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Toll-like receptors (TLRs) are pattern recognition receptors, originally

discovered to stimulate innate immune reactions against microbial infection.

TLRs also play essential roles in bridging the innate and adaptive immune

system, playing multiple roles in inflammation, autoimmune diseases, and

cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted

strategies in cancer treatment have proved to be able to regulate the tumor

microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical

studies and clinical trials using TLR-targeted strategies in treating cancer have

been initiated, with some drugs already becoming part of standard care. Here

we review the structure, ligand, signaling pathways, and expression of TLRs; we

then provide an overview of the pre-clinical studies and an updated clinical trial

watch targeting each TLR in cancer treatment; and finally, we discuss the

challenges and prospects of TLR-targeted therapy.
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Introduction

Toll-like receptors (TLRs) are type I transmembrane glycoproteins (1) with

evolutionarily conserved structures, existing in a wide variety of species from plants to

vertebrates (2). Since the discovery in 1996 of Toll receptor protein that contributes to

Drosophila’s anti-fungal response and embryonic development (3, 4), 13 functionally

active homologs of Toll receptor-TLRs, have been identified in humans and mice, of

which TLR1-9 and TLR11 are conserved in both species (5–7). However, TLR11 is non-

functional in human, presented only by a pseudogene (8).TLR12 and 13 do not exist in

humans, while TLR10 in mice is non-functional due to a retrovirus insertion (6).
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Pattern recognition receptors (PRRs) are key components of

innate immunity because of their ability to sense infection, elicit

intracellular signaling cascades and initiate immune responses that

ultimately eliminate pathogens and infected cells (9). As a group of

important PRRs (3), TLRs recognize diverse microbial pathogens

(e.g., lipids, peptides, carbohydrates, and nucleic acids) by their

conserved molecular patterns, indicated as pathogen-associated

molecular patterns (PAMPs), and initiate immune responses (10,

11). Almost all cells of the immune system (e.g., macrophages, B

lymphocytes, dendritic cells, mast cells, neutrophils, etc.) as well as

epithelial cells, endothelial cells, adipocytes, and cardiomyocytes

recognize pathogens via TLRs (9). Recognition of microbial

products by TLRs activates the innate immune response and

triggers the activation of downstream signaling pathways in

which myeloid differentiation factor 88 (MyD88) and toll-IL-1

receptor structural domain (TRIF) lead to the activation of NF-

kB and subsequent transcription of pro-inflammatory cytokines

including tumor necrosis factor-a (TNF-a), IL-1 and IL-6 (12).

TLRs also recognize conserved molecular structures of host-derived

molecules, often referred to as damage-associated molecular

patterns (DAMPs) (13), derived after cell death and extracellular

matrix (ECM) degradation from tissue damage caused by trauma or

infection. TLRs have also been found to play critical roles in many

other activities, including adaptive immune responses (14),

differentiation and development (15, 16), tissue regeneration (17–

19), cell cycle regulation (20, 21), and metabolism (22, 23).

As a group of regulators of various cellular functions, it is

unsurprising that TLRs also exert their versatility in the process

of carcinogenesis and tumor development, where their functions

are augmented or dysregulated, resulting in either anti-tumor or

pro-tumor responses (24–26). The exploitation of TLR anti-

tumor activities has shown great promise in cancer

immunotherapies, with some synthesized TLR agonists already

approved by FDA for clinical use (27); however, problems still

exist relating to their use, including limited translation rate from

bench to bedside, possible immunosuppression induced by TLR

agonists, and safety issues (28, 29).

In this article, we review the basic features of TLRs. We

report on the applications of TLR-targeted treatment in anti-

cancer therapies in clinical trials, encompassing various

combinatory therapeutic strategies. Lastly, we review the

challenges facing TLR-targeted therapy at present.
TLR structures and ligands

TLR structures

TLRs are membrane-spanning proteins (3) with an

extracellular N-terminal domain consisting of 19-25 tandem

leucine-rich repeat motifs (2), displaying a horseshoe tertiary

structure (30, 31), which is responsible for ligand recognition

(2). Next to the ectodomain is a transmembrane region (3),
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connecting the intracellular portion: the Toll/IL-1 receptor (TIR)

domain in the C-terminal tail, which is homologous to IL-1

receptor family’s cytoplasmic region (32) and required for

downstream signaling (10).

All the TLRs are synthesized in the endoplasmic reticulum

(ER), then transferred to Golgi apparatus, and finally migrate to

the plasma membrane or intracellular endosomes (33).

Human TLRs can be classified into two groups by sub-

cellular localization: 1) the cell surface TLRs, TLR1, 2, 4, 5, 6, and

10, which reside on the plasma membrane (4), traveling to

phagosomes when activated (34), 2) the intracellular TLRs,

TLR7, 8, 9, which are expressed on endosomes inside the cells,

with the LRR domain facing the inner cavity of the

compartment, sampling their ligands (31). TLR3 are also

primarily expressed on endosomes, yet it has been reported to

express on the cell surface of fibroblasts, epithelial cells, and

macrophages as well (35, 36).

In the ligand-binding, namely, activated status, TLRs tend to

be dimerized (31). TLR2 alternatively forms heterodimers with

TLR1, 6, or 10 (37, 38); each combination is associated with the

specificity for recognizing a particular group of ligands, making

TLR2 the most competent TLR in sensing a diverse range of

PAMPs. Other TLRs tend to form homodimers (Figure 1) (39).
LR ligands

TLRs do not necessarily distinguish between self and non-

self, but they respond to “danger signals” in general; as long as

the “signals” are encompassed within certain molecular patterns,

both no matter whether exogenous or endogenous ligands (40).

TLR ligands (TLRLs) primarily fall into three categories (1):

natural exogenous ligands (PAMPs) (2); natural endogenous

ligands (DAMPs and secreted ligands) (3); synthesized agents.

Exogenous ligands, namely, PAMPs originate from broadly

expressed components in bacteria, fungi, protozoa, parasites,

and viruses (10, 41, 42); they are common and genetically

conserved because of their significance to microbial survival

and infectivity (1, 43). As sentinels of the host’s defense system,

TLRs sense PAMPs as invading dangers and directly activate the

innate immune system (44), meanwhile indirectly activating the

adaptive immune system (43), thereby providing indispensable

protection against pathogens. Studies on mice lacking each TLR

have shown that each TLR has a different function in PAMP

recognition and immune response (45). Cell surface TLRs

mainly recognize microbial membrane components such as

lipids, lipoproteins, and proteins. TLRs expressed in

intracellular components, such as endosomes, recognize viral

or bacterial nucleic acids (46, 47). Specifically, TLR1/2

recognizes triacylated lipopeptides from Gram negative

bacteria (38, 39), TLR2/6 recognizes diacylated lipopeptide

from mycoplasma (38, 48), and TLR2/10 recognizes microbial

components shared by TLR1 (37). TLR3 ligands are double-
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stranded RNAs (dsRNAs) emerging from cytosol virus

replication (13, 39). TLR4 binds lipopolysaccharide (LPS) from

Gram negative bacteria (39, 49) and fungal mannanes (48).TLR5

ligates with bacterial flagellin (13).TLR7 and 8 ligands are both

single-stranded RNAs (ssRNAs) from viruses (13, 39).TLR9

recognizes nonmethylated CpG motifs normally found in

bacterial and viral DNA (13, 39).

On the other hand, endogenously derived DAMPs from cells

and ECM also activate TLRs. DAMPs are generated from

cel lular components or fragments of extracel lular

macromolecules, which are typicallyinaccessible to TLR ligand-

binding regions in homeostasis, yet exposed to TLRs in the case

of cell necrosis (passive release), apoptosis (pulsative release) or
Frontiers in Immunology 03
extracellular matrix degradation (5, 16, 43, 50) following trauma,

inflammation and tissue remodeling during development (43).

Specifically, TLR2 recognizes HMGB1, b-defensin-3, serum
amyloid A, and biglycan (51);TLR4 recognizes HMGB1,

fibrinogen, saturated fatty acids, and hyaluronic acid fragments

(51);TLR3 recognizes mRNA (52);TLR7 and TLR8 recognize

ssRNA (53) and antiphospholipid antibody (54);TLR9

recognizes IgG-chromatin complexes (55).

In the tumor microenvironment (TME), DAMPs can be

abundantly released by solid tumors (5, 56) and have a

significant impact in the TME by adopting mechanisms of

tissue repair [such as cell proliferation (57, 58), angiogenesis

(56), and tissue remodeling (59)], contributing to tumor
FIGURE 1

TLR ligands and signaling pathways Physiologically, TLRs are expressed on the cell membrane (TLR 1, 2, 4, 5, 6, 10) or the endosome (TLR3, 7, 8,
9). TLRs recognize a wide range of pathogen-associated molecular patterns (PAMPs). Upon ligation, dimerized TLRs can activate either MyD88
or TRIF pathways. TLR4 can activate MyD88 (with adaptor protein TIRAP) and TRIF (with adaptor protein TRAM) pathways; TLR3 activates TRIF
alone, and TLR1/2, TLR2/6, TLR2/10, TLR5 as well as TLR7-9 activate MyD88 alone, all without the need of an adaptor protein. As a result, type I
IFNs are induced via IRF3 and IRF7 activation and inflammatory cytokines via NF-kB, MAPKs, and IRF5 stimulation, which thus initiates a wide
range of inflammatory and immune activities, giving the basis for therapeutic exploration on TLRs in tumor therapies. (This figure is created with
BioRender.com).
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progression. Alternatively, just as PAMPs, DAMPs can also act

as stimulators of immune responses, showing anticancer

potential in vitro as well (56).

Synthetic TLRLs on the other hand have varied levels of

similarity to natural ligands (41), designed for the purpose of

disease treatment by manipulating different aspects of TLR

functions. The synthetic TLRLs are in active pre-clinical and

clinical investigation. The advances of TLRLs, including

synthetic TLRLs, in therapeutic research are reviewed in the

following section 5 and Tables 1–3.
TLR signaling

TLR signaling is initiated after TLR-ligand binding, which

causes conformational changes, leading to the recruitment of

four major adaptor proteins (Figure 1) (41). Each of these

proteins contain a TIR domain that is homologous to the

intracellular region of TLRs; all TLRs transmit signals through

at least one of those proteins: myeloid differentiation factor 88

(MyD88), TIR domain-containing adaptor protein (TIRAP, also

identified as MyD88 adaptor-like protein, MAL), TIR domain-

containing adaptor protein-inducing interferon (IFN)-b (TRIF,

also identified as TIR domain-containing adaptor molecule 1,

TICAM1), and TRIF-related adaptor molecule (TRAM, also

identified as TICAM2 and TIR-containing protein, TIRP) (1,

10, 41, 224, 225). A fifth TIR-domain exists, containing adaptor

protein- sterile alpha and HEAT/armadillo motif protein

(SARM), but contrary to the other four adaptors with

functions of TLR signaling stimulation, it negatively regulates

TLR signaling by inhibiting the downstream of TRIF pathway

(225, 226).

TLR signaling can be divided into two pathways according to

the TIR-containing adaptor used: the MyD88 pathway (MyD88-

dependent pathway) and the TRIF pathway (MyD88-

independent pathway) (227). TLR4 is the only TLR that

activates both pathways; TLR3 relies only on the TRIF

pathway; the remaining TLRs, TLR1-2, TLR5-10, activate

solely the MyD88 pathway (10, 24, 37, 227). When initiating

these pathways, some TLRs require an accompanying adaptor

molecule. TLR4 and TLR2 (after dimerized with TLR1 or TLR6

but not TLR10) require TIRAP to recruit MyD88. TLR4 requires

TRAM to bridge to TRIF (227–229). However, TLR5 and TLR7-

9 can independently interact with MyD88 (227), and TLR3

depends solely on TRIF (228, 230).

In the MyD88 pathway, a series of downstream molecules are

sequentially activated following recruitment of MyD88, including

but not limited to interleukin-1 receptor-associated kinases

(IRAKs), tumor necrosis factor (TNF) receptor-associated factor 6

(TRAF6), interferon (IFN) regulatory factor 5 (IRF5), receptor-

interacting protein kinase 1 (RIP1), nuclear factor kB (NF-kB)
inhibitor (IkB) kinase (IKK) complex, finally leading to the

activation of mitogen-activated protein kinases (MAPKs) (ERK,
Frontiers in Immunology 04
JNK, p38) and NF-kB, which induces a wide range of pro-

inflammatory cytokines (227, 228). In addition, in a cell-specific

manner, following TLR7-9 ligation, the stimulatedMyD88 pathway

in plasmacytoid dendritic cells (pDCs) can activate IRF7, which

subsequently leads to IFNa production (227).

In the TRIF pathway, IRF3 is activated and translocated into

the nucleus, consequently resulting in IFNb induction (227,

228). TLR3 and TLR4 can signal through the IRF3/IFNb
pathway (231, 232). In addition, TRIF can also stimulate RIP1

and TRAF6, leading to activation of MAPKs and NF-kB to

induce pro-inflammatory cytokine production (227, 228).

Besides typeIIFN (IFNa, IFNb) and inflammatory cytokines

(TNFa, interleukin-1 (IL-1), IL-6, IL-10, IL-12, etc.), TLRs also

induce many different chemokines (IL-8, macrophage

inflammatory protein (MIP)-1, IP-10, etc.) and microRNAs

(miRNAs) (10, 41, 233–235). In cells, TLR activation may lead

to apoptotic, proliferative, or differentiative responses (41). In

tissues, TLR signaling can result in inflammation, immune

responses, and tissue repair (236).
TLR expression

In humans, TLRs have a broad expression in various tissues,

with the most diversity in locations involved in immune

function, such as the spleen and peripheral blood, and

locations in constant contact with microbes, such as the lung

and the gastroenterological tract (237). Other locations

expressing TLRs include the female reproductive tract, urinary

tract, skin, neural system, and vascular system (238–240).

