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Impact of SARS-CoV-2
vaccination on systemic
immune responses in people
living with HIV
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Despite the development of vaccines, which protect healthy people from

severe and life-threatening Covid-19, the immunological responses of

people with secondary immunodeficiencies to these vaccines remain

incompletely understood. Here, we investigated the humoral and cellular

immune responses elicited by mRNA-based SARS-CoV-2 vaccines in a

cohort of people living with HIV (PLWH) receiving anti-retroviral therapy.

While antibody responses in PLWH increased progressively after each

vaccination, they were significantly reduced compared to the HIV-negative

control group. This was particularly noteworthy for the Delta and Omicron

variants. In contrast, CD4+ Th cell responses exhibited a vaccination-

dependent increase, which was comparable in both groups. Interestingly,

CD4+ T cell activation negatively correlated with the CD4 to CD8 ratio,

indicating that low CD4+ T cell numbers do not necessarily interfere with

cellular immune responses. Our data demonstrate that despite the lower CD4+

T cell counts SARS-CoV-2 vaccination results in potent cellular immune

responses in PLWH. However, the reduced humoral response also provides

strong evidence to consider PLWH as vulnerable group and suggests

subsequent vaccinations being required to enhance their protection against

COVID-19.
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Introduction

Since early 2020, the world is suffering from a pandemic

caused by severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2, also known as 2019-nCoV) (1). Clinical

manifestations of coronavirus disease 2019 (COVID-19), the

disease caused by SARS-CoV-2, diverge from asymptomatic or

mild influenza-like symptoms via hospitalization to death due to

the acute respiratory failure. Most infected patients recover

without the need for hospital care, but factors such as age or

existence of comorbidities, like diabetes or immunodeficiency,

determine the probability to develop severe COVID-19 (2, 3).

SARS-CoV-2 infection elicits humoral responses, most

importantly antibodies against viral proteins, as well as a wide

variety of cellular responses (4–10). Among other measures to

control the pandemic, vaccination strategies have been

implemented to prevent severe COVID-19 (11). In contrast to

traditional vaccination strategies, a novel technology of mRNA-

based vaccines has been implemented. The novel mRNA-based

vaccines deliver in vitro transcribed mRNA molecules encoding

for a pathogen antigen, which are encapsulated in lipid

nanoparticles (12). In case of COVID-19 mRNA-based

vaccines, the SARS-CoV-2 spike protein, which binds to the

human angiotensin-converting enzyme 2 (ACE2) receptor, is

translated and presented by antigen-presenting cells, generating

a specific immune response (12, 13). Besides safety and efficacy,

studies demonstrated that these vaccines are able to generate a

durable response (14–18). This immune response comprises the

induction of germinal centers and production of vaccine-

induced antibodies as well as the generation of spike-specific T

cells (17, 19, 20). Nevertheless, due to a decline in the antibody

titers over time and the rise of SARS-CoV-2 variants of concern,

a vaccine booster dose is recommended to preserve the

protective effect against COVID-19 (21–23).

Vaccine safety and efficacy are being stringently monitored

during vaccine development and vaccination campaign. The

immune response towards COVID-19 vaccines in patients

with severe diseases such as cancer has recently been assessed

(24–27). However, an in-depth analysis of immune responses in

people living with HIV (PLWH) has not been performed, yet.

Currently, it is poorly understood whether PLWH have a higher

risk to develop severe COVID-19. In initial COVID-19 cohort

studies, comparable clinical outcomes were found in the PLWH

and HIV-negative individuals (28–34). Contrariwise, in other

cohort studies, PLWH presented worse outcomes including

higher rates of hospitalization and mortality (35–39). In

addition, an observational study described lower IgG

concentration and neutralizing antibody titers correlating with

more cases of severe COVID-19 in PLWH (40). In contrast, a

recent work investigating humoral and T cell specific-responses

to the SARS-CoV-2 infection revealed that PLWH could mount
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a persistent immune response comparable to HIV-negative

subjects (41). Additionally, the correlation analysis in the latter

study suggested that deviations in the CD4 to CD8 ratio may

result in a diminished ability to respond to SARS-CoV-2

infection in the PLWH (41). Taken together, the current data

on SARS-CoV-2 infection and PLWH raises the question

whether and how repeated COVID-19 vaccination raise

immune responses to SARS-CoV-2 and especially towards

current variants of concern (VOCs) such as Delta and

Omicron. Our present study aims to clarify whether immunity

elicited by a COVID-19 mRNA vaccine in the PLWH is

modulated in comparison to vaccination in HIV-negative

people.
Material and methods

Study design and ethics statement

Study participants were recruited at the WIR – Walk in

Ruhr, Department of Dermatology, Ruhr-University Bochum.

We included age-matched HIV-negative participants (controls;

n=20) and PLWH (n=71). The written informed consent was

obtained from all study participants. The clinical information of

the study participants is presented in Supplementary Table 1.

