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Background: The RNAmodification 5-methylcytosine (m5C) is one of themost

prevalent post-transcriptional modifications, with increasing evidence

demonstrating its extensive involvement in the tumorigenesis and

progression of various cancers. Colorectal cancer (CRC) is the third most

common cancer and second leading cause of cancer-related deaths

worldwide. However, the role of m5C modulators in shaping tumor

microenvironment (TME) heterogeneity and regulating immune cell

infiltration in CRC requires further clarification.

Results: The transcriptomic sequencing data of 18 m5C regulators and clinical

data of patients with CRC were obtained from The Cancer Genome Atlas

(TCGA) and systematically evaluated. We found that 16 m5C regulators were

differentially expressed between CRC and normal tissues. Unsupervised cluster

analysis was then performed and revealed two distinct m5C modification

patterns that yielded different clinical prognoses and biological functions in

CRC. We demonstrated that the m5C score constructed from eight m5C-

related genes showed excellent prognostic performance, with a subsequent

independent analysis confirming its predictive ability in the CRC cohort. Then

we developed a nomogram containing five clinical risk factors and the m5C risk

score and found that the m5C score exhibited high prognostic prediction

accuracy and favorable clinical applicability. Moreover, the CRC patients with
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low m5C score were characterized by “hot” TME exhibiting increased immune

cell infiltration and higher immune checkpoint expression. These

characteristics were highlighted as potential identifiers of suitable candidates

for anticancer immunotherapy. Although the high m5C score represented the

non-inflammatory phenotype, the CRC patients in this group exhibited high

level of sensitivity to molecular-targeted therapy.

Conclusion:Our comprehensive analysis indicated that the novel m5C clusters

and scoring system accurately reflected the distinct prognostic signature,

clinicopathological characteristics, immunological phenotypes, and stratifying

therapeutic opportunities of CRC. Our findings, therefore, offer valuable

insights into factors that may be targeted in the development of precision

medicine-based therapeutic strategies for CRC.
KEYWORDS

5-methylcytosine, RNA methylation, colorectal cancer, immune infiltrates, tumor
microenvironment, precision medicine
Introduction

Colorectal cancer (CRC) is a prevalent malignancy worldwide,

ranks third in terms of incidence, and causes a significant burden

on human health (1). Although treatment strategies have greatly

improved in recent decades, CRC remains the principal cause of

cancer-related mortalities, with a 5-year survival rate of 13–14%

for patients with advanced CRC and distant metastasis (2). The

therapies that are currently available for metastatic CRC (mCRC)

include cytotoxic chemotherapy, molecular-targeted therapy, and

immunotherapy (3); however, the clinical benefits of these

therapeutic modalities remain unsatisfactory, mainly due to the

lack of effective pre-treatment predictive biomarkers. It is

therefore imperative to elucidate the molecular mechanisms

underlying the tumorigenesis of CRC and identify reliable

biomarkers that enable the early diagnosis and treatment

response predictions for patients with CRC.

The complex crosstalk between cancer cells and the tumor

microenvironment (TME) has been identified as a critical

factor that drives tumor progression, metastasis, and drug

resistance (4). As the “soil” of cancer cells, the TME contains

various non-malignant cells, including fibroblasts, transformed

cells, vascular vessels, stromal cells, and immune infiltrates (5, 6).

Several studies have demonstrated that immune cells are

the dominating components of the TME and that immune

resistance contributes to immune evasion and tumor

progression (7, 8). However, high TME heterogeneity may

account for a broad range of clinical prognoses and variable
02
responses to immunotherapies, even among the patients of the

same pathological grade and clinical stage. Therefore, depicting

TME heterogeneity and the associated immune infiltrates may

contribute to guiding the development of precision medicine for

treating CRC.