Specific to cell types, TLRs can typically be found in immune

cells, such as DCs, monocytes, macrophages, granulocytes, NK

cells, mast cells, and lymphocytes. Other non-immune cells also

express TLRs, including endothelial cells, epithelial cells,

fibroblasts, glial cells, astrocytes, keratinocytes, vascular

smooth muscle cells, and sperm cells (3, 10, 33, 238, 239,

241, 242).

Recent evidence has shown that TLRs are expressed in

diverse tumor cell populations (including tumor stem cells)

together with cancer-associated fibroblasts, tumor-associated

macrophages, myeloid-derived suppressor cells (MDSCs),

regulatory T cells (Tregs), and adipocytes in the TME,

participating in both promotion and inhibition in tumor

growth (4, 10, 243).

During the process of malignant transformation, the level of

TLR expression tend to elevate in transformed cells (including

tumor cells) (24, 238, 244); meanwhile, the expression of TLR2,

4, 5, which is normally on cell membrane, increases in cytosol in

a diffused manner (25, 245).

The expression patterns of TLRs and the downstream

molecules are varied and regulated by multiple factors (237).

Understanding these factors is vital for better exploitation in pre-

clinical/translational research in TLR-targeted anti-tumor therapies.
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TABLE 1 Recent pre-clinical therapeutic investigation incorporating TLR-targeting.

TLR Ligand Molecular
nature

Treatment
strategy

Condition Therapeutic feature Reference

Agonism

TLR1/2 SMU-Z1 synthetic chemical
compound

TLRa leukemia increased CD8+ T cells, NK cells and DCs (60, 61)

Pam3CSK4 triacylated
lipopeptide

TLRa+ICB melanoma enhanced depletion of Tregs in tumor microenvironment (62)

Amplivant triacylated
lipopeptide

TLRa+vaccine
+chemo/PDT

HPV16-related
tumors

Better immune stimulatory effect compared to normal Pam3SCK4 (63)

Diprovocim synthetic chemical
compound

TLRa+vaccine
+ICB

melanoma long-term antitumor memory, high frequencies of tumor-
infiltrating leukocytes

(64)

TLR2 acGM-1.8 glucomannan
polysaccharide

TLRa sarcoma, melanoma enhanced M1-polarization of macrophages; improved safety
profile

(65)

WCCP-N-b galactan TLRa melanoma enhanced M1-polarization of macrophages; reduced tumor cell
viability

(66)

HSV-1 inactivated virus TLRa+ACT acute
myeloid leukemia

direct NK cell activation (67)

TLR3 poly (I:C) ds RNA mimic TLRa breast cancer a 2-fold increase in the numbers of inflammatory cells expressing
the myeloid markers

(68)

TLRa colon cancer, breast
cancer

induction of cell death; increased CD8+ tumor infiltrating
lymphocytes and CD8/Treg ratios

(69)

TLRa+chemo oral squamous cell
carcinoma

down-regulated drug transporters P-gp and MRP-1; raised
cytoplasmic concentration of cisplatin

(70)

TLRa+chemo lung cancer impaired paclitaxel induced c-FLIP reduction; restored cancer cell
apoptosis

(71)

TLRa+CTT
+ICB

multiple types of
tumor

increased treatment sensitivity to ICB treatment (72)

TLRa+vaccine leukemia, thymoma induction of systemic cross-priming, systemic tumor-specific
adaptive immunity, intratumoral CTL infiltration

(73)

TLRa+vaccine
+aCD40 Ab

colon cancer increased ratio of tumor-specific T cell population; reduced side
effects

(74)

TLRa+vaccine
+aCD40 Ab

prostate cancer elevated antigen-specific cellular and humoral immunity (75)

TLRa
(NP
incorporated)

melanoma elevated pro-inflammatory macrophage infiltration, decreased
MDSCs, macrophage M1 polarization

(76)

TLRa
(NP
incorporated)

melanoma ROS generation, macrophage M1 polarization, elevated activated
NK cells and T lymphocytes

(77)

TLRa+vaccine
(NP
incoporated)

thymoma lymph node targeted, higher uptake of drug in APCs, greater
natural killer cell expansion/activation and CTL response

(78)

TLRa+vaccine
(NP
incoporated)

HPV-induced
malignancy

enhanced population of antigen-specific CD8+ T cells, reduced
adverse effects

(79)

TLRa+vaccine
+GT (NP
incorporated)

thymoma incudtion of TADC maturation and activation, decreased STAT3
expression, abrogated immunosuppression, potent anti-tumor
immune responses

(80)

ARNAX DNA-capped
dsRNA

TLRa+vaccine thymoma enhanced infiltration of CD8+ T Cells and CD8a+ DCs, enhanced
Th1-type anti-tumor immunity

(81)

TLR4 LPS lipopolysaccharide TLRa+RT
+ACT

melanoma augmentation of the antitumor activity of adoptively transferred
CD8(+) T cells

(82)

MPLA monophosphoryl
lipid A

TLRa+CTT breast cancer extensive upregulation of systemic and intratumoral APCs and
NK cells

(83)

TLRa+CLRa breast cancer stimulation of B-1 cells,rapid production of high levels of natural
IgM reactive against tumor-associated antigens

(84)

(Continued)
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TABLE 1 Continued

TLR Ligand Molecular
nature

Treatment
strategy

Condition Therapeutic feature Reference

Agonism

TLRa
+proteasome
inhibition

leukemia enhanced tumor cell death (85)

TLRa+vaccine
+NKTa

HPV-induced
malignancy

elevated levels of lymphocyte proliferation, CTL activity, IFN-
gamma, IL-4 and IL-12 responses

(86)

TLRa+vaccine
+CD4 Ta

breast cancer enhanced tumor inhibition effect (87)

TLRa
(NP
incoporated)

melanoma DC-targeting, induction of DC maturation and activation,
promotion of anti-tumour T cell responses, and enhanced antigen
cross-presentation

(88)

TLRa+vaccine
(NP
incoporated)

melanoma enhanced anti-tumor effects (89)

TLRa+vaccine
(NP
incoporated)

melanoma promoted antigen retention in draining lymph nodes (90)

PELA pentaerythritol
lipid A

TLRa+vaccine
(NP
incoporated)

thymoma enhanced stimulation of co-stimulatory molecules CD80/CD86 on
DCs, significant expansion of the tumor-specific T cell
population, enhanced Th1-biased immune response

(91)

RGP rehmannia
glutinosa
polysaccharide

TLRa+vaccine melanoma
colon cancer

increased IFN-g secretion and CD8+ T cell response (92)

CIRP protein TLRa+vaccine
± ICB

melanoma,
thymoma, colon
cancer

CD8-dependent tumor rejection
improved survival

(93)

API5 protein TLRa+DC
vaccine

thymoma, cervical
cancer, colon
cancer

generation of antigen-specific CD8 + T cells and memory T cells (94)

HMGN1 protein TLRa+vaccine melanoma tumor-specific, Th1-polarized immune responses (95)

TLR5 flagellin protein TLRa+vaccine genital cancer local administration, induction of CD4+ and CD8+ cell
recruitment as well as T cell activation-related gene expression in
draining lymph nodes, systemic antigen-specific IFN-g production

(96)

flagellin protein TLRa+ACT melanoma cell therapy-bacterial flagellin-secreting DMF5(TLR5L) T cells:
augmentation of T cell effector function and expansion, reduction
of immunosuppressive cells

(97)

Entolimod protein TLRa colon cancer,
breast cancer

stimulation of the NK-DC-CD8+ T-cell axis (98)

TLR7 imiquimod imidazoquinoline TLRa lymphoma NK cell activation, induction and intra-tumoral infiltration of
tumor-specific CD4(+) T cells

(99)

TLRa+vaccine HPV-induced
malignancy

induction and recruitment of tumor-specific CD8+ T cells (100)

TLRa+chemo
+ICB (NP
incorporated)

breast cancer induction of tumor-specific immune responses,
enhanced DC maturation, elevated CD8(+) CTLs/Treg and CD4
(+) Teff/Treg ratios

(101)

TLRa+ICB
+DCsti (NP
incoporated)

menaloma localized immunotherapy, safe antitumoral responses (102)

TLRa+PTD
+ICB
(NP
incorporated)

colorectal cancer generation of a pool of tumor-associated antigens, strong
antitumor immunity and long-term immune memory

(103)

TLRa+PTD
+ICB
(NP
incorporated)

breast tumor abscopal effects, tumors infiltrated by CD45(+) leukocytes (104)

(Continued)
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TABLE 1 Continued

TLR Ligand Molecular
nature

Treatment
strategy

Condition Therapeutic feature Reference

Agonism

TLRa+PTT
+ICB
(NP
incorporated)

breast cancer,
conlon cancer

enhanced DC activation, increased TILs, decreased Tregs,
induction of immune memory, inhibition of metastasis

(105)

TLRa+RT
+ICB
(NP
incoporated)

colon cancer relieved tumor hypoxia, effective inhibition of tumor metastases,
long term immune memory

(106)

TLRa+vaccine
+ICB (NP
incorporated)

melanoma enhanced drug uptake by APCs, enhanced immune stimulation (107)

gardiquimod imidazoquinoline TLRa+ACT liver cancer direct activation of NK cells, enhanced maturation of DCs,
promotion of NK-DC cross-talk

(108)

TLRa+vaccine
+aOX40/
aCD40 Ab

melanoma induction of anti-tumor CD4 T-cell responses, overcome immune
tolerance to a self-tumor-associated antigen, enhancement of
proliferative and antiapoptotic activities of CD4 T cells

(109)

1V270 synthetic small
molecule

TLRa breast cancer,
melanoma,
lung cancer

activation of NK cells and tumor-specific CD8+ cell, inhibition of
metastasis

(110)

TLRa+ICB
+IRE

pancreatic cancer induction of abscopal effects (111)

SC1 synthetic small
molecule

TLRa murine
tumor models

systemic induction of IFN I and activation of immune cells,
increased leukocyte infiltration and activation, induction of
tumor-specific CD8+ T cells

(112)

TLRa lymphoma reversion of NK cell anergy and restoration of NK cell-mediated
tumor cell killing

(113)

SZU-101 synthetic small
molecule

TLRa+chemo lymphoma strong cytokine production and enhanced cytotoxic T lymphocyte
response

(114)

let-7b
(miRNA
mimic)

RNA TLRa
(NP
incorporated)

breast cancer reversion of suppresive TME by reprogramming TAM and TIDC (115)

antigen-
encoding
RNAs

RNA TLRa+vaccine
(NP
incorporated)

melanoma,
colon cancer,
lung cancer

high efficiency of drug uptake and encoded antigen expression by
DC and macrophages, activating both innate and tumor-specific
adaptive immunity

(116)

TLR7/8 resiquimod imidazoquinoline TLRa+ICB colon cancer generation of immune memory, induction of anti-tumor
intratumoral myeloid cells

(117)

TLRa+CD20
Ab

lymphoma activation of NK cells, CD4+ T cells, CD8+ T cells and generation
of immune memory

(118)

TLRa+surgery breast cancer,
lung cancer

administration at the tumor resection site, increased NK, DC, and
T cell activation, induction of IFN I

(119)

TLRa
(NP
incoporated)

oral cancer,
mast cell tumor

prolonged drug release and limited systemic immune toxity (120)

TLRa+ICB
(NP
incorporated)

colon cancer,
melanoma

increased the proportion of TILs and sensitization of tumors to
ICB

(121)

TLRa+ICB
(NP
incorporated)

colon cancer,
melanoma

incution of M1 polarization of TAMs, generation of immune
memory and reversion of anti-PD-1 resistance

(122)

resiquimod+
imiquimod

imidazoquinoline TLRa+vaccine
+ICB (NP
incorporated)

melanoma,
cervical cancer

M1 polarization of TAMs, stimulation of NK cells, increased
TILs, and generation of immune memory

(123)

522 imidazoquinoline
derivative

TLRa+vaccine
(NP
incorporated)

melanoma strong induction of antigen-specific CD8 T cell and NK cell
responses

(124)
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TABLE 1 Continued

TLR Ligand Molecular
nature

Treatment
strategy

Condition Therapeutic feature Reference

Agonism

522/528 imidazoquinoline
derivative

TLRa+vaccine
(NP
incorporated)

melanoma,
bladder and renal
cell cancer

enhanced activation and expansion of DC and antigen-specific
CD8 T cells

(125)

modified
mRNA

RNA TLRa+vaccine
(NP
incorporated)

melanoma potent stimulation of IFN-b and IL-12 from DCs and enhanced
antigen presentation

(126)

TLR9 CpG ODN DNA TLRa pancreatic cancer enhanced macrophages antitumor activity
by eliciting changes in the carbon metabolism

(127)

TLRa liver cancer induction of iMATE in liver (128)

TLRa brain
metastatic
melanoma

enhanced microglia-tumor contact and promotion of
phagocytosis and killing

(129)

TLRa+aOX40
Ab

lymphoma,
colon cancer, breast
cancer, melanoma

local and systemic anti-tumor T cell response (130)

TLRa+BTKi lymphoma induction of local and systemic T-cell dependent tumor
eradication, generation of immune memory

(131)

TLRa+chemo glioma
melanoma

increased tumor infiltration of macrophages and B cells, increased
CTLs and generation of immune memory

(132)

TLRa+ICB lung cancer formation of tertiary lymphoid structures adjacent to the tumors,
infiltration of CTLs, DC expansion, activation of CTL supporting
Th cells