Samples from PLWH were collected immediately before the first

vaccination (T0), at the day of second vaccination (T1) within 4-

6 weeks (T2) following the second vaccination, at the day of

third vaccination (T3) and within 4-6 weeks (T4) following the

third vaccination against SARS-CoV-2. Similarly, samples from

HIV-negative controls were collected at T2, T3 and T4. No

control samples were available for the T0 and T1 time points.
Cell isolation and cryopreservation

Blood collection for peripheral blood mononuclear cells

(PBMC) isolation was conducted using KABEVETTE® G

EDTA tubes. 2.5 ml of blood was centrifuged at 1500 g for

10 min., the plasma was obtained and stored at -80°C until

further use. The remaining blood was diluted 1:1 with PBS and

slowly placed on top of Pancoll human (PAN-Biotech). Density

gradient centrifugation was performed at 800 g for 30 min.

without break. The interface containing the PBMCs was

collected from the gradient and washed twice with PBS at

500 g for 10 minutes. The cell pellet was resuspended in PBS

and the cell number was determined in a Sysmex KX-21N

(Sysmex Europe GmbH). 1.8x107 cells were cryopreserved in

FCS (PAN-Biotech) containing 10% DMSO. The cryotubes were

cooled down overnight in a Mr. Frosty (Sigma) at -80°C and

stored in liquid nitrogen until further use.
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Anti-SARS-CoV-2 spike antibody titer

Plasma samples were analyzed for the spike (receptor-

binding domain [RBD]; sequence derived from the original

wild type SARS-CoV-2 strain) specific immunoglobulin G

antibodies by enzyme-linked immunosorbent assay (ELISA) as

described previously (42). Briefly, samples were diluted from

1:100 to 1:12,500 and results were expressed as the dilution,

which still gave the same signal as an internal calibrator of the

ELISA, indicating a positive result. The values obtained for

samples below the detection limit were interpreted as negative

and set to 1. The assay was calibrated according to the World

Health Organization international standards and values were

expressed as binding antibody units (BAU).
SARS-CoV-2 neutralization assay

SARS-CoV-2 pseudoviruses were prepared as described

previously (43). Briefly, sera were incubated for 30 min at 56°

C in order to inactivate complement factors. Single cycle

VSV∗DG(FLuc) pseudoviruses bearing the SARS-CoV-2 spike

(D614G) protein (44), SARS-CoV-2 B.1.617.2 (Delta)

(EPI_ISL_1921353) or SARS-CoV-2 B.1.1.529 (Omicron)

(EPI_ISL_6640919) spike in the envelope were incubated with

quadruplicates of two-fold serial dilutions from 1:20 to 1:2560 of

immune sera in 96-well plates prior to infection of Vero E6 cells

(1x104 cells/well) in DMEM with 10% FBS (Life Technologies).

18 hours post infection, firefly luciferase (FLuc) reporter activity

was determined as previously described (45) using a CentroXS

LB960 (Berthold). The reciprocal antibody dilution causing 50%

inhibition of the luciferase reporter was calculated as

pseudovirus neutralization dose 50% (PVND50). Detection

range is defined to be between 1:20 and 1:2560.
PBMC stimulation using SARS-CoV-2
peptide pool

PBMCs were thawed in a 37°C water bath and diluted in

10 ml RPMI 1640 with Glutamine (Capricorn) with 5% human

AB serum (PAN-Biotech) and 5 U/ml Benzonase (Merck/

Sigma) and centrifuged at 400 g for 5 min. The pellet was

washed with 10 ml thawing medium, resuspended in 5 ml

culture medium (RPMI 1640 with Glutamine (Capricorn) plus

5% human AB serum (PAN-Biotech)) and cells were rested for

at least 2 hours. Cell number was determined using 7-

aminoactinomycin D in a Cytoflex LX (Beckman Coulter,

RRID: SCR_019627). 100 µl per sample were seeded in

duplicates in a flat bottom 96 well plate (Sarstedt) at a

concentration of 1x107 cells/ml. Cells were stimulated with

PepTivator pools (Miltenyi Biotec) for 16 hours according to
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manufacturer’s instructions. The peptide mixes consisted of a

pool of mainly 15-mer sequences with 11 amino acids overlap,

covering the complete protein coding sequence (aa 5–1273) of

the surface or spike glycoprotein (“S”, 130-127-953, Miltenyi

Biotec) of SARS Coronavirus 2 (GenBank MN908947.3, Protein

QHD43416.1), as well as a mixture of peptides covering the

membrane glycoprotein (“M”, 30-126-702, Miltenyi Biotec) and

the nucleocapsid phosphoprotein (“N”, 130-126-698, Miltenyi

Biotec) protein of SARS-CoV-2. Additional wells included a

positive control (CytoStim™, Miltenyi Biotec) and an

unstimulated control, in which sterile water instead of the

PepTivator pool was added. Except the positive control, all

conditions were done in duplicates.
Flow cytometry

After peptide stimulation for 16 hours, PBMC were stained

with the reagents contained in the SARS-CoV-2 T cell analysis kit

(PBMC), human plus anti-CD137-PE-Vio 615 (Miltenyi Biotec;

see Supplementary Table 2) according to manufacturer’s

recommendations and analyzed by flow cytometry.