Epigenetic modifications result in heritable modulations of

gene expression in the absence of a modified genomic DNA

sequence. The tumorigenesis of CRC is not well-understood and

has been gradually characterized based on various driver

mutations and genetic and epigenetic alterations (9, 10). Several

types of epigenetic regulation, including histone modification

(ubiquitination, acetylation, and phosphorylation), chromatin

remodeling, DNA and RNA methylation, and the expression

and activity of noncoding RNA, are critical hallmarks of CRC

progression (11). RNA methylation is an essential biological

epigenetic process that has the functional impact on the

regulation of transcriptional activation and inactivation (12). To

date, more than 100 modifications have been identified for all four

ribonucleotides (A, C, G, and U), including N6-methyladenosine

(m6A), 5-methylcytosine (m5C), 7-methylguanosine, N1-

methyladenosine, and 3-methyluracil (13, 14). Among these,

m6A is the most ubiquitous and abundant post-transcriptional

modification, with previous studies having identified its regulatory

role in TME-specific immune infiltration (15–17). In a previous

study, m6A score constructed using m6A-related genes effectively

predicted the immune response and prognoses of patients with

colon cancer (18). m5C is another common and well-studied

RNA modification that plays a fundamental role in various
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biological processes, including carcinogenesis and cancer

progression (Figure 1B) (19–24); however, the role of m5C

modulators in shaping TME heterogeneity and regulating

immune cell infiltration in CRC requires further investigation.

In this study, we comprehensively profiled the expression

of 18 m5C regulators and identified two distinct m5C

modification patterns in CRC. Additionally, we established

a novel m5C scoring system using m5C-related genes

identified by the weighted gene co-expression network

analysis. To the best of our knowledge, these findings are
Frontiers in Immunology 03
the first to highlight the relationship between the m5C score

a n d immun e ph e n o t y p e s , TME h e t e r o g e n e i t y ,

c l inicopathological characterist ics , and therapeutic

strategies for CRC.
Methods

Figure 1A illustrates the overall workflow and mechanism

diagram of this study.
B C

A

FIGURE 1

Landscape of m5C methylation regulators. (A) Graphical summary of the study protocol. (B) Overview of the m5C genes and their functions in
different cancer types. (C) Pie charts showing the types of m5C regulators (top). The heatmap depicts the mRNA expression levels of 18 m5C
regulators between normal mucosae and CRC tissues according to transcriptome data from TCGA and GTEx (bottom).
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Data collection and processing

We retrieved clinical data, RNA-sequencing data, and

mutation profiles for both “COAD” and “READ” from The

Cancer Genome Atlas (TCGA) via the Genomic Data Commons

portal. Copy number variation (CNV) profiles were obtained

from the UCSC Xena browser, and the microsatellite instability

(MSI) analysis was performed as previously described by

Bonneville (25). We obtained a CRC gene expression matrix

(GSE38832) with detailed clinical information from the Gene

Expression Omnibus (GEO).
Unsupervised clustering of m5C
regulator genes

In total, 18 m5C genes, including 11 writers, 3 readers, and 4

erasers, were systematically analyzed using data from previous

studies (26–28). Consensus unsupervised clustering analysis was

conducted using the ConsensusClusterPlus package in R to

explore distinct m5C modification patterns. Gene set variation

analysis (GSVA) was performed using the GSVA package to

calculate the enrichment score for 50 hallmark pathways from

MSigDB. The differences in these pathways were analyzed

between various m5C clusters using the limma package. An

adjusted P< 0.05 and |logFC| > 0.2 were considered to be

statistically significant.
Differentially expressed genes (DEGs) and
functional analysis

The limma R package was used to identify DEGs between

the different m5C clusters according to the cut-off criteria of |

logFC| ≥ 1 and adjusted P< 0.05. Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses

were conducted using the clusterProfiler R package based on

the DEGs.
Weighted gene co-expression network
analysis (WGCNA)

The WGCNA R package was used to construct WGCNA

and identify m5C cluster-related genes. First of all, the TPM data

from the TCGA were tested to determine whether they were

good genes or samples. Then, the filtered genes were used to

construct a scale-free network by calculating the connection

strength between genes. The scale independence and modules’

average connectivity were calculated using the gradient method.

The appropriate power value was determined when the degree of
Frontiers in Immunology 04
independence was above 0.85 and average connectivity degree is

relatively higher. Once the power value was determined, the

scale-free gene co-expression networks were constructed.