(133)

TLRa+ICB breast cancer,
colon cancer

reversion of PD-1 blockade resistance, enhanced CTL expansion
and infiltration

(134)

TLRa+ICB
+aOX40 Ab

lymphoma depletion of tumor-infiltrating Tregs and induction of local and
systemic anti-tumor responses

(135)

TLRa+iTreg colon cancer reduced infiltration of Tregs and increased CTL (136)

TLRa+RFA thymoma CpG enhanced RFA-induced CTL responses (137)

TLRa+RFA liver cancer enhanced antitumor T cell responses and Th1 cytokine
production

(138)

TLRa+STAT3i leukemia reduced arginase expression, restored T cell responses,
elimination of leukemia stem/progenitor cells

(139)

TLRa+STAT3i lymphoma generation of tumor-specific CD8/CD4 T cell immunity and
immune memory

(140)

TLRa+vaccine renal cancer rapid induction of tumor-specific CD8(+) T cells, induction of
memory lymphocyte infiltration, and Th1-type immune response

(141)

TLRa+vaccine thymoma neutropbil recruitment, activation of cDCs, T-cell priming in
draining lymph nodes, increased CTL infiltration

(142)

TLRa+vaccine breast cancer enhanced antigen-specific CD8+ T cell cytotoxicity (143)

TLRa+vaccine melanoma intracellular drug delivery, enhanced T cell response (144)

TLRa+vaccine
+chemo

HPV-induced
malignancies

reduced infiltration of MDSC and TAMs, increased antigen-
specific CTL

(145)

TLRa+vaccine
+ICB

ovarian cancer enhanced activation and expansion of antigen-specific CTLs,
induction of memory precursor T cells, inhibition of Tregs and
MDSCs

(146)

TLRa+vaccine
+NKTa

melanoma optimized expansion of NKs and antigen-specific CTLs, increase
of serum IL-12

(147)

TLRa+vaccine
(NP
incorporated)

melanoma TAM-targeted, M1 polarization of macrophages, increased T cell
intra-tumoral infiltration and activation

(148)

TLRa+vaccine
(NP
incorporated)

thymoma potent CTL response (149)
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TLR Ligand Molecular
nature

Treatment
strategy

Condition Therapeutic feature Reference

Agonism

TLRa+vaccine
(NP
incorporated)

thymoma efficient delivery to DCs, induction of antigen-specific immune
responses

(150)

TLRa+vaccine
(NP
incorporated)

lymphoma professional APC-targeted, induction of long-lasting, cytotoxic,
antigen-Specific T cell responses

(147)

TLRa+PTT
(NP
incorporated)

breast cancer good safety profile, superior effectiveness towards the suppression
of both primary and metastatic tumor over either single therapy
alone.

(151)

TLRa
(NP
incorporated)

melanoma increased expression of proinflammatory factors and co-
stimulatory factors

(152)

TLRa+vaccine
(NP
incorporated)

melanoma induction of ADCC, CTL responses (153)

TLRa+vaccine
(NP
incorporated)

melanoma increased ROS generation, enhanced CTL proliferation (154)

TLRa+vaccine
(NP
incorporated)

melanoma lymph node-targeted, effective drug delivery to endosomal TLR9
in APCs, enhanced cellular and humoral immune responses

(155)

TLRa ± ICB
(NP
incorporated)

colon cancer activation of intra-tumoral CD8 T cells, Th1-related gene
induction

(156)

TLRa+vaccine
(NP
incorporated)

melanoma enhanced antibody response, Th1 polarization of Th responses (157)

TLRa+PDT
(NP
incorporated)

breast cancer induction of continuous secretion of proinflammatory cytokines,
maturation of DCs, activation and infiltration of T lymphocytes

(158)

TLRa+vaccine
(NP
incorporated)

efficient intake by APCs, tumor-specific immune stimulation,
minimal toxicity

(159)

TLRa+chemo
(NP
incorporated)

glioblastoma significantly enhanced tumor regression, prolonged survival, and
generated immunological memory.

(160)

TLRa+vaccine
(NP
incorporated)

prostate cancer increased co-stimulatory molecule expression on DCs (161)

TLRa+vaccine
(NP
incorporated)

melanoma lymph node-targeted, efficient DC delivery, induction of CTL
expansion

(162)

TLRa+vaccine
(NP
incorporated)

melanoma enhanced tumor-specific Th1 and CTL responses, decreased
splenic MDSCs and their intra-tumoral infiltration

(163)

EnanDIM® DNA TLRa colon cancer,
melanoma,
lymphoma,
breast cancer

increased intra-tumoral T cell infiltration, generation of immune
memory

(164)

X-DNA DNA TLRa+chemo colon cancer enhanced activation of Th1 cells and DCs (165)

dSLIM DNA TLRa+vaccine renal cancer tumor-specific cellular and humoral immune responses (166)

Multi-TLRs

TLR2, 3 Pam3CSK4,
poly (I:C)

triacylated
lipopeptide,
dsRNA mimic

TLRa+vaccine
+aCD40 Ab

melanoma efficient and selective delivery to DCs, improved priming of
antigen-specific CD8+T cells

(167)
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TLR Ligand Molecular
nature

Treatment
strategy

Condition Therapeutic feature Reference

Agonism

(NP
incorporated)

TLR2, 3,
7/8

LTA, poly
(I:C),
resiquimod

lipoteichoic acid,
dsRNA mimic,
imidazoquinoline

TLRa+aCS pheochromocytoma generation of immune memory and systemic anti-tumor
immunity

(168)

TLR3,7 poly (I:C),
imiquimod

dsRNA mimic,
imidazoquinoline

TLRa pancreatic cancer,
head and neck
squamous cancer,
lung cancer

increased cytotoxicity and granzyme A/B production in gd T cells (169)

TLRa+vaccine
(NP
incorporated)

melanoma enhanced macrophage and DC functions, enhanced humoral and
cellular immune responses, generation of immune memory

(170)

TLR3, 9 Poly (I:C),
CpG ODN

dsRNA mimic,
DNA

TLRa+chemo melanoma reduced arginase and IL-10 secretion from macrophages, good
safety profile, enhanced recruitment and cytotoxicity of tumor-
infiltrating NK cells

(171)

TLRa+CTT/
anti-MDSC
Ab

melanoma reduction of immunsuppressive molecule expression, increase in
proinflammatory cytokine expression, increased NK cell
recruitment and activation, good safety profile

(172)

TLRa+vaccine
(NP
incorporated)

melanoma effective therapeutic and prophylactic protection (173)

TLR3, 8, 9 CU-CPT17e synthetic
small molecule

TLRa cervical cancer,
breast cancer

strong cytokine production and immune activation, effective
inhibition of tumor cell proliferation

(174)

TLR4, 5 engineered
bacteria

bacteria
components

TLRa colon cancer engineered flagellin-secreting bacteria, TLR4- and TLR5-mediated
immune activation, infiltration of abundant immune cells, M1
polarization

(175)

TLR4, 7 MPLA,
imiquimod

monophosphoryl
lipid A,
imidazoquinoline

TLRa+vaccine
(NP
incorporated)

thymoma improved DC cross-presentation, Th1-biased cytokine
production, strengthened lymphocytes priming, generation of
immune memory

(176)

TLRa+vaccine
± ICB (NP
incorporated)

thymoma effective delivery to and activation of DCs, increased antigen-
specific CD8+ T cells and memory T cells

(177)

TLR4, 9 MPLA,
CpG ODN

monophosphoryl
lipid A, DNA

TLRa+vaccine
(NP
incorporated)

melanoma prolonged drug reactivation time, potent DC activation, effective
T cell and macrophage activation

(178)

monophosphoryl
lipid A, DNA

TLRa+vaccine
(NP
incorporated)

melanoma improved T, NKT, and NK cell infiltration, improved systemic
immune stimulation

(179)

monophosphoryl
lipid A, DNA

TLRa+vaccine
(NP
incorporated)

melanoma
cervical cancer

enhanced DC activation and humoral responses, improved
antigen-specific CD8+ T cell responses

(180)

TLR7, 9 imiquimod,
CpG ODN

imidazoquinoline,
DNA

TLRa+vaccine HPV-induced
malignancy

intra-cheek immunization resulting in higher mobilization of
mucosal CD8+ specific effector T cells in TdLNs and TME

(181)

1V270,
SD-101

synthetic small
molecule
small molecule,
DNA

TRLa+ICB head and
neck cancer

induction of systemic adaptive immunity, increasde M1, tumor-
specific CTL infiltration

(182)

Antagonism

TLR2 OPN-301 protein TLRant gastric cancer impeded initiation and growth of gastric cancer, significant
suppression of CXCL2 and TNF-a genes

(183)

TLR7, 9 IRS-954 DNA TLRant liver cancer significant prohibition of tumor growth (184)

TLRant cholangiocarcinoma inhibition of cancer cell proliferation in vitro and tumor growth
in vivo

(185)

HJ901 DNA TLRant diffuse large B cell
lymphoma

(186)
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TLR Ligand Molecular
nature

Treatment
strategy

Condition Therapeutic feature Reference

Agonism

significantly reduced TLR7- and TLR9-mediated cell proliferation
in cell lines carrying a certain MyD88 mutation, prevention of
tumor growth in mouse models

chloroquine chloroquine TLRant liver cancer significantly impeded development of tumor (184)

TLRant cholangiocarcinoma inhibition of cancer cell proliferation in vitro and tumor growth
in vivo

(185)
Frontiers in
 Immunology
 11
 fro
aCD40 Ab, agonistic anti-CD40 anti-body; aCS, activation of complement system; ACT, adoptive cell therapy; ADCC, antibody-dependent cellular cytotoxicity; anti-MDSC Ab, anti-MDSC
antibody; aOX40 Ab, agonistic anti-OX40 anti-body; APCs, antigen presenting cells; API5, apoptosis inhibitor 5; BTKi, Bruton’s tyrosine kinase inhibition; CD20 Ab, anti-CD20 Ab; CD4
Ta, CD4+ T cell activation; cDC, conventional dendritic cell; chemo, chemotherapy; CIRP, cold-inducible RNA binding protein; CLRa, C-type lectin receptor (CLR) agonism; CTL,
cytotoxic T lymphocyte; CTT, cytokine targeted therapy; DCs, dendritic cells; DCsti, DC cell stimulation; dSLIM, double stem loop immunomodulator with nonmethylated CG motifs;
EnanDIM®, Enantiomeric DNA-based ImmunoModulator with nonmethylated CGmotifs; ICB, immunocheckpoint blockade; IFN, inteferon; iMATE, intrahepatic myeloid aggregation for
T cell expansion; IRE, irreversible electroporation; iTreg, inhibition of regulatory T cells; LTA, lipoteichoic acid; MDSC, myeloid derived suppressive cell; NK cells, natural killer cells; NKTa,
natural killer T cell activation; NP incorporated, nanoparticle incorporated in drug delivery; ODN, oligodeoxynucleotide; PDT, photodynamic therapy; PTT, photothermal therapy; RFA,
radiofrequency ablation; RT, radiotherapy; STAT3i, STAT3 inhibition; TADCs, tumor-associated DCs; TAM, tumor-associated macrophage; TdLNs, tumor draining lymph nodes; TIDC,
tumor-infiltrated dendritic cell; TIL, tumor infiltrated lymphocytes; TILs, tumor-infiltrated lymphocytes; TLRa, TLR agonism; TLRant, TLR antagonism; TME, tumor microenvironment;
vaccine, tumor antigen; vaccine, tumor antigen only vaccine. Tumor suppression has been observed in all of the listed studies, therefore not written in therapeutic features.
TABLE 2 Completed clinical trials applying TLR agonists.

TLR Drug
name

Other name Phase Indication Therapeutic
strategy

Route Results Trial
number

Reference

TLR2 Hespecta
(modified
Amplivant)

I HPV16-positive
tumors or
premalignant
lesions

single use intradermal safe, induction of robust specific
T-cell immunity

NCT02821494 (187)

TLR3 Poly ICLC Hiltonol II melanoma,
SCCHN,
sacrcoma, non-
melanoma skin
cancers

single use intratumoral/
intramuscular

well tolerated, systemic immune
responses, achieving clinical
benefit

NCT02423863 (188)

II solid tumors + vaccine intramuscular NCT02873819

I/II Melanoma + vaccine + IFA subcutaneous activating humoral and T cell
immunity

NCT01079741

I/II Recurrent
Glioblastoma

+ vaccine +
Bevacizumab

intramuscular NCT02078648

I/II solid tumors + Durvalumab±
Tremelimumab

intratumoral/
intramuscular

NCT02643303

I AML,
myelodysplastic
syndrome

+ vaccine +
chemotherapy

subcutaneous induction of tumor antigen
expression and cytotoxic
antigen-specific T cells

NCT01834248 (187)

I AML + vaccine +
Nivolumab+
chemotherapy

subcutaneous NCT03358719

I lung cancer + vaccine +
Pembrolizumab
+ chemotherapy

subcutaneous a good safety profile, induction
of immune responses in
nonsquamous NSCLC, needing
future patient enrichment

NCT03380871 (189)

I melanoma + vaccine + IFA intradermal/
subcutaneous

safe and effective, IFA enhanced
T cell responses to peptide
vaccines when added to TLR
agonists.