For analysis of different T cell subsets, 2.5 x 106 PBMCs were

stained with viability stain LIVE/DEAD™ Fixable Blue Dead

Cell Stain Kit, for UV excitation (L23105, Thermo Fisher) for

30 min. at 4°C. Afterwards, Fc receptors were blocked by

incubating the cells with Human TruStain FcX™ (422302,

Biolegend, RRID: AB_2818986) for 15 min. at 4°C.

Subsequently, surface markers were stained for 15 min. at 4°C.

Fixation and permeabilization were performed with Foxp3

staining buffer set (130-093-142, Miltenyi Biotec). Next,

intracellular proteins Ki-67 and Foxp3 were stained for

30 min. at 4°C. Antibody dilutions are presented in

Supplementary Table 3. Flow cytometry measurement was

performed using a Cytoflex LX (Beckman Coulter, RRID:

SCR_019627). Flow cytometry data were analyzed with

FlowJo™ (Becton Dickinson & Company, version 10.8.0,

RRID: SCR_008520) using either smoothing or large dot plot

function for representation purpose. Barnes-Hut algorithm was

implemented to generate t-Distributed Stochastic Neighbor

Embedding (t-SNE) plots with FlowJo™ for high-dimensional

data visualization.
Statistics

Mann-Whitney or Kruskal–Wallis one-way ANOVA tests

were performed to calculate statistical significance using Prism

(GraphPad Software v9.2.0, San Diego, CA. RRID:

SCR_002798). Antibody titers were compared by using two-

tailed Welch´s test. The data were imported in R program

(v3.6.3). Correlation analysis was performed using “rcorr”
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function of Hmisc package (v4.4-0) and visualized by “ggscatter”

function of ggplot2-based ggpubr package (v0.2.5). Spearman

method was used to compute the correlation coefficient (R) and

p-value ≤ 0.05 was considered as significant correlation.
Results

Cohort characteristics

We recruited a cohort of 71 people living with HIV (PLWH)

receiving anti-retroviral therapy (ART) (mean age = 46.1 ± 10.9;

62 male and 9 female) and 20 HIV-negative donors (controls;

mean age = 39.4 ± 11.9; 8 male and 12 female) to analyze

humoral and cellular immune responses after two doses of

vaccination. All participants received the BNT162b2 vaccine

(Pfizer-BioNTech) apart from two participants of the control

group, who got mRNA-1273 (Moderna) on the third vaccination

time point. Except three participants, all of the PLWH cohort

had a CD4 count higher than 200 cells/ml before and 3 months

after vaccination (mean CD4 count: 756.4 cells/mm3; range: 79 –

1562 cells/mm3). None in the PLWH cohort reported a

confirmed SARS-CoV-2 infection during the sampling period.

One participant of the control group had a confirmed SARS-

CoV-2 infection and got a BNT162b2 vaccination six months

after the infection as recommended by the German Robert Koch

Institute (RKI, Berlin). Since the responses of this donor were in

the range of other HIV-negative donors, we did not exclude

these values. HIV viral load was >30 copies/ml (range: 58-1573

copies/ml) in 6 participants at time of first vaccination. All but

one (191 copies/ml) declined during follow up below detection

level. The clinical data are summarized in Supplementary

Table 1. Blood samples were drawn immediately before the

first (T0) and second (T1) vaccination, four to six weeks after the

second vaccination (T2), immediately before the third (T3) and

four to six weeks after the third vaccination (T4) (Figure 1A).
Reduced humoral immune responses in
PLWH upon SARS-CoV-2 vaccination

During SARS-CoV-2 infection, most of the antibody response

is directed against the receptor-binding domain (RBD) of the

SARS-CoV-2 spike protein and serum levels of anti-RBD

antibodies correlate well with the humoral immune response

upon vaccination as well as protection against SARS-CoV-2 (6,

46). Therefore, we quantified anti-RBD antibodies in the plasma

of study participants by ELISA. Notably, two donors in the PLWH

group had detectable antibody titers already at T0 suggesting that

they had a previous asymptomatic SARS-CoV-2 infection

(Figure 1B and Supplementary Table 4). After the first

vaccination, antibody titers did not rise significantly in PLWH

(Figure 1B). After two doses of vaccine administration, antibody
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titers of PLWH were reduced (GMT: 838.42 BAU/ml; 95%

confidence interval: 430.79-1246.05) compared to the HIV-

negative control group (GMT: 1841.94 BAU/ml; 95%

confidence interval: 850.35-2833.53) (Figure 1B). Although we

did not have access to T1 samples in the control group, we could

observe a 5-6 times increase in antibody titers in PLWH between

the first and the second vaccination, while other studies reported

10-20 times titer increase in HIV-negative individuals (17, 47).