The cluster dendrogram among the modules was plotted using

the ggtree package in R. The heatmap depicting the correlations

between the modules and clinicopathological characteristics was

generated in R using the pheatmap package. The key module

with the strongest association with the m5C cluster was chosen

for further analysis.
Construction of the m5C risk score

Univariate Cox regression analysis was performed using the

survival R package to identify prognostic genes. The least

absolute shrinkage and selection operator (LASSO) Cox

regression algorithm was implemented to minimize the risk of

overfitting using the glmnet package based on the prognostic

genes. Multivariate Cox regression analysis was then used to

identify the candidate genes that were used to establish the

prognostic m5C score. The m5C risk score was calculated using

Eq. (1):

m5C score  ¼  o(Coefi � Expi) (1)

where Coefi and Expi represent the risk coefficient and signature

gene expression, respectively.
Correlation analysis between clinical
characteristics, the cancer stem cell
(CSC) index, and MSI with the m5C score

Univariate and multivariate analysis of the clinicopathological

features, including age, gender, American Joint Committee on

Cancer (AJCC) stage, TNM stage, and risk score, were performed

to investigate whether the m5C risk score was independent of all

the other available clinical features. The relationship between the

m5C score and clinical characteristics was analyzed using Chi-

square test. The associations between theMSI and CSC index with

the m5C score were also analyzed.
Determining the TME immune landscape

The abundance of tumor‐infiltrating immune cells (TIICs)

was quantified using the single-sample (ss) GSEA in the GSVA

package. Additionally, we evaluated the differences in the gene

expression of immunomodulators and immune checkpoint and

effector genes between the different m5C risk groups. The

anticancer immune response (cancer immunity cycle) was also

evaluated between the various risk groups.
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Nomogram construction and validation

The nomogram prediction model was constructed based on

the m5C risk score and clinical factors using the RMS package.

Receiver operating characteristic (ROC) curves are well-known

and have been used in previous bioinformatics studies; and

therefore have been used to assess the discriminative

performance of nomograms (29, 30).The calibration and ROC

curves were used to evaluate the prediction probability and

reliability of the nomogram model. The decision curve analysis

(DCA) was then performed to assess the clinical performance

and net benefit of the nomogram.
Mutation and drug-susceptibility analysis

To explore the somatic mutation profiles in the different

risk-score groups, the mutation annotation format data of the

patients with CRC from TCGA cohort were analyzed using the

Maftools package. The tumor mutational burden (TMB) score of

each patient with CRC and each risk-score group was calculated

and analyzed statistically. The drugs and their target information

were derived from DrugBank (https://go.Drugbank.com/). The

50% inhibitory concentration (IC50) values of common

anticancer drugs were calculated and compared in the different

risk groups using the pRRophetic package.
Tissue samples

Forty pairs of CRC specimens and adjacent normal tissues were

harvested from patients at Zhongnan Hospital of Wuhan University.

Written informed consent was obtained from all the participants.

This study was approved by the ethics committee of Zhongnan

Hospital of Wuhan University. The enrolled patients and their

clinical characteristics are listed in Supplementary Table 17.
RNA extraction and RT-qPCR

Total RNA was extracted from the CRC tissues using TRIzol

reagent (Invitrogen, USA). cDNA was synthesized with random

primers using HiScript II Q RT SuperMix (Vazyme, China). RT-

qPCR was then performed using ChamQ Universal SYBR qPCR

Master Mix (Vazyme). All the forward and reverse primer

sequences are presented in Supplementary Table 18.
Immunofluorescence

Immunofluorescence staining was performed on paraffin-

embedded human CRC sections according to standard

procedures. The antibodies used for immunofluorescence were
Frontiers in Immunology 05
anti-programmed death-ligand 1 (PD-L1; 66248-1-Ig;