NCT01585350 (190)

I pancreatic
adenocarcinoma

+ vaccine intratumoral NCT01677962

I solid tumors + vaccine n.a. NCT02721043 (187)
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TLR Drug
name

Other name Phase Indication Therapeutic
strategy

Route Results Trial
number

Reference

good safety profile and
immunogenicity

I solid tumors + vaccine +
Nivolumab

subcutaneous good safety profile and
immunogenicity

NCT02897765 (191)

I solid tumors + vaccines +
Tadalafil

intramuscular well-tolerated, reducing PDL1
+macrophages, increasing
activated tumor infiltrating T
cells

NCT02544880 (192)

Rintatolimod Ampligen,
Atvogen

I/II recurrent
ovarian,
fallopian tube
or primary
peritoneal
cancer

+ vaccines +
IFA

intravenous NCT01312389

II colorectal
carcinoma with
metastatic
disease to the
liver

+ chemokine
modulation

Intravenous NCT03403634

TLR4 LPS I melanoma + vaccine intradermal/
subcutaneous

safe and effective vaccine
adjuvant, IFA enhanced T cell
responses to peptide vaccines
when added to TLR agonists

NCT01585350 (190)

GLA-SE G100 I melanoma + vaccine intramuscular well-tolerated, good
immunogenecity

NCT02320305

I Merkel Cell
Carcinoma

+ surgery + RT intratumoral good safety profile, promising
clinical efficacy

NCT02035657 (193)

I sarcoma + RT intratumoral effective local control of
sarcoma, induction of local and
systemic CD4+ T cell response

NCT02180698 (194)

IDC-G305 II melanoma,
ovarian, renal
cell or non-
small cell lung
cancer

single use intramuscular good safety profile and can
generate antigen-specific
immunity

NCT02015416 (195)

GSK1795091 CRX-601 I solid tumors ±
pembrolizumab
± GSK3174998
± GSK3359609

intravenous NCT03447314

TriMix DC I/II melanoma + vaccine Intranodal Safe, but limited immunological
and clinical response

NCT01530698 (196)

TLR5 entolimod CBLB502 I solid tumors single use intramuscular/subcutaneous NCT01527136

Mobilan M-VM3 I prostate cancer single use intraprostate NCT02654938

TLR7 Imiquimod R837, Aldara III vulvar Paget
disease

+ paracetamol +
Iidocaine

topical 82, 6% response rate; painkillers
needed in 80% patients for side
effects

NCT02385188 (197)

III VIN single use topical a safe, effective alternative to
surgery for HSIL patients;
recommended as first-line
treatment

NCT01861535 (198)

II/III CIN 2/3 single use
(compare
conization)

topical inferior to conization in HPV
clearance

NCT02130323 (199)

II CIN2/3 + surgery topical promoting regression of cervical
HSIL

NCT03233412 (200)

II single use topical NCT00899574 (201)
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TLR Drug
name

Other name Phase Indication Therapeutic
strategy

Route Results Trial
number

Reference

breast
carcinoma

effective treatment for breast
carcinoma metastatic to skin/
chest wall; well tolerated,
promoting a pro-immunogenic
tumor microenvironment

II VIN2/3 and
anogenital warts

single use topical NCT00941811

II VIN2/3 and
vulvar HSIL

+ vaccine Topical NCT03180684

I/II breast
carcinoma

+ radiation±
chemotherapy

topical NCT01421017

I gastric cancer,
breast cancer

+ vaccine+
chemotherapy +
Sargramostim

topical NCT02276300

I Glioma (grade
II)

± surgery ±
chemotherapy ±
RT + vaccine
(tumor lysate)

topical NCT01678352

I glioma + vaccine topical grade 1 adverse effects; immune
responses observed in 93.3%
patients; enhanced IL-17
production and increased
IDH1-specific T cells

NCT02454634 (202, 203)

II prostate
carcinoma

+ vaccine + IFA topical safe and immunogenic; high
number of administrations
induced stronger immune
response

NCT02293707 (204)

I prostate
carcinoma

+ vaccines (two)
+ chemotherapy

topical NCT02234921

TMX-101 II bladder cancer single use intravesicle mild adverse effects; significant
urinary cytokine (IL-6, IL-18,
IL-1b, IL-1ra, VEGF) increase
with complete responders
observed

NCT01731652 (205)

TLR7/
8

852A II breast
carcinoma;
ovarian cancer;
endometrial
cancer; cervical
cancer

single use n.a NCT00319748

Resiquimod R848; S28463 I melanoma + vaccine+ IFA topical safe, inducing both humoral
and CD4+ T cell responses,
insufficient to induce consistent
NY-ESO-1-specific CD8+ T-cell
responses

NCT00821652 (206)

TLR8 Motolimod VTX-378, VTX-
2337

II epithelial
ovarian cancer,
fallopian tube
cancer or
primary
peritoneal
cancer

+ chemotherapy subcutaneous no improvement of clinical
outcomes with adding
Motolimod compared to
placebo, subpopulation with ISR
had longer OS compared to
those without ISR in motolimod
treated group

NCT01666444 (207)

II SCCHN + chemotherapy
+ Cetuximab

intravenous no improvement in PFS or OS,
whereas significant benefit in
HPV-positive patients and those
with ISR

NCT01836029 (208)
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TLR Drug
name

Other name Phase Indication Therapeutic
strategy

Route Results Trial
number

Reference

I/II ovarian cancer + Durvalumab +
chemotherapy

subcutaneous NCT02431559

I squamous cell
carcinoma

± anti-PD-1
(Nivolumab)

subcutaneous/
intratumoral

NCT03906526

I SCCHN + Cetuximab subcutaneous enhanced NK cell
responsiveness by adding VTX-
2337

NCT01334177 (209)

I ovarian tumors + chemotherapy subcutaneous no dose-limiting toxicities, 2
subjects (15%) with complete
responses, 7 subjects (53%) with
disease stabilization

NCT01294293 (210)

TLR9 SD-101 I/II lymphoma + Ipilimumab +
RT

intratumoral NCT02254772

I/II solid tumors;
lymphoma

+ Epacadostat +
RT

intratumoral NCT03322384

CMP-001 Vidutolimod I melanoma +
Pembrolizumab

subcutaneous/
intratumoral

NCT03084640

I NSCLC + Atezolizumab
+ RT

subcutaneous NCT03438318

CpG7909 PF-03152676 I/II Mantle cell
lymphoma

+ vaccine+
autologous ACT
+ Rituximab +
chemotherapy +
Filgrastim

subcutaneous safe, inducing antitumor CD8 T
cell immune responses in 40%
of patients, which were
associated with favorable
clinical outcomes

NCT00490529 (211)

CpG7910 I/II recurrent
lymphomas

+ local RT intratumoral inducing systemic tumor-
reactive memory CD8+ T cells

NCT00185965 (212)

Tilsotolimod IMO-2125 I refractory solid
tumors

single use intratumoral well tolerated, inducing immune
checkpoint upregulation,
activation of dendritic cells, and
induction of Type 1 IFN
signaling.

NCT03052205 (213)

Lefitolimod MGN1703 II small-cell lung
cancer

+ chemotherapy
(platinum-
based)

subcutaneous well tolerated, no significance
difference induced in main
efficacy end point OS by
lefitolimod

NCT02200081 (214)

EMD 1201081 II SCCHN + Cetuximab subcutaneous lack of clinical efficacy NCT01040832 (215)

DV281 I NSCLC + Nivolumab inhalation well tolerated NCT03326752 (216)

Multi-TLRs

TLR2,
4

OM-174 I solid tumors single use intravenous well tolerated, 3/17 patients had
4 month disease stablization

NCT01800812 (217)

TLR2,
4, 9

BCG Bacille
Calmette-
Guérin,
Mycobacterium
bovis

II bladder
carcinoma

+ Lenalidomide intravesical NCT01373294

II bladder
carcinoma

+ vaccine intravesical NCT02015104

II lower urinary
tract urothelial
carcinoma

+ Sunitinib intravesical combination therapy associated
with less recurrence and
progression, no serious adverse
effects

NCT00794950 (218)

I/II bladder
carcinoma

+ Atezolizumab intravesical NCT02792192

I bladder
carcinoma

+ Rapamycin intravesical well-tolerated, combination
thereapy enhancing BCG-
specific gd T cell immunity and
increasing urinary cytokines

NCT02753309 (219)
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TLR Drug
name

Other name Phase Indication Therapeutic
strategy

Route Results Trial
number

Reference

TLR3,
TLR7/
8

poly-ICIC;
resiquimod

Hiltonol; R848,
S28463

I/II advanced tumor
refractory to
conventional
treatment

+ vaccine epidermal
topical/
subcutaneous

safe, inducing both NY-ESO-1-
specific humoral and cellular
immunity in NY-ESO-1
expressing patients, disease
stabilization or tumor
regression observed

NCT00948961 (220)

TLR3,
TLR7

poly-ICLC;
imiquimod

Hiltonol; R837,
Aldara

I glioblastoma + autologous
glioma lysate-
pulsed DC

intradermal safe, mesenchymal gene
expression profile associated
with responsiveness to
immunotherapies

NCT00068510 (221)

TLR4,
9

AS-15 MPL, QS-21,
CpG ODN

II metastatic
melanoma

+ vaccine +
high-dose IL-2

intramuscular 25% response rate; similar
toxicity to high-dose IL-2
therapy alone; increased
infiltrating T cells in the
untreated tumor correlates with
patient responsiveness

NCT01266603 (222)
Frontie
rs in Immuno
logy
 15
 fro
ACT, adoptive cell therapy; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; Autologous hematopoietic stem cell transplant (HSCT); CIN, Cervical intraepithelial
neoplasia; CLL , Chronic lymphocytic lymphoma; DCIs, donor lymphocyte infusions; HSIL, High Grade Squamous Intraepithelial Lesion; ICB, immunocheckpoint blockade; IFA,
incomplete freund’s adjuvant; ISR, injection site reactions; NSCLC, non-small cell lung cancer; RFA, Radiofrequency ablation; RT, radiotherapy; SCCHN, squamous cell cancer of the head
and neck; VIN, Vulvar Intraepithelial Neoplasias.
TABLE 3 Active and currently recruiting clinical trials incorporating TLR agonism.

TLR Drug
name

Other name Phase Indication Therapeutic
strategy

Route Status Trial
number

Reference

TLR2 XS15 I CLL ± multi-peptide
vaccine + Ibrutinib

n.a. recruiting NCT04688385

1928T2z
CAR-T cells

WZTL002-1 I B-cell lymphoma single use intravenous recruiting NCT04049513

TLR3 Poly ICLC Hiltonol II brain tumors + vaccine n.a active,
not
recruiting

NCT01204684

I/II melanoma + vaccine+Tetanus
peptide ± IFA

intradermal/
subcutaneous

active,
not
recruiting

NCT02126579

I/II recurrent ovarian,
fallopian tube, or primary
peritoneal cancer

+ vaccine+
GuaDecitabine +
Atezolizumab

subcutaneous active,
not
recruiting

NCT03206047

I/II B-cell Lymphoma + rhuFlt3L/CDX-301
+ RT

intratumoral recruiting NCT01976585

I/II melanoma + vaccine +aCD40 Ab subcutaneous/
intradermal

recruiting NCT04364230

I/II metastatic colon cancer + Pembrolizumab intramuscular recruiting NCT02834052

I multiple myeloma + vaccine+
Citarinostat ±
Lenalidomide

n.a. recruiting NCT02886065

I breast carcinoma + vaccine +
Durvalumab

intramuscular active,
not
recruiting

NCT02826434

I breast carcinoma + vaccine +
Pembrolizumab

n.a. active,
not
recruiting

NCT03362060

(Continued)
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TABLE 3 Continued

TLR Drug
name

Other name Phase Indication Therapeutic
strategy

Route Status Trial
number

Reference

I glioma + a peptide vaccine ±
aCD27 Ab

subcutaneous active,
not
recruiting

NCT02924038

I glioma + a peptide vaccine n.a. active,
not
recruiting

NCT02960230

I glioma + vaccine + surgery subcutaneous active,
not
recruiting

NCT02549833

I lung cancer + vaccine subcutaneous active,
not
recruiting

NCT03300817

I prostate cancer + surgery intramuscular recruiting NCT03262103

Rintatolimod Ampligen, Atvogen I/II recurrent platinum-
sensitive ovarian cancer

+ Pembrolizumab+
chemotherapy

intraperitoneal recruiting NCT03734692

I/II cancer patients with mild
or moderate COVID-19
infection

+ IFN a-2b recruiting NCT04379518

BO-112 II melanoma + Pembrolizumab intratumoral active,
not
recruiting

NCT04570332

TLR7 Imiquimod R837, Aldara,
UGN-201

III anal intraepithelial
neoplasia (HIV patients)

single use topical recruiting NCT02059499

III basal cell carcinoma + curettage topical active,
not
recruiting

NCT02242929

III basal cell carcinoma at
high risk (prevention
study)

single use topical not yet
recruiting

NCT05212246

II basal cell carcinoma + sonidegib ± surgery topical recruiting NCT03534947

II CIN single use/ + vaccine topical recruiting NCT02864147

II CLL + vaccine +
Lenalidomide

topical recruiting NCT02802943

I bladder cancer + surgery intravesical recruiting NCT05055050

I recurrent bladder cancer + zalifrelimab Intravesical recruiting NCT05375903

I CIN + chemotherapy topical active,
not
recruiting

NCT03196180

I oral cancer single use topical recruiting NCT04883645

I solid tumors + ultrasound ablation
± Pembrolizumab/
Atezolizumab

topical recruiting NCT04116320

I solid tumors + vaccine topical recruiting NCT03872947

I squamous cell carcinoma + chemotherapy topical recruiting NCT03370406

I melanoma + vaccine +
Toripalimab + GM-
CSF

topical recruiting NCT04072900

I melanoma + Pembrolizumab topical active,
not
recruiting

NCT03276832

I recurrent glioblastoma + vaccine + hP1A8 topical active,
not
recruiting

NCT04642937 (223)

