline status of blood transcriptomes between

symptomatic and asymptomatic hosts in influenza challenge trials.

We firstly found that there were baseline differences between

symptomatic and asymptomatic hosts, especially immune related

differences. Then co-expression network analysis, function

enrichment analysis and immune cell proportion analysis were
Frontiers in Immunology 10
used to further correlate such differences with susceptible traits. In

addition, based on the expression of genes from key co-expression

modules, a classification model with good performance was built to

identify high-risk susceptible groups for human influenza A/H3N2.

These results promote the understanding of influenza susceptibility

and the precise prevention and control of influenza.
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