Proteintech), and anti-cytotoxic T lymphocyte-associated

protein 4 (CTLA-4; ab19792; Abcam).
Statistical analysis

Normally-distributed continuous variables are presented as

the mean ± standard deviation and were compared using an

independent Student’s t-test or the Mann–Whitney U test,

whereas categorical variables were compared using Chi-square

or Fisher’s exact tests. The “survcutpoint” function for the

maximum rank statistic was applied to determine the optimal

cutoff value of the m5C score. The survival curves for prognostic

analysis of categorical variables were built using the Kaplan-

Meier method, and the log-rank test was applied for statistical

analysis. Spearman’s correlation coefficients and distance

correlation analyses were used to assess the correlation

between m5C regulators and scores with pathways related to

the cancer immunity cycle or immune checkpoint blockade

(ICB) response. The tumor immune dysfunction and exclusion

(TIDE) analysis was performed to predict the clinical response to

ICB. The survival and forestplot packages were used to perform

univariate and multivariate Cox regression analyses. A time-

dependent ROC analysis was performed using the timeROC

package. R (version 4.1.2) was used to conduct all the statistical

analyses, with P< 0.05 indicating statistical significance.
Results

Multiomics analysis of m5C
regulators in CRC

We identified 18 m5C regulatory genes from the published

literature, and their expression profiles in human CRC were

analyzed using data from TCGA (Figure 1C; Supplementary

Table 1). The expression levels of most of the m5C writers

(NOP2, NSUN2, NSUN4, NSUN5, NSUN6, NSUN7,

DNMT1, DNMT3A, and DNMT3B) and readers (YTHDF2,

ALYREF, and YBX1) were significantly upregulated in the CRC

tissues compared to those in the normal tissues, whereas the

expression of the m5C eraser TET2 was downregulated in

human CRC tissues (Figure 2A; Supplementary Table 1).

Immunohistochemical data from the Human Protein Atlas

(HPA) were consistent with the results of the transcriptomic

analysis (Supplementary Figure 1). Figure 2B shows the

locations of the m5C genes on their respective chromosomes.

The imbalance in the expression of m5C writers, readers, and

erasers may contribute to abnormal m5C modification patterns

and therefore drive the oncogenesis and progression of CRC. To

explore the prognostic value of the m5C regulators, we

investigated the potential correlation between the gene
frontiersin.org
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expression levels and survival statuses of patients with CRC. The

survival analysis were performed and revealed that most of the

m5C genes were significantly correlated with CRC prognoses

(Supplementary Figure 2). The principal component analysis

(PCA) demonstrated that the expression of the 18 m5C

regulators could be used to distinguish CRC samples from

normal samples (Figure 2C). Moreover, the CNA analysis

revealed prevalent CNV alterations in the 18 m5C genes, with

most of the alterations being focused on the amplification of

DNMT3B, whereas YTHDF2 showed the highest deletion
Frontiers in Immunology 06
frequency (Figure 2D). The close interaction between the m5C

regulators revealed the potential value of the m5C clustering

analysis (Figure 2E; Supplementary Table 2). Further

investigation of the mutation patterns of the m5C genes

indicated that 128 (20.78%) mutations among the CRC

samples were present in the genes. TET1 showed the highest

mutation frequency (6%), followed by TET3, DNMT1,

DNMT3B, and YTHDF2 (Figure 2F). Taken together, these

results demonstrate that m5C regulators may act as diagnostic

biomarkers and prognostic predictors for CRC.
B

C

D

E

F

A

FIGURE 2

Landscape of the genetic alterations and transcriptional variations in the m5C genes in CRC. (A) Boxplot comparison of the differential
expression levels of m5C genes between tumor and normal tissues from the TCGA-CRC dataset. (B) Circos plot showing the chromosomal
distribution of 18 m5C genes. (C) PCA of the expression profiles of 18 m5C regulators. (D) CNV frequencies of the 18 m5C regulators. Column
height represents the change in frequency. (E) Spearman’s correlation analysis of the 18 m5C genes from the TCGA-CRC dataset. (F) Mutation
frequencies of the 18 m5C genes from the TCGA-CRC cohort. *P < 0.05, ***P < 0.001, ns, no significant
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Identification of m5C modification
clusters and biological function analysis

The prognostic value, interactions, and connections among the

m5C regulators in the patients with CRC are presented in

Figure 3A. Most of these genes were risk or favorable factors and

were significantly correlated with the other m5C regulators. We

found significant associations between the m5C regulators from the

same category as well as cross-category associations. For example,

the m5C writer TRDMT1 showed a significant positive association

with the writer NSUN3 and a positive correlation with the m5C
Frontiers in Immunology 07
eraser TET2. Unsupervised clustering analysis based on the

expression of the m5C genes showed that the fewest crossovers

between the CRC samples occurred at a consensus matrix k value of

2 (Figure 3B; Supplementary Figures 3A–G). The results of the

consensus clustering were visualized using an empirical cumulative

distribution function (CDF) plot and delta area plot

(Supplementary Figures 3H, I). The Kaplan–Meier analysis of the

different subtypes indicated that m5C cluster B exhibited

significantly poorer prognoses than cluster A (Figure 3C).