Nevertheless, vaccination induced anti-RBD antibody titers in

PLWH and additional doses of vaccination further increased these

titers (Figure 1B). During the time between the second and third

vaccination (time points T2 and T3), antibody titers dropped

significantly in PLWH, and were boosted again by the third

vaccination (T3 vs. T4) (Figure 1B). Of note, the PLWH group

(anti-RBD titer average: 2394 BAU/ml) had lower antibody titers

against the RBD after the third vaccination compared to the

control group (anti-RBD titer average: 3733 BAU/ml), although

this was not statistically significant (Figure 1B).

Next, we analyzed the capacity of sera to neutralize SARS-

CoV-2 infection. To this end, we employed an established

pseudovirus assay (43) and determined the neutralization dose

against the viral strain first reported in Wuhan, China (referred

to hereafter as WT) as well as Delta and Omicron SARS-CoV-2

variants of concern. The amounts of neutralizing antibodies

were reduced in PLWH compared to controls for all, WT, Delta

and Omicron SARS-CoV-2 strains after the second and the third

vaccination (Figure 2). We conclude that although SARS-CoV-2

vaccination induces antibody responses in PLWH the extent of

the humoral immune response is reduced compared to HIV-

negative controls.
Altered cytotoxic T cell subsets and
constitutive activation of CD8+ T
cells in PLWH

Next, we analyzed cellular immune responses towards

SARS-CoV-2 vaccination in PLWH and control groups. Here,

multi-parameter flow cytometry was employed and the gating

strategy is shown in Supplementary Figure 1. As expected, we

detected no differences in the frequencies of total CD3+ T cells

between PLWH and the control group (Supplementary

Figure 2A), reduced frequencies of CD4+ T cells in PLWH

(Supplementary Figure 2B), and increased frequencies of CD8+

T cells (Supplementary Figure 2C). Accordingly, the ratio of

CD4 to CD8 T cells was significantly lower in PLWH compared

to the control group (Supplementary Figure 2D).

Within the CD8+ compartment, the naïve CD8+ T cells

(CD27+ CD45RA+ CCR7+) were reduced in PLWH compared

to controls (Supplementary Figure 3A). Moreover, we detected

increased frequencies of effector (E; CD27- CD45RA+ CCR7-;

Supplementary Figure 3B) and effector memory CD8+ T cells

(EM; CD27- CD45RA- CCR7-; Supplementary Figure 3C) as
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well as decreased frequencies of transitional memory CD8+ T

cells (TM; CD27+ CD45RA- CCR7-; Supplementary Figure 3D)

in PLWH. The observation that CD8+ T cells are less naïve and

more in an activated and effector-like state in PLWH than in

controls was also supported by unsupervised clustering using t-

SNE for two representative donors (Supplementary Figure 3E).

Thus, the phenotypic profiling of the CD8 T cell compartment

suggests a high constitutive activation of these cells. In line with

this notion, we detected increased frequencies of activated, i.e.

CD137 expressing, CD8+ cells that co-expressed the

inflammatory cytokines IFNg and TNFa even in the absence

of any antigenic peptide stimulation making it impossible to
Frontiers in Immunology 05
measure antigen-specific responses in the CD8 compartment

(Supplementary Figure 4 and Supplementary Figures 5A, B).

Moreover, increased frequencies of CD8+ CD137+ IFNg+
TNFa+ T cells were detected in PLWH upon stimulation with

peptide pools derived from spike (S) protein as well as

membrane plus nucleocapsid proteins (M+N) (Supplementary

Figures 5C, D) suggesting that this response is unlikely to be

related to the vaccination. Thus, in contrast to what has been

reported for SARS-CoV-2 infection in PLWH (41), we were not

able to measure antigen-specific CD8 T cell responses in our

cohort. However, our data are in line with the activated

phenotype described for CD8+ T cells in other studies (48).
A B

FIGURE 1

anti-RBD titers in vaccinated PLWH and HIV-negative controls. (A) Scheme showing the two groups of the study - control (n = 20) and people
living with HIV (PLWH; n = 71) - and the time points of blood sampling (T0, T1, T2, T3 and T4) and vaccine inoculations (V1, V2, V3). (B) anti-RBD
antibodies were determined by ELISA. Values are given as Binding Antibody Units (BAU) per ml. (PLWH T0, n = 71; PLWH T1, n = 61; PLWH T2,
n = 68; PLWH T3, n = 47; PLWH T4, n=33; Control T2, n = 20; Control T3 & T4, n= 13). Statistical significance was calculated by two-tailed
Welch´s test: *p < 0.05, ns, not significant.
FIGURE 2