I topical NCT04808245
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TABLE 3 Continued

TLR Drug
name

Other name Phase Indication Therapeutic
strategy

Route Status Trial
number

Reference

glioma (Newly Diagnosed
H3-mutated Glioma)

+ vaccine +
Atezolizumab

not yet
recruiting

SHR2150 I/II metastatic solid tumor + chemotherapy +
anti-PD-1 ab + /anti-
CD47 ab

oral recruiting NCT04588324

DSP-0509 I/II neoplasms ± Pembrolizumab intravenous recruiting NCT03416335

BNT411 I/II solid tumors ± chemotherapy ±
Atezolizumab

intravenous recruiting NCT04101357

RO7119929 I/II HCC, biliary tract cancer,
secondary liver cancer

± Tocilizumab oral active,
not
recruiting

NCT04338685

LHC165 I solid Tumors ± PDR001 intratumoral active,
not
recruiting

NCT03301896

RNA-
lipoplexes

RNA-LPX I melanoma patients single use intravenous active,
not
recruiting

NCT02410733 (116)

TLR7/
8

Resiquimod R848; S28463 II brain tumors + vaccine n.a active,
not
recruiting

NCT01204684

I/II melanoma + vaccines ± IFA intradermal/
subcutaneous

active,
not
recruiting

NCT02126579

TransCon prodrug of
resiquimod

I/II solid tumors ± Pembrolizumab intratumoral recruiting NCT04799054

BDC-1001 I/II HER2 positive solid
tumors

+ vaccine ±
Pembrolizumab

n.a recruiting NCT04278144

BDB001 I solid tumors single ±
Pembrolizumab

n.a active,
not
recruiting

NCT03486301

I solid tumors + Atezolizumab n.a active,
not
recruiting

NCT04196530

BDB018 I advanced solid tumor ± Pembrolizumab n.a recruiting NCT04840394

TLR8 sbt-6050 I HER2 positive solid
tumors

± Pembrolizumab n.a active,
not
recruiting

NCT04460456

TLR9 SD-101 II prostate cancer + Pembrolizumab +
radiation

intratumoral recruiting NCT03007732

I/II lymphoma + Ibrutinib + RT intratumoral active,
not
recruiting

NCT02927964

I lymphoma + BMS-986178 + RT intratumoral active,
not
recruiting

NCT03410901

I pancreatic
adenocarcinoma

+ Nivolumab +
radiation

intratumoral active,
not
recruiting

NCT04050085

I solid malignancies + BMS 986178 intratumoral active,
not
recruiting

NCT03831295

I liver metastatic uveal
melanoma

+ Nivolumab/
Ipilimumab

pressure-enabled
hepatic artery
infusion/
intrahepatic

recruiting NCT04935229
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TABLE 3 Continued

TLR Drug
name

Other name Phase Indication Therapeutic
strategy

Route Status Trial
number

Reference

Tilsotolimod IMO-2125 II malignant melanoma single use intradermal recruiting NCT04126876

II solid tumors + Ipilimumab +
Nivolumab

intratumoral active,
not
recruiting

NCT03865082

I advanced solid
malignancies

+ Ipilimumab +
Nivolumab

intratumoral active,
not
recruiting

NCT04270864

CMP-001 Vidutolimod, ARB-
1598, CMP-001,
CYT-003

III multiple types of tumors + Avelumab +
Utomilumab +
PF04518600

subcutaneous/
intratumoral

recruiting NCT05059522

II/III melanoma + Nivolumab intratumoral active,
not
recruiting

NCT04695977

II advanced cancer + Avelumab +
Utomilumab + PF-
04518600

n.a active,
not
recruiting

NCT02554812

II melanoma + Nivolumab subcutaneous/
intratumoral

recruiting NCT04401995

II melanoma + surgery +
Pembrolizumab

subcutaneous recruiting NCT04708418

II squamous cell carcinoma
of head and neck

+ Pembrolizumab subcutaneous/
intratumoral

active,
not
recruiting

NCT04633278

II melanoma + Nivolumab intratumoral active,
not
recruiting

NCT04698187

II multiple tumor types + Cemiplimab-rwlc subcutaneous/
intratumoral

recruiting NCT04916002

II Triple Negative Breast
Cancer

+ RT subcutaneous recruiting NCT04807192

II melanoma, lymphnode
cancer

+ Nivolumab intratumoral active,
not
recruiting

NCT03618641

I/II advanced pancreatic
cancer and other solid
tumors

+ Ipilimumab subcutaneous/
intratumoral

recruiting NCT04387071

I/II lymphoma + Pembrolizumab intratumoral recruiting NCT03983668

I colorectal neoplasms
malignant, liver
metastases

+ Nivolumab+
Ipilimumab ± RT

subcutaneous+
intratumoral

Active,
not
recruiting

NCT03507699

I melanoma + Pembrolizumab intratumoral active,
not
recruiting

NCT02680184

DUK-CPG-
001

II myeloid malignancies,
lymphoid malignancies

+ NK cell enriched
DCIs

intravenous recruiting NCT02452697

Lefitolimod MGN1703 I advanced cancers,
melanoma

+ Ipilimumab subcutaneous active,
not
recruiting

NCT02668770

TLR2,
4, 9

BCG Bacille Calmette-
Guérin,
Mycobacterium
bovis

III bladder carcinoma single use intravesical/
intradermal

active,
not
recruiting

NCT03091660

II bladder carcinoma + Nivolumab ± BMS-
986205

intravesical active,
not
recruiting

NCT03519256

II bladder carcinoma intravesical recruiting NCT03022825
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TLR expression varies among distinctive species. For

example, in humans, TLR9 is primarily expressed in B cells,

whereas in mice, it can be found in B cells, monocytes,

macrophages, and plasmacytoid DCs (pDCs) (246). Thus,

cross-species interpretation of TLR research data should be

carried out with caution.

Cell differentiation and activation status can also influence TLR

expression. The differentiated human monocytic cell line THP-1

expresses increased TLR1, 4, 6, 7, 8, and MyD88 compared to

undifferentiated THP-1 cells (33). E. coli-stimulated monocytes and

granulocytes present different expression profiles of TLR1-10 (237).

Phorbol myristate acetate/ionomycin-activated cytotoxic T cells

(CTLs) showed increased TLR2 expression compared to

unstimulated CTLs (247).

Ligands are another major factor affecting TLR expression. A

specific TLR agonist may influence the expression of the TLR

that it is ligating to and other TLRs as well. For example, the

TLR4 agonist LPS elevated TLR1-8 expression in THP-1 cells,

not just TLR4 (237). In addition, different ligands may

differentially regulate the expression of a particular TLR.

While TLR3 expression is upregulated by LPS, it is down-

regulated by synthetic bacterial lipopeptide - a TLR2 agonist

(237). Hence, cell localization related to potential ligand

accessibility can impact TLR expression (39). As the case with

TLR2 expression in B cells, only a restricted portion of

peripheral blood B cells express TLR2 (248), but different

developmental stages of tonsillar B cells all express TLR2 (249).

Cytokines are also engaged in the regulation of TLR

expression. Many cytokines have been reported to increase

TLRs expression level, including IL-6 and IFN-g (237).
TLR activation can initiate negative feedback on TLR

expression (237), and there is also internal balance among

different expression of different TLRs (250, 251).
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The factors discussed above indicate a complex network

regulating TLR expression. This results in varied spectrums of

TLR expression in respective cell groups and varied TLR-

mediated responses, contributing to the heterogeneity of

neoplasia, while also providing the basis for understanding the

evidence for both anti-tumor and pro-tumor TLR-mediated

activities. TLRs expressing in cancer cells could lead to tumor

cell proliferation and induce cytokines that suppress immune

activities; TLRs expressing on immune cells, however, could

elicit Th1-based immunity, immune memory, and suppress

tumor metastasis (252). The TLR expression in different tumor

tissues is associated with patients’ outcome. Urban-Wojciuk

et al. (252) have reviewed the association. In their review, the

same TLR expressing in different types of cancers, could show

opposite clinical correlations. TLR5, 7, 8, and 9 correlate with

better clinical outcomes (high immune cell marker expression

and/or longer survival), while TLR4, 7, and 9 are associated with

poorer outcomes (advanced tumor stage, poor differenciation,

and shorter survival) (252).
Recent advances of TLR-targeted
tumor therapies

TLR-targeted therapies exert anti-tumor effects mainly by

exploiting the potential of TLRs in the enhancement of both

innate and adaptive immunity, and the induction of apoptosis in

TLR-expressing tumor cells (41).

In this section, we introduce advances in pre-clinical (mainly

from the past decade) as well as clinical research in tumor

therapies targeting TLR. The TLR-targeting strategies and

treatment modalities applied in both pre-clinical and clinical

tumor therapeutic studies are summarized in Figure 2.
TABLE 3 Continued

TLR Drug
name

Other name Phase Indication Therapeutic
strategy

Route Status Trial
number

Reference

+ ALT803, an IL-15
superagonist

I/II bladder carcinoma + ALT803 intravesical recruiting NCT02138734

I/II bladder carcinoma + Durvalumab intravesical recruiting NCT03317158

I bladder carcinoma + Pembrolizumab intravesical active,
not
recruiting

NCT02808143

I liver metastatic colorectal
cancer

+ chemotherapy+RFA
+ GM-CSF

intralesion not yet
recruiting

NCT04062721

TLR3,
TLR7/
8

poly-ICIC;
resiquimod

Hiltonol; R848,
S28463

I/II melanoma + vaccine +Tetanus
peptide ± IFA

intradermal/
subcutaneous

active,
not
recruiting

NCT02126579
fro
ACT, adoptive cell therapy; ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; Autologous hematopoietic stem cell transplant (HSCT); CIN, Cervical intraepithelial
neoplasia; CLL , Chronic lymphocytic lymphoma; DCIs, donor lymphocyte infusions; HSIL, High Grade Squamous Intraepithelial Lesion; ICB, immune checkpoint blockade; IFA,
incomplete freund’s adjuvant; ISR, injection site reactions; NSCLC, non-small cell lung cancer; RFA, Radiofrequency ablation; RT, radiotherapy; SCCHN, squamous cell cancer of the head
and neck; VIN, Vulvar Intraepithelial Neoplasia.
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Pre-clinically, classic TLR agonists are being further

explored in novel treatment strategies, and newly synthesized

or naturally extracted TLR-stimulating agents are reported for

improved immune activation ability and lowered toxicity; novel
Frontiers in Immunology 20
strategies of TLR agonism, aside from TLR agonists, have also

been investigated (Table 1).

There have been many clinical trials completed involving

TLRs, and some with promising results (Table 2). The ongoing
FIGURE 2

TLR-targeting Strategies and Combined Treatment Modalities in Tumor Therapies Current strategies targeting TLRs in tumor therapies
encompass the development of novel TLR agonists, inactivated virus, engineered bacteria, functional RNAs expressing the TLR and/or its ligand,
vaccine conjugates, modified T cells with active motifs of the TLR, and TLR antagonism. There is a trend of incorporating nanotechnology into
TLR drug manufacturing and delivery to improve treatment efficacy and safety. Increasing evidence demonstrates the insufficiency of single
intervention in circumventing immunosuppression incurred by tumor progression, hence leading to both pre-clinical and clinical research
focusing on multi-agent and multi-modality treatment. (This figure is created with BioRender.com)
frontiersin.org

BioRender.com
https://doi.org/10.3389/fimmu.2022.1049340
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.1049340
clinical trials are continuously pushing the boundary of TLR-

targeted therapy from bench to bedside (Table 3). Recent

advances in clinical trials focusing on therapeutic interventions

of tumors were summarized from critically reviewing

clinicaltrials.gov and ncbi.nlm.nih.gov/pubmed.
TLR 2

In tumors, TLR2 has been found to enhance T cell immunity

(253, 254) and suppress the accumulation of immunosuppressive T

regulatory cells (Tregs) (62) and MDSCs (255). TLR2 also induces

the anti-tumorM1-like macrophage polarization (66). The immune

stimulating potential of TLR2 has been utilized in both basic and

clinical therapeutic research.

Recently, there has been pre-clinical data (Table 1)

demonstrating tumor inhibition effects by different TLR2L,

including triacylated lipopeptides, synthetic chemical compounds,

glucomannan polysaccharide, naturally extracted compound, and

inactivated virus. In those studies, TLR2Ls are either investigated

alone or in combination with tumor vaccines, immune checkpoint

inhibition (ICB), chemotherapy, photodynamic therapy(PDT), or

adoptive cell transfusion (ACT). In general, enhanced immune

activation and suppressed tumor cell viability were observed in

these studies (Table 1).

The number of clinical trials with sole TLR2 agonism in

tumor immunotherapy is limited. It is noteworthy that

Amplivant, the modified Pam3CSK4, can conjugate synthetic

long peptides (SLPs) and elicit stronger DC and T cell

stimulation in preclinical models compared to Pam3CSK4

(63). In 2021 the first-in-human phase I clinical trial

NCT02821494 showed HPV16 E6 SLP-conjugated Amplivant

induced robust HPV16-specific T cell immunity with good

safety profile (187).XS15 is a TLR1/2 agonist, applied as an

adjuvant to a multi-peptide vaccine scheme is in currently active

phase I trial NCT04688385 (256).

TLR2 agonism has been applied in chimeric antigen receptor T

cell (CAR-T) technology. In trial NCT02822326, a TLR2 Toll/IL-1

domain is incorporated in CAR-T, and the results showed that the

tumor-targeting CD19-CAR-T2 cells augmented anti-leukemia

responses in relapsed or refractory B cell acute lymphoblastic

leukemia (B-ALL) patients with extramedullary involvement,

competent in the eradication of extramedullary leukemia cells

(257). Another similar phase I trial NCT04049513 is currently

investigating the efficacy of 1928T2z CAR-T cells in treating B

cell lymphoma.