The DEGs between the two m5C clusters were identified to

explore their potential biological functions and were visualized in
B C

D E

F

G

H

A

FIGURE 3

Different m5C modification patterns showing distinct biological characteristics. (A) Correlations and correlation coefficients between the 18
m5C regulators in CRC. Each circle represents an individual gene, and the size of the circle represents the associated prognosis. Data were
generated using the log-rank test (range: 0.1–0.0001). The green or purple dots represent favorable factors or risk factors for OS, respectively,
and red or blue lines indicate positive or negative correlations between the regulators, respectively. (B) Consensus clustering matrix (k = 2).
(C) Survival analysis of the patients in the clusters generated according to m5C scores from the TCGA dataset. (D) Heatmap generated using
DEGs between m5C clusters A and B. (E) Heatmap showing the GSVA analysis, which showed the activation or inhibition of biological pathways
according to the m5C clusters. (F) GO and (G) KEGG analyses of the DEGs between m5C clusters A and B. (H) Heatmap showing the
immunotherapy-predicted pathways between m5C clusters A and B.
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the heatmap (Figure 3D; Supplementary Table 3). There were

significant differences in the enrichment scores of many of the

hallmark signatures between the two clusters, including DNA

repair, MYC targets, and mTORC1 signaling (Figure 3E,

Supplementary Table 4). The GO analysis of the DEGs revealed

significant levels of enrichment in many immune biological

processes, including the regulation of B-cell activation,

complement activation, positive regulation of B-cell activation,

humoral immune response mediated by circulating

immunoglobulin, immunoglobulin receptor binding, B-cell

receptor signaling pathway, antigen binding, and immunoglobulin

complex (Figure 3F; Supplementary Table 5). The KEGG analysis

revealed that the DEGs were significantly enriched in several

common cancer-related pathways, such as CRC, the p53 signaling

pathway, Hippo signaling pathway, oxidative phosphorylation,

ErbB signaling pathway, nucleotide metabolism, and pyrimidine

metabolism (Figure 3G; Supplementary Table 6). More

importantly, several of the pathways that were positively

correlated with the ICB response, such as the DNA replication

and RNA degradation pathways, and the cell cycle were enriched in

m5C cluster A, whereas the cytokine–cytokine receptor-interaction

pathway that was negatively associated with the ICB response was

significantly enriched in m5C cluster B (Figure 3H; Supplementary

Tables 7, 8). These results suggest that m5C modifications play a

critical role in tumor progression and the immune regulation of

the TME.
Construction and validation of
prognostic risk models based on m5C-
related genes

To identify m5C cluster-related modules, co-expression

network was built from the expression data from TCGA-CRC.

Overall, the CRC samples with intact clinicopathological

information were incorporated into the co-expression analysis

(Figure 4A). When constructing the network, we chose the

power of b = 5 as the soft threshold value (Supplementary

Figure 4A). The WGCNA identified 23 different-colored

modules (Figure 4B), with the black module showing the

highest association with the m5C cluster (Figure 4C).

Moreover, we found that the genes in the black module were

significantly co-expressed (Supplementary Figure 4B;

Supplementary Table 9).

Given the essential role of m5C modification patterns in

CRC tumorigenesis and the TME, we developed a prognostic

signature for CRC and subsequently identified 66 prognostic

m5C-related genes in the key module based on the univariate

Cox regression analysis (Supplementary Table 10). Among

them, 17 genes were screened using the LASSO Cox regression

model and partial likelihood deviance (Figures 4D, E;

Supplementary Table 11). We then conducted multivariable

Cox regression analysis and identified eight m5C-related genes
Frontiers in Immunology 08
(Supplementary Figure 4C), which were used to build the risk

model based on the Akaike Information Criterion. The

prognostic risk score formula was as follows (Supplementary

Table 12): risk score = DYNLT2B × (−0.19856) + TPX2 ×

(−0.33132) + DDIT3 × (0.24658) + RAB17-DT × (0.43442) +

CHRNA5-AS × (−0.24444) + CA3 × (0.44152) + DPH5-DT ×

(−0.47732) + PRSS22-AS × (0.40269). Based on the median risk

score, all the CRC patients were equally classified into high- and

low-risk groups, with those in the high-risk group exhibiting

evidently worse prognoses than those with low m5C score

(Figure 4F). In addition, the predicted survival ROC curve

confirmed the precise predictive capacity of the risk model,

with area under the ROC curve (AUC) values of 0.638, 0.668,

and 0.719 for 1-, 3-, and 5-year survival, respectively (Figure 4G).