Neutralizing antibodies to SARS-CoV-2. Vero E6 cells were infected with the respective pseudoviruses in the presence of serial dilutions of sera. The
pseudotype virus neutralization dose 50% (PVND50) is plotted. Neutralizing antibodies against the SARS-CoV-2 strains Wild type (PLWH T2, n = 70;
Control T2, n = 20; Control T4, n = 13; PLWH T4, n = 33), Delta (PLWH T2, n = 65; Control T2, n = 20; Control T4, n = 13; PLWH T4, n = 33) and
Omicron (PLWH T2, n = 70; Control T2, n = 20; Control T4, n = 13; PLWH T4, n = 33) were tested. Statistical significance was calculated by two-tailed
Mann-Whitney test: *p < 0.05, ***p < 0.001, ****p < 0.0001.
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Comparable CD4+ T cells responses in
PLWH and HIV-negative controls upon
SARS-CoV-2 vaccination

Furthermore, we analyzed cellular responses of CD4+ T

helper cells upon vaccination. Surprisingly, we detected

decreasing frequencies of circulating follicular T helper (cTFH)

cells, which are characterized by the expression of CXCR5 and

PD-1, over the course of vaccination in PLWH (Supplementary

Figure 6A). However, we did not observe any correlation

between cTFH cells and antibody responses (neutralizing or

anti-RBD; data not shown). Consistent with the situation

observed for CD8+ T cells in PLWH, we found reduced

frequencies of naïve Tcon cells and increased frequencies of

terminally differentiated Tcon cells in PLWH after vaccination

with two doses (Supplementary Figures 6B, C). Despite a similar

tendency in these populations, the differences between the

groups were not significant in T3 and T4 time points

(Supplementary Figures 6B, C). Interestingly, we observed

significant differences in effector memory T cells for all time

points (Supplementary Figure 6D). Again, unsupervised

clustering using t-SNE of two representative donors supported

our findings that CD4+ T cells of PLWH are rather in an

activated and differentiated state and that the naïve phenotype

is reduced (Supplementary Figure 6E).

Finally, we analyzed antigen-specific responses in CD4+ T

helper cells. We detected only minimal cytokine responses in

cultures without any peptide stimulation or in cultures

stimulated with peptide pools derived from membrane (M)

and nucleocapsid (N) proteins (Figure 3A and Supplementary

Figure 7A). In contrast, polyclonal stimulation (positive control

(Pos) with CytoStim™) resulted in strong responses at all time

points (Figure 3A). Stimulation with spike (S) protein peptide

pools resulted in upregulation of the activation markers CD137

and CD154 on CD4+ T cells of PLWH after the first and the

second vaccination (Figure 3B). After a certain reduction of the

two activation markers at time point T3, the third vaccination

increased CD137 and CD154 expression again at time point T4

(Figure 3B). Of note, we did not observe statistically significant

differences in the frequencies of activated CD154+ CD137+ CD4

+ T cells upon S peptide re-stimulation between the two groups

(Figure 3B). Surprisingly, we found a significant anti-correlation

between S-peptide antigen-specific CD4 T cells expressing

activation markers CD154+ CD137+ and the ratio of CD4 to

CD8 in the PLWH cohort (R=-0.39; p-value=0.0033; Figure 3C

lower scatter plot), which was insignificant in the HIV-negative

control group (R=-0.31; p-value=0.18; Figure 3C upper scatter

plot). Thus, low CD4+ relative to CD8+ T cell counts are

surprisingly associated with better activation of CD4+ T cells.

We then measured IFNg and TNFa expression in the CD154

and CD137 co-expressing CD4+ T cells and found a robust

increase in single (IFNg or TNFa) or double (IFNg and TNFa)
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cytokine-producing cells in PLWH after the first, second and

third vaccination (Figures 3D-F). Importantly, the expression of

cytokines exhibited no significant differences between PLWH

and the control group. Furthermore, comparable findings were

obtained when activated CD4+ T cells that only expressed the

activation marker CD154 were analyzed for S-peptide

stimulation (Supplementary Figures 7B, D) Therefore, despite

the known reduced frequency of CD4+ T helper cells in PLWH,

the antigen-specific responses in the CD4 compartment are

comparable between PLWH and control groups.
Correlation analysis of immune response
parameters in vaccinated PLWH and
HIV-negative controls

After performing correlation analysis of the parameters

obtained after the second vaccination (T2) of the study, we

found a statistically significant correlation between anti-RBD

antibody response and neutralization capacity against WT

SARS-CoV-2 strain in HIV-negative participants (R=0.82,

p=3.8e-06) as well as PLWH cohorts (R=0.83, p<2.2e-16)

(Figure 4A). However, the correlation analyses for anti-RBD

antibody and neutralization against SARS-CoV-2 Delta strain

were remarkably decreased in PLWH patients (R=0.69, p=1.7e-

10) and controls (R=0.84, p=4.5e-06) (Figure 4B). No significant

correlation was found for anti-RBD antibody and neutralization

against the Omicron variant in the control group (Figure 4C).

The neutralization capacity against WT, Delta and Omicron

strains of SARS-CoV-2 correlated better in PLWH patients

compared to HIV-negative individuals (Figures 4D–F), which

might be due to the higher number of participants in the

PLWH cohort.