In general, the Amplivant-SLP compounds are promising for

further research for their early clinical data in terms of safety and

efficacy of immune stimulation. Also, they have a great potential in

treating different tumors as SLPs can be highly variable.

Clinical trials with multi-TLR activation, including TLR2,

are discussed in the below sections.
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TLR 3

TLR3 actively regulates multiple aspects of tumor

development. Either directly or indirectly, TLR3 triggers both

innate and adaptive immune responses (258, 259);, it suppresses

tumor cell proliferation and promotes tumor cell apoptosis

(260–262); it regulates tumor angiogenesis (263); it has also

been found to enhance chemosensit ivi ty (70) and

radiosensitivity (264). By initiating these mechanisms, TLR3

agonists have shown promising therapeutic value.

In recent years, pre-clinical investigations of TLR3-targeted

therapy (Table 1) have focused on combination therapy of TLR3

agonism with other treatment modalities, including

chemotherapy, tumor vaccines, and ICB. There have also been

studies examining nanoparticle incorporated TLR3 targeted

therapies. Poly (I:C) has been used in most studies as the

TLR3-targeting agent, while ARNAX, a new DNA-capped

dsRNA, has also been applied. These treatment strategies aim

to improve immune stimulation and reduce treatment side

effects, thus achieving better therapeutic results.

Three TLR3 agonists, Poly ICLC (Hiltonol), Rintatolimod

(Ampligen), and BO-112 have progressed for assessment in

clinical trials (Tables 2 and 3) as cancer treatments.

Poly ICLC is carboxymethylcellulose, polyinosinic-

polycytidylic acid, and poly-L-lysine double-stranded RNA,

administratedintratumorally (i.t.), intramuscularly (i.m.), or

subcutaneously (s.c.) in cancer treatments of different

malignant stages, including primary, recurrent, and metastatic.

The various types of cancer involved range from hematopoietic

malignancies, skin cancers, sarcoma, squamous cell carcinomas,

breast cancer, neurological malignancies, gastroenterological

tumors, female reproductive tract malignancies, and urinary

tumors (Tables 2 and 3). In these cancer treatments, Poly

ICLC is mostly used in combination with traditional therapies

(surgery, chemotherapy, or radiotherapy), immunotherapies

(tumor vaccine, immune co-stimulation, or ICB), or other

synthesized anti-tumor agents. Most of the trials are active or

undergoing recruitment. One completed phase II trial

(NCT02423863) aiming at multiple solid tumors applied Poly

ICLC intratumorally (i.t.) or intramuscularly (i.m.), showing

good tolerability with local and systemic immune responses,

achieving clinical benefit (188). Two trials investigating

melanoma have also been completed with available results: in

phase I/II trial NCT01079741, poly ICLC was combined with

NY-ESO-1 protein vaccine and Montanide to treat melanoma,

effectively activating humoral and T cell immunity in patients. In

phase I trial NCT01585350, poly ICLC together with peptide

vaccine and incomplete Freund’s adjuvant (IFA) markedly

enhanced T cell responses (190). Phase I trial NCT01834248

also combined poly ICLC with NY-ESO-1 vaccine and

Decitabine in treating myelodysplastic syndrome, which

showed success in the induction of NY-ESO-1-specific
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cytotoxic CD4+ and CD8+ T cells as well as CD141Hi cDCs

(265). The completed phase I trial NCT03380871 combined

Hiltonol with a tumor vaccine, pembrolizumab, and

chemotherapy to treat NSCLC, which showed a good safety

profile and immune stimulation. Two completed phase I trials

investigating either Hiltonol combined with tumor vaccines

(NCT02721043) or Hiltonol with a tumor vaccine and

Nivolumab (NCT02897765), all showing good treatment safety

profile and immunogenicity. In particular, the latter treatment

strategy induced intra-tumoral chemotaxis of cytotoxic T cells

(191). The phase I trial NCT02544880 recently completed, where

Hiltonol and Mucin1 were combined to make the MUC1

vaccine; together with influenza vaccine and PDE5 inhibitor

Tadalafil, MUC1 vaccine has been used to treat solid tumors.

Published interim results showed that the combination of MUC1

vaccine and Tadalafil was well tolerated and induced immune

activation in HNSCC patients, despite the implication of

immune evasion after the treatment was also observed (192).

However, trial NCT01532960, where Hiltonol was combined

with a tumor vaccine in treating breast cancer, was terminated

due to the lack of immune stimulation by of Hiltonol for the

vaccine (266). Phase II trial NCT02873819, phase I/II trial

NCT02643303, and phase I trial NCT03358719 usingHiltonol

in combinatory cancer therapies have recently closed, and are

awaiting results. In general, Hitonol is well tolerated and can

induce immune responses; however, there is a lack of robustdata

presenting its competence in bringing clinical benefit.

Rintatolimod is a modified poly (I:C), PolyI: PolyC12U,

administratedintravenously (i.v.) or intraperitoneally (i.p.) in

gynecological cancers, breast cancer, and colorectal

carcinoma. In clinical trials, Rintatolimod is applied used in

combination with chemotherapy, a tumor vaccine, ICB, or

other immune-modulatory therapies. Phase I/II trial

NCT01312389 and phase II trial NCT03403634 using

Rintatolimod have been completed, however the results are

not yet publicly available.

BO-112 is a nanoplexed form of poly (I:C), which is

current ly under inves t iga t ion in melanoma wi th

pembrolizumab (NCT04570332).

In conclusion, pre-clinical data of TLR3 agonists provide

promising perspectives for them to move from bench to bedside,

yet more research and trials are needed in optimizing TLR3Ls’

clinical effectiveness.
TLR 4

In tumor studies, TLR4 has been reported to enhance the

function of antigen-presenting cells (APCs) (267), increase the

production of pro-inflammatory cytokines as well as IFNs (268–

270), and boost cytotoxic responses of CTLs and NK cells (267,

271). These immune stimulating mechanisms can be initiated by

TLR4 agonists in cancer treatment.
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Recently, lipopolysaccharide, lipid A derivatives,

polysaccharides, and protein TLR4 agonists were investigated

in therapeutic studies (Table 1). These TLR4 agonists have been

mostly used in combination with tumor vaccines, including

DNA-, peptide- and DC-based vaccines; they have also been

used in combinationwith radiotherapy and different kinds of

immune-stimulating agents. Notably, many TLR4 agonists are

engineered into nanoparticles, which have improved drug

delivery efficiency and reduced off-target effects (88–91).

Several TLR4 agonists have completed clinical studies

(Table 2), including LPS, GLA-SE(G100), IDC-G305,

GSK1795091 (CRX-601), and the TriMix DC vaccine.

The completed phase I trial NCT01585350, investigated LPS

in combination with a peptide vaccine and incomplete Freund’s

adjuvant (IFA) to treat melanoma, which showed that this

treatment was well tolerated and stimulated marked T cell

responses (190).

GLA-SE is a glucopyranosyl lipid A-stable oil-in-water

emulsion, tested in lymphoma, skin cancers, sarcoma, lung

cancer, and colorectal cancer, either applied alone or in

combination with surgery, chemotherapy, radiotherapy, ICB,

or a tumor vaccine. In these trials, GLA-SE is administered i.t. or

i.m. A phase I trial NCT02035657 applying GLA-SE in treatment

against Merkel cell carcinoma has been completed. Treatment

withintratumoral GLA-SE as an adjuvant to surgery and

radiotherapy demonstrated safety and feasibility in Merkle cell

carcinoma with increased intratumoral infiltration of CD8+ and

CD4+ T cells, activation of immune-related genes, and local

tumor regression (193).

IDC-G305 is a combination of NY-ESO-1 recombinant

protein and GLA-SE, that has been tested in melanoma,

ovarian cancer, renal cell cancer, and non-small cell lung

cancer(NSCLC) (NCT02015416). This phase I trial showed

that intramuscular administration of IDC-G305 was well-

tolerated and can generate antigen-specific immunity (195).

On the contrary, another two phase I trials NCT02387125 and

NCT02609984, where NY-ESO-1 recombinant protein-GLA-SE

was used with a DC-targeting tumor vaccine in treating solid

tumors including sarcoma, melanoma, NSCLC, and ovarian

cancer, were terminated because of lack of efficacy.

GSK1795091, a synthetic aminoalkyl glucosaminide 4-

phosphate, in conjunction with anti-PD-1 pembrolizumab was

investigated in advanced solid tumor treatment in trial

NCT03447314; the results of this trial are yet to come.

TriMix DCs are autologous DCs incorporating mRNA

encoding, CD40 ligand, CD70, and a constitutively active

TLR4. The phase I/II trial NCT01530698 showed TriMix DCs,

further electroporated with a tumor antigent encoding mRNA,

administered intranodally, was safe but with only narrow

immunological and clinical response.

In general, recent clinical trials usingTLR4 agonists did show

clinical or immune stimulating efficacy in solid tumor treatment.

However, there are contradictory results about the same agent in
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different trials. For those agents that showed promising results in

early phase trials, future studies should pay attention to the

optimal treatment conditions, including the therapy

combination strategy and the route of administration.
TLR 5

TLR5 can be activated by bacterial flagellin and plays a key

role in the immune homeostasis of pathogen-host interactions

(272, 273). In addition, TLR5 is associated with decreased tumor

cell proliferation, invasion, and metastasis (274, 275). Several

drugs targeting TLR5 are under investigation.

Recently, protein-based TLR5 agonists have been investigated

pre-clinically: in combination with a tumor vaccine (96),

incorporated into the adoptive cell therapy (97), or used alone

(98). All yielded enhanced therapeutic effects (Table 1).

Entolimod and Mobilan are administrated in two phase I

trials (Table 2). Entolimod, namely, CBLB502 is a derivative of

Salmonella flagellin. In trial NCT01527136, i.m. or s.c.

administration of Entolimod was usedto treat locally advanced

or metastatic solid tumors that cannot be removed by surgery.

Results of this trial are yet to be available. While having the

advantage of avoiding the dangerous inflammatory “cytokine

storm” (276), Entolimod has a drawback that it can induce a

rapid antibody neutralization (277),leading to its efficacy

limitation. Pharmacological modification could be one solution

to this problem. Mett et al. (277) identified and eliminated the

epitopes leading to Entolimod’s neutralizing immunogenicity

and refined its structure to get GP532 as a new TLR5 agonist.

GP532 reduced neutralizing antibody response while preserving

pro-inflammatory capacity. However, the anti-tumor potential

of GP532 has not been verified in any therapeutic studies yet.

To extend the application of TLR5 agonism in TLR5

negative tumors, an adenovirus carrying TLR5 receptor and its

agonist’s gene called Mobilan (M-VM3) was designed (276). In

preclinical prostate cancer models, Mobilan displayed promising

therapeutic efficacy (276).In phase I clinical trial NCT02654938,

Mobilan was used intratumorally to treat prostate cancer; no

results are available yet. A similar study showed Mobilan was

well-tolerated in prostate cancer patients (278); however, more

data is needed to verify its clinical benefit.
TLR 7 and TLR 8

TLR 7 and 8 serve as important sentinels in response to

infection, which makes them irreplaceable in the activation of

mammalian innate immune cells (279). These two receptors

have also been found to participate in the regulation of the host

adaptive immunity (280–283). The emergence of novel small

molecular agents targeting these two receptors in the last decade
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has greatly facilitated cancer immunotherapy studies by

adopting their immune activation potential.

Since many agonists exert dual activation to both TLR7 and

TLR8, we will summarize TLR7 and TLR8 agonists together in

one section.

Following pre-clinical investigations TLR7 or TLR7/8

agonists can be classified by molecular nature into

imidazoquinoline and its derivatives, novel synthetic small

molecules, and RNA-based agents (Table 1). These agonists

are studied either with traditional therapies, such as

chemotherapy, radiotherapy, surgery, or novel therapies, such

as tumor vaccines, immune checkpoint blockade, adoptive cell

therapy, and photothermal therapy (Table 1). It is noteworthy

that nanotechnology has become a hot research topic in the drug

delivery of therapies applying TLR7/8 agonists. TLR7/8 agonists

are incorporated into multi-functional nanoparticles that

overcome drug solubility limitations (120, 122) or improve

tumor-specific environment-targeting ability (115, 124, 125),

thus improving drug delivery efficiency.

A number of TLR7 agonists that have undergone clinical

investigation include imiquimod, TMX-101, RNA-LPX,

BNT411, DSP-0509, LHC165, SHR2150, TQ-A3334, and

RO7119929 (Tables 2 and 3).

Imiquimod has already been clinically applied in the

treatment for genital warts (284), low-risk superficial basal cell

carcinoma (285), and Bowen’s disease (cutaneous squamous cell

carcinoma in situ) (286).In clinical trials initiated in the decade,

Imiquimod has been utilized in a wide range of clinical trials

targeting different tumor types. There are studies attempting to

widen the utilization of Imiquimod based on the current

standard of care.

Many clinical studies of Imiquimod focus on Skin cancer. In

basal cell carcinoma, a phase III trial (NCT05212246) is going to use

Imiquimod as a single treatment in high risk populations to prevent

tumor occurrence; imiquimod is also applied in two active trials in

combination with curettage (NCT02242929, phase III), and

sonidegib together with surgery (NCT03534947, phase II) to treat

basal cell carcinoma. In an active phase I trial (NCT03370406),

Imiquimod together with 5-fluorouracil is applied to treat

squamous cell carcinoma. Two active phase I trial are

investigating melanoma, where Imiquimod is combined with

either Pembrolizumab(NCT03276832) or tumor vaccine

(NCT04072900). A completed phase III trial NCT02385188

found imiquimod together with paracetamol and lidocaine

induced 82.6% response rate in vulvar Paget disease but 80% of

patients needed painkiller to mitigate side effects (197).