The risk scores of the patients in m5C cluster A were

substantially lower than those of the patients in m5C cluster B

(Supplementary Figure 4D), with the Sankey diagram indicating

a relationship between the patients with CRC according to the

m5C score and clusters (Figure 4H). The calculation and ranking

of the risk score for each patient in ascending order resulted in a

risk distribution plot that revealed significant decreases in

survival time and increases in the mortality rate along with

increasing risk scores (Figures 4I, J). As shown in the heatmap in

Figure 4K, the expression levels of the eight m5C-related genes

differed considerably between the various risk groups.

Interestingly, most of the m5C regulators were significantly

differentially expressed between the high- and low-risk groups

(Supplementary Figure 4E; Supplementary Table 13). To assess

whether this prognostic signature may be an independent

predictor of CRC, univariate and multivariate Cox regression

analyses were performed with the clinicopathological features

(age, gender, AJCC stage, and TNM stage) and risk score.

Compared with the other clinical features, the risk score was

identified as an independent prognostic factor regardless of the

univariate or multivariate analyses (Figures 4L, M). These results

indicate that the m5C risk model may serve as a powerful

prognostic indicator for patients with CRC.
Relationship between the m5C score
and clinicopathological and
immunological features

We determined the relationship between the m5C score

and clinicopathological traits of patients with CRC. The

clinicopathological features related to the m5C score in the

two risk subgroups are presented in Figure 5A. The patients

with CRC at AJCC stages III–IV were mostly in the high-risk

subgroup, whereas those at stages I–II were mostly in the low-

risk subgroup (Figure 5B). Similarly, the patients with CRC who

were diagnosed with T3-4, N1-2, or M+ showed significantly

higher enrichment levels in the high-risk group (Figures 5C–E).

These results indicate that the high m5C-risk score may
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efficiently predict advanced AJCC stages, lymphatic and distant

metastases, and poorer survival in patients with CRC.

As a stem cell disease, the occurrence of CRC has been found

to potentially originate from CSCs generated by intestinal stem

cells escaping regulation (31, 32). We found that the m5C score

showed a linear inverse association with CSC index values,

suggesting that CRC patients with a lower m5C score also

exhibit less stem cell differentiation and distinct stem cell

properties (Figure 5F). A recent study confirmed the TMB to

be an effective biomarker for immunotherapy (33). Moreover,

cancers with high TMB may present higher levels of
Frontiers in Immunology 09
neoantigens, making them targets of the host immune system

(34). The results of the analysis from TCGA-CRC data indicated

that patients in the low-risk group showed the significantly

higher TMB than those in the high-risk group (Figure 5H),

implying that patients with a low m5C risk score tend to obtain

survival benefits from immunotherapy in clinical practice.

Furthermore, the Spearman’s correlation analysis confirmed a

negative correlation between the m5C score and TMB

(Figure 5G); however, no significant difference was observed in

the m5C score between the different MSI statuses or in the MSI

types between the different risk groups (Figures 5I, J).
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FIGURE 4

Construction of a prognostic signature using m5C-related genes. (A) Clustering dendrogram of the CRC samples and associated clinical traits.
(B) Clustering dendrogram of the genes with dissimilarity on the basis of topological overlap with the corresponding module colors.
(C) Heatmap of the association between module eigengenes and clinical phenotypes of CRC. (D) LASSO coefficient profiles of m5C-related
genes. (E) Partial likelihood deviance for the LASSO coefficient profiles. (F) Survival analysis of the CRC patients stratified by the m5C risk score.
(G) ROC curves for predicting the sensitivity and specificity of 1-, 3-, and 5-year OS based on the m5C score. (H) Alluvial diagram of subtype
distributions in the groups with different m5C scores and survival outcomes. (I, J) Ranked dot and scatter plots showing the m5C score
distribution and patient survival statuses. (K) Heatmap of the expression of eight m5C-related genes in the different m5C risk groups.
(L, M) Univariate and multivariate Cox analyses of the m5C risk scores and clinical variables.
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Correlation of the m5C score with
immune phenotypes