Regarding antigen-specific T cell responses, the correlation

analyses at the T2 time point in the control participants showed a

significant positive correlation between S-peptide antigen-specific

CD4+ CD154+ CD137+ T cells producing IFNg and TNFa
cytokines and neutralizing capacity against SARS-CoV-2 WT

strain (R=0.54; p-value=0.015; Figure 4G left graph), Delta

variant (R=0.64, p-value=0.0022; Figure 4H left graph),

Omicron variant (R=0.48, p-value=0.03; Figure 4I left graph)

and with anti-RBD titer (R=0.66; p-value=0.0016; Figure 4J left

graph). Interestingly, the correlation value R of these comparisons

in PLWH cohort exhibited a significant weaker association

(Figures 4G–I right graphs) and a non-significant correlation for

anti-RBD (R=0.18; p-value=0.18, Figure 4J right graph).

Moreover, we found comparable correlations between TNFa-
and IFNg-producing CD4+ CD154+ cells with neutralization

against Delta and Omicron variants (Supplementary

Figures 7E, F).

We then performed correlation analysis of the parameters

obtained at time point T4 (after the third vaccination). Similar to
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FIGURE 3

Antigen-dependent responses of CD4+ helper T cells in vaccinated PLWH and HIV-negative controls. (A) Representative dot plots of TNFa and
IFNg expression in activated CD4+ CD137+ CD154+ T cells of a PLWH donor stimulated with SARS-CoV-2 spike (S) glycoprotein peptide pool,

or with membrane glycoprotein plus nucleocapsid phosphoprotein (M+N) peptide pool, or with CytoStim™ (Pos), or left untreated (Neg) before
and after vaccination shots. (B) The violin plot represents frequency of activated, i.e. CD137+ CD154+, CD4+ T cells and (C) their correlation
(spearman method) with CD4:CD8 ratio from control subjects (upper scatter plot) and PLWH (lower scatter plot). The violin plots represent
(D) frequency of TNFa+ cells in activated CD4+ CD137+ CD154+ T cells, (E) frequency of IFNg+ cells in activated CD4+ CD137+ CD154+ T
cells and (F) frequency of TNFa+ IFNg+ double-positive cells in activated CD4+ CD137+ CD154+ T cells at the indicated time points. Statistical
significance was calculated by two-tailed Mann-Whitney test: ns, not significant (PLWH T0, n = 64-65; PLWH T1, n = 54; PLWH T2, n = 59-61;
PLWH T3 & T4, n = 29; Control T2, n = 20; Control T3 &T4, n = 15).
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time point T2, we found comparable correlations between anti-

RBD antibody response and neutralization capacity against WT

SARS-CoV-2 strain in HIV-negative participants and in PLWH

after the third vaccination (Figure 4K). In the same line, PLWH

presented weaker correlation for anti-RBD antibody and

neutralization against SARS-CoV-2 Delta than the control

group (Figure 4K). Similar to T2, the control group had a

weak correlation for anti-RBD antibody and neutralization

against the Omicron variant (Figure 4K). Except for the case

between the neutralization capacity against the Delta strain,

which showed comparable results, the correlations for the

neutralization capacity against WT and Omicron were

stronger in PLWH compared to control group after the third
Frontiers in Immunology 08
vaccination (Figure 4K). Of note, there was practically no

correlation for anti-RBD and S-peptide antigen-specific CD4+

CD154+ CD137+ T cells producing IFNg and TNFa cytokines

in both groups (Figure 4K). Although weak in general, the latter

parameter showed stronger positive correlation with

neutralization capacity against WT and Delta strains in PLWH

(Figure 4K). On the contrary, the correlation between S-peptide

antigen-specific CD4+ CD154+ CD137+ T cells producing IFNg
and TNFa cytokines and neutralization capacity against

Omicron strain was stronger in the control group than in

PLWH (Figure 4K).

In conclusion, while the cellular immune response by CD4+

T cells is surprisingly comparable to the control group, the
A CB ED F

G I

H J

K

FIGURE 4

Correlation analysis of immune response parameters in vaccinated PLWH and HIV-negative controls. (A-C) The scatter plots represent correlation
analyses between anti-RBD titers and neutralizing capacity against the SARS-CoV-2 WT, Delta and Omicron strains for control and PLWH groups. (D-F)
The scatter plots represent correlation analyses among the neutralizing capacities against the indicated SARS-CoV-2 strains for control and PLWH
groups. (G-J) CD4+ CD137+ CD154+ T cells expressing both IFNg+ and TNFa+ upon spike protein-derived peptide pool stimulation were correlated
using spearman method for time point T2. The scatter plots represent correlation between CD4+ CD137+ CD154+ IFNg+ TNFa+ T cells and
neutralizing capacity against WT strain of SARS-CoV-2 (G), Delta variant of SARS-CoV-2 (H), Omicron variant of SARS-CoV-2 (I) and against anti-RBD
titers (J) on the left side for controls, while scatter plots on the right side are for PLWH cohort. Black dots represent the values of the individual donors.
The regression line is indicated in blue, while the gray area represents the 95% confidence interval region. In the graphs, R indicates the correlation
coefficient and p stands for p-value of statistical significance. (K) Correlation matrix of the indicated parameters obtained at time point T4. Spearman
method was used for correlation analyses. The values of the correlation coefficient R is given.
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humoral response mediated by antibodies is reduced suggesting

that PLWH might be less protected from COVID-19

by vaccination.
Discussion

The occurrence of SARS-CoV-2 in the human population in

late 2019 led to a pandemic that is causing a major health care

burden worldwide. In an effort to cope with the pandemic,

several vaccines have been developed that reduce the risk to

suffer from severe COVID-19 and of mortality by inducing

humoral and cellular immune responses [reviewed in (49)].