Imiquimod is also studied in intraepithelial neoplasia. In

grade 2/3 cervical intraepithelial neoplasia (CIN), a phase II/III

trial (NCT02130323) showed that Imiquimod induced lower

HPV clearance rate compared to large loop excision (43% vs

64%), which made conization remain the standard care when

intervention is needed (199).However, trial NCT03233412
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showed that when adjuvant to the loop excision procedure,

weekly application of imiquimod can promote regression of

high-grade squamous intraepithelial lesions (200). Two active

trials are investigating Imiquimod combining HPV vaccine

(phase II, NCT02864147) or topical Fluorouracil (phase I,

NCT03196180) in treating CIN2/3. In vaginal intraepithelial

neoplasia (VIN), the results of the phase III trial

NCT01861535demonstrated that: Imiquimod is safe and

effective in treating VIN and should be considered as a first-

line treatment alternative to surgery (198).In the active phase III

trial NCT02059499, single use of Imiquimod is applied in HIV

patients who have anal intraepithelial neoplasia.

In glioma, results of phase I trial NCT02454634 recently

published in Nature (202) showed that topical Imiquimod

combined with IDH1 peptide vaccine induced 93.3% immune

responses in IDH1R132H-mutated patients while adverse effects

are within grade I. The immune responses induced by the treatment

were represented by enhanced IL-17 production and increased

IDH1-specific T cells (202). Trial NCT00899574 focused on breast

carcinoma; the results showed that single topical use of imiquimod

proved beneficial for breast cancer metastasis to skin/chest wall and

has been well-tolerated; additionally, this trial proved that

imiquimod could induced a pro-immunogenic TME (201). There

are also completed phase I/II trials using Imiquimod with

radiotherapy, chemotherapy or tumor vaccine to treat breast

cancer (NCT01421017, NCT02276300).

In prostate cancer, Imiquimod is applied topically with

different tumor vaccines (NCT02293707, NCT02234921). The

phase II trial NCT02293707 showed the combination of

Imiquimod, telomerase peptide-based vaccine, and Montanide

ISA-51 VG was safe in prostate cancer patients. The number of

treatments was positively associated with immunological

response (204). Bladder cancer is another type of malignancy

where Imiquimod displayed its therapeutic potential. TMX-101

is the intravesical formulation for Imiquimod; single use of

TMX-101 induced significant increase in urinary cytokines,

including IL-6, IL-18, IL-1b, IL-1 receptor antagonist (IL-1ra),

and vascular endothelial growth factor (VEGF), in non-muscle

invasive bladder cancer, despite accompanied with mild adverse

effects (phase II, NCT01731652) (205).

In general, Imiquimod showedits potential in cancer

treatment, and also an increasing number of active trials using

it has been initiated.

A trial with RNA-LPX (NCT02410733) showed early results

with effective quick induction of IFNa and IP-10, and the induction

of de novo antigen-specific T-cell responses. In this study, i.v.

administration of RNA-LPX proved to be well-tolerated (116).

SHR2150 and RO7119929 are oral TLR7 agonists, currently in

trials in combination with other therapies inmetastatic solid tumors

(SHR2150, NCT04588324), and liver/biliary tract cancer

(RO7119929, NCT04338685). BNT411 and DSP-0509 are

synthetic small molecular TLR7 agonists administered i.v. that are

being investigated in multiple types of tumors. LHC165 is a
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benzonapthyridine TLR7 agonist, which has been used in

combination with anti-PD-1 (PDR001) to treat solid tumors.

TLR8 agonist VTX-2337, also known as Motolimod, has been

tested in ovarian cancer and squamous cell cancer patients

combined with chemotherapy, ICB, or small molecular inhibitors;

in most studies, Motolimod was applied subcutaneously. Four

studies have since completed with published results. In the first

trial, a phase I trial (NCT01294293) with different histological

subtypes of ovarian cancer, Motolimod was combined with

doxorubicin, showing 15% patients with a complete response and

53% with stable disease (210). A similar phase II trial

(NCT01666444), however, showed that the supplement of

Motolimod to doxorubicin did not improve clinical outcomes in

patients with recurrent or persistent epithelial ovarian, fallopian

tube or primary peritoneal cancer, compared with placebo (207).

Motolimod was demonstrated to augment clinical responses in

patients with HNSCC of advanced stages, who have also been

treated with the epidermal growth factor receptor inhibitor

cetuximab (phase I trial NCT01334177) (209). However, in a trial

of recurrent or metastatic SCCHN patients, the addition of

Motolimod to platinum-based chemotherapy and cetuximab did

not improve progression free survival (PFS) or OS; nevertheless,

remarkable benefit was presented in HPV-positive patients and

those with injection site reaction, suggesting the application

potential of Motolimod in subset- and biomarker-selected

patients (phase II trial NCT01836029) (287). Recently, a strong

TLR8 agonist, combined with a HER2 monoclonal antibody was

designed (sbt-6050), aiming to activate myeloid cells with the

presence of HER2 positive tumor cells, and it is under

investigation now in HER2 positive solid tumors with

pembrolizumab (NCT04460456).

In terms of dual TLR7/8 agonists, Resiquimod, TransCon,

852A, BDB001, BDB018, NKTR-262, and BDC-1001 have

undergone clinical investigation. Resiquimod has been

examined by topical use in melanoma and brain tumors in

combination treatment with a tumor vaccine and/or other

adjuvants, however the addition of Resiquimod to NY-ESO-1

protein vaccine and IFA failed to elicit steady antigen-specific

CD8+ T cell response (NCT00821652) (206). TransCon is a type

of Resiquimod prodrug, now under investigation in combination

with pembrolizumab in solid tumors (NCT04799054). 852A is

also an imidazoquinoline TLR7/8 agonist, which has previously

been tested in multiple tumors types (including renal cell

carcinoma, melanoma, lung cancer, hematologic malignancies,

breast cancer, ovarian cancer, and cervical cancer), showing

acceptable tolerability, evident immune stimulation, and clinical

benefit in some patients (288–291). The i.v. administered TLR7/

8 agonist BDB001 and its refined analog BDB018 (designed to

enhance immune stimulation while preserving the safety profile

of BDB001) are both investigated in solid tumor treatment

(NCT03486301, NCT04196530, NCT04840394). BDC-1001 is

an immune stimulating antibody conjugate of an anti-HER2

monoclonal antibody with a TLF7/8 dual agonist, currently
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recruiting a trial enrolling patients with HER2 positive solid

tumors (NCT04278144).

In summary, TLR7/8 agonists have drawn most research

attention among other TLR ligands; despite that preclinical data

indicate promising prospects, none of the TLR7/8 agonists has

gained regulatory approval to treat cancer in human except

Imiquimod. Future study could focus on optimizing delivery

routes, administration schedule, and the vaccine itself (where

vaccines are applied) (292).
TLR 9

TLR9 is preferentially expressed on the endosomal membrane

of B cells and plasmacytoid dendritic cells (pDCs), and its primary

ligand is unmethylated cytidine phosphoguanosine (CpG)

oligonucleotides (ODNs) (293). TLR9 activation can lead to

potent activation of innate (133, 294, 295) and adaptive

immunity (both cell and humoral immunity) (133).

TLR9 agonists previously evaluated in pre-clinical studies are all

DNA-based agents containing non-methylated CpG motifs

(Table 1). Most of these agonists are CpG ODNs, while some

have more complex DNA structures designed for better protection

from drug degradation and enhanced TLR9 stimulation capacity

(164–166). The therapeutic enhancing effect of TLR9 agonists has

been studied with chemotherapy, photodynamic therapy,

radiofrequency ablation, vaccines, ICB, and other immune

stimulatory agents. (Table 1) Interestingly, in two studies (139,

140) the CpG motif has been used as myeloid cell targeting

sequence, incorporated into decoy ODNs that contain STAT3-

specific sequence, which can inhibit STAT3 transcription. Both

studies showed the decoy ODNs effectively suppressed tumors in

animal models of hematological malignancies. Similar to TLR7/8

agonists, many studies have also looked into the design of

nanoparticles for TLR9 agonist drug delivery. These versatile

nanoparticles have improved the ability for TME-targeting (159),

specific cell-targeting (148, 150, 163), and even sub-cellular

compartment-targeting (147); they have also protected against

drug degradation (152, 156); plus, some conjugated to drug tracers

to monitor drug tracking after administration in vivo (152, 155).

Currently the most clinically investigated TLR9 agonists

(Tables 2, 3) are SD-101, CMP-001, IMO-2125. SD-101 is a

class C CpG oligonucleotide, applied intratumorally in trials for

advanced (metastatic, refractory, or recurrent) malignancies

such as pancreatic adenocarcinoma, prostate cancer, liver

metastatic uveal melanoma, and multiple lymphoma subtypes.

In these early phase trials, SD-101 will be administered in

combination with ICB, radiotherapy, small molecular

inhibitors, or an anti-OX40 antibody.

Two phase I/II trials applying SD-101 in combination with

radiotherapy and immunotherapy in treating lymphoma and

other solid tumors just completed, and the results are not yet
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available. CMP-001, also named as Vidutolimod, is a short DNA

piece packaged in protein, mimicking the virus structure. It has

been administratedsubcutaneously or intratumorally with ICB, an

OX40 agonist, an IgG2 agonist, surgery, and radiotherapy in

multiple types of primary and metastatic solid tumors. The

completed phase I trial NCT03084640 is completed, which

combinedPembrolizumab with CMP-001, and compared the

safety together with response rates of CMP-001 administered in

different routes in intreating melanoma. Another completed phase

I trial NCT03438318 combined CMP-001 with Atezolizumab and

radiotherapy to treat NSCLC. In both of the above trials, CMP-

001 elicited antitumor-related transcriptional signatures (2022

AACR Abstract #: LB107); more results from trial on CMP-001

are yet to be published. IMO-2125, also known as Tilsotolimod, a

synthetic phosphorothioate oligodeoxyribonucleotides, has shown

a good safety profile with effective activation of dendritic cells,

induction of type I IFN signaling, and up-regulation of multiple

immune checkpoint pathways in a phase I trial (NCT03052205)

(213), where IMO-2125 was usedas a monotherapy administrated

intratumorally in refractory solid tumors. However, a phase III

trial (NCT03445533), where IMO-2125 and Ipilimumab were

combined for treating melanoma, was terminated for lack of

efficacy. Other phase I to II trials with intratumoral

administration of IMO-2125 are actively recruiting, either alone

or with the combination of ICB in solid tumors (Table 3).

MGN1703 (Lefitolimod) is a DNA-based molecular

alternative to a CpG-ODN, administratedsubcutaneously in

trials and currently under investigation in combination with

anti-CTLA4 in advanced cancers (NCT02668770). In trial

NCT02200081, MGN1703 was used with platinum-based

chemotherapy in advanced stage small-cell lung cancer where

it was well tolerated but showed no impact on the main efficacy

of treatment and overall survival of patients (214). DUK-CPG-

001 a CpG-based TLR9 agonist is being evaluated in the

treatment of myeloid and lymphoid malignancies combined

with donor lymphocyte infusion enriched with NK cells in a

phase II trial (NCT02452697).

Other TLR9 agonists, all CpG-based, have been assessed in

clinical trials, with results available. Inhaled DV281 was tested

with anti-PD-1 in advanced NSCLC, with no results publicly

available yet (NCT03326752). CpG-MCL vaccine, combining

CpG7909 and autologous mantle cell lymphoma-derived tumor

cells, was studied to treat mantle cell lymphoma in combination

with immunochemotherapy and an autologous hematopoietic

stem cell transplant (NCT00490529). The trial showed moderate

response to the vaccine among patients (40% developed anti-

tumor CD8 T cell response, associated with favorable clinical

outcomes), good treatment efficacy (89% were minimal residual

disease negative), and a good safety profile (211). CpG7910 was

applied in combinationwith local radiotherapy to treat recurrent

low-grade lymphoma in a phase I/II trial (NCT00185965), where

local administration of this agent systemically induced tumor-
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1049340
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.1049340
reactive memory CD8+ T cells. This regimen showed clinical

feasibility (212). EMD 1201081 combined with EGFR inhibitor,

however, showed no improvement to the clinical efficacy of

HNSCC treatment (215).

In summary, despite that there are trials showing the

immunogenicity and good tolerability of CpG-based agents, low

translational rate remains an issue. This may due to the difference in

TLR9 expression in animal models and humans (296). Pre-clinical

models of human origins are necessary, such as primary tumor

organoids. Also, one safety concern is that CpGmotifs are potential

to induce autoreactivity (297). There need to be trials with larger

sample sizes, longer follow-up durations, and stratified patient

subgroups to verify the safety and the suitable patient groups that

can benefit from CpG ODN adjuvanted therapies.
Multi-TLR

In addition to single TLR activation, multi-TLR agonism is

also under both pre-clinical and clinical investigation for many

cancers. Multi-TLR agonism can be realized by a single agent or

by a combination of several TLR agonists.

Preclinically, the most studied treatment modality with

multi-TLR activation is with tumor vaccines (Table 1). There

is also a trend of applying nanotechnology in drug delivery in

multi-TLR stimulating treatments for improved APC-targeting

(173, 179) and drug tracing (170).