We investigated the existence of immune heterogeneity in

different m5C risk groups. The correlation analysis between the

m5C score and enrichment scores of the therapeutic signatures

demonstrated that the CRC patients with low m5C score may

have benefited from radiotherapy (Figure 6A). Common immune

effector genes, including IFNG, CTLA4, GZMA, SLAMF1, CYBB,

FGL2, CXCL10, IL7R, NCR1, and CCL4, were all highly expressed

in the low-risk subgroup (Figure 6B), and the TIICs, such as

activated CD8 and CD4 T cells, effector memory CD8 T cells, type
Frontiers in Immunology 10
2 T helper (Th) cells, eosinophils, gdT cells, and neutrophils, were

significantly enriched in the low-risk subgroup (Supplementary

Figure 5). Additionally, the m5C score was negatively associated

with the activities of many critical anticancer immunity cycles,

including CD8 T cell recruitment; B-cell recruitment; cancer

antigen presentation, priming and activation; myeloid-derived

suppressor cell recruitment; neutrophil recruitment; natural

killer cell recruitment; and Th1 cell recruitment (Figure 6C;

Supplementary Table 14).

As expected, the m5C score was negatively correlated with

ICB response-related pathways, including base-excision repair,

antigen-processing machine signaling, the interferon-g
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FIGURE 5

Relationship between the m5C score, clinical features, and immunological characteristics. (A) Heatmap of the distribution of clinical
characteristics and corresponding m5C risk score in each CRC sample. (B–E) Heatmap and table indicating the distribution of the
clinicopathological features between the high- and low-m5C-score groups. (F) Relationships between the m5C risk score and CSC index.
(G) Spearman’s correlation analysis of the m5C scores and TMB. (H) TMB in the different m5C risk groups. (I, J) Relationships between the m5C
risk score and MSI. *P < 0.05, ***P < 0.001.
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signature, spliceosome, RNA degradation, proteasome, and the

p53 signaling pathway (Figure 6C). However, several common

immune checkpoint genes, such as CD274 (PD-L1), CD86,

CD80, CTLA4, IDO1, TIGIT, KIR3DL1, BTLA, CD28, HHLA2,

CD40LG, CD244, CD48, TNFRSF9, and ICOS (Figure 6D), were

highly expressed in the low-risk subgroup. Furthermore, the

genes associated with immunomodulation, including CCL15,

TAP2, CXCL11, CXCL10, CXCL9, B2M, KLRC1, CXCR6,

IL2RA, CD80, ICOS, CXCL1, CXCL2, CXCL3, CXCL6, and
Frontiers in Immunology 11
CXCL8, were significantly upregulated in the low-risk

subgroup (Figure 6E; Supplementary Table 15).

A higher TIDE prediction score has been confirmed to be

associated with tumor escape from immune surveillance and

worsened ICB response (35). In the present study, we found that

patients with CRC in the low-risk subgroup exhibited a lower

TIDE score than those in the high-risk subgroup (Figures 7A, B;

Supplementary Table 16), whereas the patients with a high TIDE

score had significantly worse prognoses than those with a low
B
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FIGURE 6

Correlation between the m5C risk score and immune phenotypes. (A) Heatmap showing the associations between the m5C score and the
enrichment scores of several therapeutic signatures. (B) Differences in the expression levels of the immune effector genes between the two
m5C score groups. (C) Spearman’s correlation analysis of the m5C score with the activities of cancer immunity cycles (left) and immune-related
pathways analyzed by the ssGSEA (right). (D) Differences in the expression levels of immune checkpoint genes between the two m5C score
groups. (E) Heatmap showing the significant differential expression of immunomodulators between the two risk groups. *P < 0.05, **P < 0.01,
***P < 0.001.
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TIDE score (Figure 7C). These findings indicate that the low

m5C score is associated with an inflammatory phenotype.
Mutation profiles and
drug-susceptibility analysis

Genomic mutations are considered to be the driving force of

tumor malignancy. Therefore, we investigated and visualized the
Frontiers in Immunology 12
distribution of 20 somatic mutations between the two risk

groups. The most frequently-mutated genes in the CRC

population were APC and TP53 (Figures 7D, E). Notably, the

mutation frequencies of the most genes (19/20) were higher in

the low-m5C-score subgroup (Figures 7D, E). We then

investigated whether the m5C score could provide accurate

guidance for precision treatments by assessing the differences

in anticancer drug sensitivity between the low- and high-risk

subgroups for identifying potential CRC individualized therapy
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FIGURE 7