Particularly, the novel mRNA vaccines show high efficacy and

are well tolerated (16, 17, 50). However, COVID-19 vaccines

may induce less efficient immune responses in the context of

immunosuppression. Accordingly, antibody responses to spike

protein in people with inborn errors of immunity were reduced

compared to controls when CD3+ T cells counts were lower than

1000 cells/ml or CD19+ B cell counts were lower than 100 cells/

ml (51). Moreover, impaired antibody, B cell and T cell

responses have been reported for patients receiving kidney

transplantation receiving COVID-19 mRNA vaccination

(52–56).

Here, we addressed the question whether COVID-19 mRNA

vaccines are able to mount immune responses in PLWH, since

HIV can cause acquired immunodeficiency. To do so, we analyzed

humoral, i.e. antibody, and cellular immune responses in PLWH

over the time course of vaccination and compared the responses

after three doses of vaccine with fully vaccinated HIV-negative

controls. We detected anti-RBD antibodies and neutralizing

antibodies against the original strain (WT) of SARS-CoV-2 as

well as against the Delta and Omicron variants in PLWH albeit at

lower levels than in the control group. Especially the neutralizing

antibody titers against the Delta andOmicron variants were low in

PLWH and the general antibody titers correlated less well with

neutralizing antibodies against Delta as compared to the

correlation of anti-RBD antibodies versus neutralizing

antibodies against the SARS-CoV-2 WT strain. This might

indicate an improved immune evasion of the Delta variant and

raises concerns about the protection that two doses of mRNA

vaccine mount in PLWH against current and upcoming variants

of concern of SARS-CoV-2. Our results on the humoral immune

response are in agreement with other reports that reported on

immunogenicity and safety of COVID-19 vaccines (57–59). In

contrast, similar antibody responses were reported in a PLWH

cohort that received an inactivated SARS-CoV-2 vaccine (60).

It has been previously described that a persistent anti-RBD

antibody response is associated with a reduced risk of COVID-

19 reinfection (61). Interestingly, we did not observe such an

association in PLWH. In the clinical follow-up, we identified

eight patients from our PLWH cohort, who got COVID-19

breakthrough infection after the second vaccination (time point
Frontiers in Immunology 09
T2) and six after the third vaccination (time point T4). However,

these breakthrough infections occurred in patients with low and

high anti-RBD antibody levels alike. Thus, it may be that anti-

RBD antibody levels might not be a good parameter to assess the

COVID-19 infection risk in PLWH. Since we observed

significant differences in anti-RBD antibody levels on the T2

and T4 time points between PLWH and HIV-negative controls

(Figure 1) and both groups are not fully matched for gender, we

performed additional linear regression analysis to test if the

observed differences are due to the gender composition in both

cohorts (data not shown). Although our PLWH and HIV-

negative control cohorts consist of 87% and 40% male,

respectively, we did not find a significant association of gender

and anti-RBD titers by the end of our longitudinal study. There

was only one time point, namely T2, at which we found a

statistically significant difference (p-value 0.0285) in the average

anti-RBD antibody titers between males (mean value 1350.8

BAU/ml) and females (mean value 2711.2 BAU/ml) from the

PLWH cohort. Of note, the control group did not show a

significant difference at the T2 time point. Taken together, this

implies that the imbalanced gender distribution in the two

groups has no direct biological impact on the outcome of the

study. Nevertheless, it would be interesting to address gender

bias in a larger cohort of study participants as HIV is more

prevalent in males than females.

Next to antibody titers, we also analyzed cellular immune

responses in PLWH upon COVID-19 vaccination by multi-

parametric flow cytometry. As expected (62), we detected a

reduced CD4+ to CD8+ T cell ratio and CD8+ T cells exhibited a

more activated phenotype. A reduced naïve CD8 compartment

and a higher prevalence of effector, effector memory and

transitional memory CD8+ T cells was not only observed by

conventional flow cytometry analysis but also by unsupervised t-

SNE clustering. Additionally, the activated phenotype of CD8+

T cells prevented the analysis of antigen-specific CD8+ T cell

responses since these cells expressed the type I immunity

signature cytokines IFNg and TNFa already in the absence of

any stimulation in our in vitro cultures.