In clinical trials, Bacillus Calmette-Guérin (BCG), an attenuated

live Mycobacterium bovis, is the most studied multi-TLR agonist. It

can activate TLR2, TLR4, and TLR9 (298); it was originally applied

as a vaccine against tuberculosis and later broadened its application

as an adjuvant in the standard care of a part of bladder cancer

patients (298). Currently, BCG is still investigated in bladder

carcinoma patients in combination with other drug treatments,

including an anti-PD-1/PD-L1 antibody, small molecule inhibitors,

and a neoantigen encoding gene vaccine. A completed trial

NCT02753309 combined rapamycin with BCG in bladder cancer

treatment, which showed good tolerability in high-grade non-

muscle invasive bladder cancer patients and induction of antigen-

specific gd T cell response as well as urinary cytokine production

(219). BCG has also been assessed for the treatment of upper or

lower urinary tract carcinoma. In treating urinary tract urothelial

carcinoma, the trial NCT00794950 investigated combination

therapy of BCG and sunitinib, a novel anti-angiogenesis drug.

This trial has since been completed, and results showed the

combination treatment was associated with a lower rate of

progression and recurrence with an acceptable safety profile

(218). Besides malignancies in the urinary system, BCG

combinedwith chemotherapy, radiofrequency ablation, and GM-

CSF have been evaluated in the treatment of liver metastatic

colorectal cancer (NCT04062721).

OM-174 is a lipid A analog, which activates both TLR2 and

TLR4. In a phase I trial (NCT01800812) with solid tumor
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patients, OM-174 as a monotherapy was well tolerated and

proved to be effective for the induction of IL-8, IL-10, TNF-a,
and IL-6 (despite that TNF-aand IL-6 decreased progressively in
repeated treatment). Progressively increased NK cells and NK

cell activity were observed in patients who received the highest

dose, 1000 mg/m2 (217). AS-15 is an adjuvant system, comprised

of a TLR4 agonism system (MPL and QS-21) and a TLR9 agonist

(CpG 7909) in a liposomal formulation. In the completed phase

II trial NCT01266603, AS-15 was combined with the MAGE-A3

tumor antigen and high dose IL-2 to treat metastatic melanoma.

This treatment achieved 25% response rate, which was

associated with increased infiltrating T cells in the primary

tumor tissue (222).

TLR3 agonist poly-ICIC and TLR7/8 agonist Resiquimod

have been combined with tumor vaccines in the treatment of

melanoma (NCT02126579) and advanced tumors refractory to

conventional treatment (NCT00948961). In the completed trial

NCT00948961, poly-ICIC and/or Resiquimod combined with

NY-ESO-1-targeting DC cell vaccine. The combination therapy

induced NY-ESO-1–specific IgG titers in 79% patients and NY-

ESO-1–specific T cell responses in 56% patients, leading to disease

stabilization and tumor regression in 15/70 patients (220).

A phase I trial NCT00068510, where poly-ICLC or

imiquimod used in conjunction with an autologous tumor-

pulsed DC vaccine, has reported that this regimen was safe

and effective in prolonging survival for glioblastoma

patients (221).
TLR antagonists

Considering the versatility of TLRs in cancer, some of which

can promote tumor growth, there is also rationale for exploring

TLR antagonists as a cancer therapy.

In several types of cancers arising from the digestive system,

pre-clinical studies have demonstrated the therapeutic potential

of TLR antagonists. OPN-301, an inhibitory anti-TLR2

antibody, suppressed tumor initiation and growth in a gastric

animal model, which was associated with gene suppression of

CXCL2 and TNF-a (183). Another two studies reported that

IRS-954, an inhibitory DNA sequence against TLR7 and 9, and

chloroquine, which inhibits TLR7 and 9 activation, significantly

impeded tumor development and growth in vivo and in vitro in

liver cancer (184) and cholangiocarcinoma models (185).

A subset of diffuse large B cell lymphoma patients carry the

MyD88 L265P mutation, associated with overactivation of the

TLR7/9/MyD88 pathway (186). A TLR7/8/9 antagonist IMO-

8400 was previously usedin this subset of lymphoma patients in

a completed clinical trial NCT02252146, which, showed limited

therapeutic efficacy. Similarly, trial NCT02092909, studying

IMO-8400 in treating Waldenstrom’s macroglobulinemia, also

showed insufficient efficacy of IMO-8400, and hence it

was terminated.
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Recently, another synthesized ODN-based TLR7/9

antagonist HJ901 was shown to significantly inhibit tumor cell

proliferation and tumor growth in cell lines or animal models

carrying the MyD88 L265P mutation (186). However, these data

warrant further investigation before it can be translated to the

establishment of an early phase trial.

There are obviously fewer published studies on anti-cancer

TLR antagonists, which generally showed less efficacy than

TLR agonists.
TLR-targeted therapy: Challenges
and future perspectives

Simultaneous activation of anti-/pro-
tumor mechanisms

As TLRs regulate a wide range of functions, initiating

signaling pathways that may lead to both anti-tumor and pro-

tumor effects, there is a concern regarding whether the

application of TLR agonists will promote tumor growth or

whether the anti-tumor effect will be counteracted by the pro-

tumor effect they simultaneously initiated. For example,

Theodoraki and colleagues have found that TLR3 agonists

stimulate the TLR3-TRAF3/IRF3 pathway, which leads to the
Frontiers in Immunology 27
production of CTL attractants and activate MAVS/helicase

pathway, which elicits Treg chemotaxis (299).

Two directions may be feasible for further investigation into

this challenge. On one hand, choosing the agonist that

specifically activates the anti-tumor pathways but leaves no

effect on the pro-tumor pathway could help (Figure 3).

Theodoraki et al. (299) further discovered the difference of

pathway stimulation potential in different TLR3 agonists:

dsRNA Sendai Virus, Poly (I:C), and Rintatolimod.

Rintatolimod can activate the TLR3 pathway only, resulting in

the induction of CTL attracting cytokines IFNa, ISG-60, and

CXCL10, and avoid the initiation of MAVS/helicase pathway,

which then prevents Treg accumulation. In the future, more

focus to elucidate how drug conformation of TLR-targeting

agents influences downstream signaling is necessary, which

can then guide future drug synthesis or discovery.

On the other hand, combination therapy is of utmost

significance in TLR-targeted therapy. Combined therapies can

enhance therapeutic effects in many cases and potentially

diminish the pro-tumor impact elicited by TLR agonists. Feng

et al. (300) discovered that poly (I:C) could inhibit HCC cell

proliferation and lead to cell apoptosis while promoting cell

migration and invasion at the same time. When combined with

the toad venom constituent bufalin, cell migration and invasion

were inhibited, whereas cell apoptosis and suppressed proliferation
FIGURE 3

Challenges and Future Perspective of TLR-targeting tumor therapies Due to the versatile nature of TLRs, simultaneous activation of both anti-
tumor and pro-tumour effects can arise; future work may involve combination therapy and further exploration of the association between
ligand conformation and specific pathway activation as well as the development of pathway-specific drugs. To resolve the inefficacy and toxicity
of TLR-targeting drugs, identifying an appropriate patient population is of great significance; combination therapy again can be considered;
systemic drug administration can shift to localized delivery; the incorporation of polymer and nanotechnology is an emerging field. TLR
tolerance could be a major obstacle preventing the TLR-targeting therapies from achieving their full potential; thus, more effort should be put
into studying cyclical changes in TLR-TLRL interaction and investigating the optimal treatment dose and schedule. (This figure is created with
BioRender.com).
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remained unaffected (300), indicating the potential of combination

therapy of the two in eliminating poly (I:C)-initiated pro-

tumor effect.
Inefficacy and toxicity

Despite numerous promising results emerging from pre-

clinical research with TLR-targeted therapies, many failed to

advance to clinical implementation. Lack of efficacy and toxicity

has been an issue for TLR-targeting therapy (28, 301).

To address this, first, precise identification and investigation

of patient sub-populations that respond to TLR-targeting

strategies is important (Figure 3). Some treatments may not

have shown significant efficacy in the overall study population,

but do in a subset of patients. Monk et al. (207) and Ferris et al.

(208) both found in their clinical trial studies that adding

Motolimod to chemotherapy did not improve survival in the

overall patient population. In contrast, the sub-population with

injection site reactions did significantly benefit fromMotolimod.

The evidence above suggests 1) lack of significance in the overall

analysis does not reject the potential of a certain TLR-targeting

drug; 2) there are certain groups of patients that may be more

responsive to TLR-targeting agents than others. Future work

calls for more translational studies incorporated into the trial

designs to examine any associations between treatment

responsiveness and patient characteristics, including gene

expression patterns, biomarker levels, local treatment reaction,

etc., thus providing clues for the screening of the target

patient population.

Secondly, both lab and clinical research data support that the

optimal treatment potency of immunotherapy requires

combinatory approaches (27, 28), which continues to be the

trend for TLR-targeted therapy. As discussed in section 5

(Tables 1–3), many studies showed that the combination of

TLR agonists with other therapies enhanced tumor retardation

compared to a single treatment alone. However, there is still a

gap in our knowledge regarding the timing and dosing to be

applied to each treatment to achieve the optimal therapeutic

result. For example, in the combinatory treatment of poly (I:C)

and radiation in Lewis lung carcinoma models, Yoshida et al.

(264) found using poly (I:C) one day ahead of radiotherapy

yielded better tumor suppression than to use after radiation.

Pharmaceutical modification of targeting agents has great

potential to improve efficacy and lower toxicity as well.

Furthermore, polymer and nanoparticle formulations

incorporating TLR agonists are promising avenues to explore

as they may potentially increase the specificity of targeting and

prevent the drug from early degradation, thereby reducing

systemic toxicity. Those formulations can now be designed to

load multiple agents and be multi-functional (Figure 3),

including but not limited to pH-specific drug-releasing (115,
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124), in vivo drug tracing (152, 155), and tumor hypoxia relief

(106). The advancement of nanotechnology utilizedin TLR-

targeted therapy has been reviewed comprehensively elsewhere

(302). However, careful attention should be paid to these new

biomaterials as the bioactivities they may incur in vivo remain to

be fully elucidated. Meanwhile, reducing the financial and timing

costs is also a formidable challenge to face.

Besides refinement of the drug delivery system, choosing a

localized delivery route may also have an influence on efficacy.

This can avoid systemic inflammation to a great extent and

improve intratumoral efficacy (300), especially for solid tumors.
TLR Tolerance

TLR tolerance arises due to the unresponsiveness or

hyporesponsiveness of TLRs upon TLR agonist stimulation

after repeated, prolonged, or chronic activation, which also

includes TLR cross-tolerance, where a pre-used TLR agonist

incurs tolerance of another TLR (303, 304). There have been

studies showing TLR tolerance in TLR2, 3, 4, 5, 7/8, and 9 (304–

309). This mechanism physiologically prevents uncontrolled

inflammation and autoimmunity, thus protecting healthy

tissues from inflammatory damage (303, 304). In cancer,

however, such tolerance leads to impaired tumoricidal effect.

To overcome this phenomenon, Bourquin et al. (310) found

cycles of repeated low dose TLR7/8 agonist injection within 24h

with intervals every five days, compared to one high dose

injection every three days, significantly suppressed tumor

growth in a mouse model (310), indicating the potential of

circumventing TLR tolerance by adjusting treatment dose and

time. Similarly, Tsitoura et al. (311) found the minimum and

optimal dosing interval to maintain a TLR agonists’

pharmacological responsiveness. Future research needs to

further explore the cyclical changes in specific TLR-TLRL

induced responsiveness and consider cross-tolerance as new

cancer therapies incorporating multi-TLR agonism continue to

emerge (Figure 3).
Discussion

The pattern recognition receptor family of TLRs, widely

expressed on both healthy cells and tumor cells, play versatile

roles in both physical and pathological conditions. Each TLR

influences multiple aspects of tumor development, with both

anti- and pro-tumor potentials.

TLR-targeted cancer therapies have been widely studied,

with some TLR agonists (Imiquimod and BCG) approved for

clinical use to treat cancers (312). Pre-clinical studies are

currently focusing on developing novel TLR-targeting agents,

incorporating nanotechnology into TLR drug manufacturing
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and delivery, and novel approaches activating TLRs apart from

using agonists (e.g. inactivated virus (67), engineered bacteria

(175), and modified T cells (97)).(Figure 2) Increasing evidence

demonstrates the insufficiency of single intervention in

circumventing immunosuppression incurred by tumor

progression, hence leading to both pre-clinical and clinical

research focusing on multi-agent and multi-modality

treatment at present (312). (Figure 2) In addition, TLR

antagonists also showed therapeutic potential in pre-clinical

models with tumors in the digestive system, but the potency of

this group of agents in human remains to be fully elucidated.

Future research into TLR-targeting therapies must tackle

several challenges, including the control of simultaneous

activation of both anti- and pro-tumor effect elicited by TLR

activation, TLR tolerance, and insufficient efficacy and toxicity.

Additionally, due to the heterogenous nature of different types of

tumors and the consequent influence on TLR activities in the

TME, better research models, which preserve the important

genetic mutations that affect tumor growth and treatment

response, should be developed (313). Instead of using cell

lines, bulk tumors derived from the real patient could be an

ideal source for research models (252), from where the primary

TME cell components– tumor cells, stromal cells, and immune

cells–can be extracted.

Furthermore, with the trend of precision medicine and the

deepening of research, there is a need for patient stratification

according to their disease profile and treatment responsiveness to

treat each patient with the most suitable strategy, providing them

with the optimal benefit both therapeutically and economically.

We speculate that addressing the challenges described above will

elevateTLR-targeted therapies to their full potential and augment

the efficacy of immunotherapies for patients.
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