A higher activation and a reduced naïve compartment in

PLWH were also observed for CD4+ T cells, again by

conventional flow cytometry analysis and unsupervised

clustering using t-SNE. Nevertheless, we were able to analyze

antigen-specific CD4+ T cell responses since the expression of

cytokines in the absence of any re-stimulating peptides was

negligible. Of note, we detected higher responses to the peptide

pool containing M and N derived peptides in PLWH after full

vaccination as compared to the control group (Supplementary

Figure 7A). One explanation could be that a few donors of the

PLWH cohort contracted an asymptomatic SARS-CoV-2

infection before start of the vaccination regime. Although no

case of symptomatic COVID-19 was reported to us during

sampling of the PLWH cohort, we indeed detected anti-RBD

antibodies in two PLWH donors suggesting asymptomatic
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SARS-CoV-2 infections. An alternative explanation might be

that these responses are due to previous exposures to other

human corona viruses, which can cause common cold

symptoms and might share common epitopes with SARS-

CoV-2. Thirdly, and not mutually exclusive to the first two

potential explanations, the anti-retroviral therapy (ART) that

our cohort participants received might enhance immune

responses against SARS-CoV-2 as has been reported by

epidemiological studies (63–65). More importantly, we

detected an increase in the expression of the activation

markers CD137 and CD154 as well as in the expression of the

cytokines IFNg and TNFa by CD4+ T cells over the time course

of vaccination. Notably, the expression of these markers and the

frequency of multifunctional T cells, which express both IFNg
and TNFa, was similar in PLWH and in the control group.

Thus, despite the reduced CD4+ T cell count in the peripheral

blood of PLWH, the CD4+ cellular response to COVID-19

vaccination is preserved. Furthermore, we found a positive

correlation between the frequency of multifunctional CD4+ T

cells (CD4+ CD137+ CD154+ IFNg+ and TNFa+) and

neutralizing antibody responses in PLWH. However, in

comparison to the one in the controls, the correlation was less

pronounced after two vaccinations for all SARS-CoV-2 strains

and remained lower for Omicron after the booster vaccination.

Moreover, the correlation for multifunctional CD4+ T cells and

anti-RBD antibodies that was observed in the control group at

T2 was absent in PLWH.

In addition, we found that the CD4 to CD8 ratio negatively

correlated with T cell activation, as detected by the presence of

CD4+ CD137+ CD154+ cells, in response to antigens derived

from the spike protein in PLWH. No such significant correlation

was found in the control group. Therefore, a reduction in CD4+

relative to CD8+ T cells appears to result in better T cell

activation in PLWH. Moreover, the CD4 to CD8 ratio might

be a predictive biomarker for the effectiveness of COVID-19

vaccines in PLWH. Similar observations have been made for

hepatitis B virus and Yellow Fever virus vaccines (66, 67).

The diminished antibody responses detected in our PLWH

cohort are in line with reports of reduced antibody titers upon

vaccination of PLWH with an influenza A virus vaccine (68–70)

or the mycobacterial vaccine strain BCG (71). However, while

some of these studies also reported reduced T cell responses (68,

69), we found similar CD4+ T cell responses in PLWH

vaccinated with an COVID-19 mRNA vaccine. Whether these

differences are due to differences in the viral antigen or due to the

different vaccine formulation remains to be tested in

future studies.

In line with our study, a recent work investigating the

immunogenicity of mRNA-based vaccines in PLWH showed

the importance of repeated vaccination to boost the immunity

against SARS-CoV-2 in this group (72). Interestingly, the

authors could also observe that, while humoral responses were

more potent after each vaccination, the intensity of the cellular
Frontiers in Immunology 10
response remained stable after the second vaccination (72).

While the CD4+ T cell responses towards spike protein-

derived peptides are promising, the reduced antibody

responses confirm that two and even three doses of mRNA

vaccine may be insufficient to protect PLWH from COVID-19.

Recent evidence suggests that a booster by a third and fourth

dose of vaccine not only enhances antibody levels, which might

decrease over time, but also broadens the antibody-mediated

immunity and can protect against variants of concern (73–76).

Therefore, additional booster vaccinations are required for

PLWH to maintain or to reach full protection from COVID-19.

Limitations of the study: The PLWH participants in our

study received well-adjusted anti-retroviral therapy (ART) and

had CD4+ T cells counts higher than 200 cells/ml. Whether

immune responses upon COVID-19 vaccination correlate with

T cell numbers in the peripheral blood awaits the analysis of a

larger cohort with more diverse T cell counts. A further

limitation is the lack of control samples before the second

vaccination (T0 and T1), which were unavailable since

participants of the control group were already vaccinated

before the beginning of this study. Moreover, we did not test

directly for vaccine safety or efficacy and gender bias since this

would be beyond the scope of this study. Nevertheless, no gross

adverse effects were reported by the participants of our PLWH

cohort. Furthermore, our results suggest that vaccination of

PLWH with COVID-19 mRNA vaccines might elicit cellular

and at least partial humoral immune protection.
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