Mutation profiles and drug-susceptibility analysis. (A) Correlations between the TIDE scores and clinicopathological features (survival status,
TNM stage, gender, age, and m5C score subtypes). (B) Comparison of the TIDE score between the two m5C score subgroups. (C) Survival
analysis of the CRC patients in the high- and low-TIDE-score groups. (D, E) Waterfall chart depicting the somatic mutation landscapes in the
low- and high-m5C-score groups. (F) Relationship between the m5C score and chemotherapeutic sensitivity. (G) Association between the m5C
score and targeted treatment sensitivity. ***P < 0.001.
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modalities. The IC50 values demonstrated that the CRC patients

with low m5C score exhibited higher level of sensitivity to

common chemotherapeutic drugs, such as methotrexate,

mitomycin C, gemcitabine, cisplatin, camptothecin, and all-

trans retinoic acid (Figure 7F), whereas those with high m5C

score showed higher level of sensitivity to several targeted drugs,

including saracatinib, bexarotene, bryostatin 1, imatinib, and

linsitinib (Figure 7G). These results demonstrate that the m5C

score may contribute to identifying effective antitumor agents

and precision medicine therapies for CRC treatment.
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Construction and performance validation
of the m5C score-based nomogram

To provide clinicians with a quantitative method for

predicting CRC prognoses, we constructed a nomogram that

integrates the risk model and clinical variables, including gender,

age, depth of tumor invasion (T stage), lymph node metastasis

(N stage), and AJCC stage (Figure 8A). We subsequently

validated the predictive accuracy of the nomogram by

measuring the AUC and performing calibration. The ROC
B C D

E F G

A

FIGURE 8

Construction and validation of the m5C score-based nomogram. (A) Development of the nomogram for predicting the 1-, 3‐ or 5‐year OS of
CRC patients. (B) ROC curves for the nomogram for predicting the 1-, 3-, and 5-year OS. (C–E) Calibration plots of the nomogram for
predicting the 1-, 3- and 5-year OS. (F) DCA for the nomogram assessing clinical utility. (G) Kaplan–Meier survival curves on the basis of the
m5C score calculated using the nomogram. *P < 0.05, **P < 0.01, ***P < 0.001.
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analysis revealed AUC values of 0.783, 0.801, and 0.795 for the

prediction of the 1-, 3-, and 5-year overall survival (OS),

respectively (Figure 8B), thus demonstrating the predictive

ability of the nomogram. The calibration plot for the

nomogram predicting 1-, 3-, and 5-year OS demonstrated

good performance relative to that of an ideal model using

TCGA sets (Figures 8C–E). Moreover, the DCA graphically

demonstrated that the nomogram exhibited greater clinical

usefulness and net benefit than the other models, indicating

the powerful predictive ability for clinical application

(Figure 8F). Based on the nomogram, we stratified the patients

with CRC into high- or low-risk subgroups based on the median

risk score. The survival analysis confirmed that the patients in

the high-risk subgroup showed worse prognoses than those in

the low-risk subgroup (Figure 8G). These results suggest that the

m5C score-based nomogram represents a more accurate and

reliable predictive model than conventional staging systems.
External validation of the m5C
score using GEO CRC and
independent cohorts

We verified the reliability of the m5C-based risk model using

a GEO CRC cohort and 40 patients with CRC from our center.

Consistent with the analysis results of the dataset from TCGA,

the patients with CRC from the GSE38832 cohort and those in

the high-m5C-score group showed worse prognoses than those

in the low-m5C-score group (Figure 9A). The correlation

analysis of the therapeutic signatures indicated similar

treatment prediction results in the TCGA-CRC cohort

(Figure 9B). The m5C score, which was also consistent with

the aforementioned results, was negatively associated with most

of the ICB response-related pathways and activities of many

anticancer immunity cycles (Figure 9C). Furthermore, TIICs,

including activated CD8 and CD4 T cells, effector memory CD8

T cells, and type 17 Th cells, were enriched in the low-m5C-score

subgroup, whereas the infiltrating levels of pro-tumor immune

cells (plasmacytoid dendritic cells) were significantly higher in

the high-m5C-score group (Supplementary Figure 6A). The

patients with CRC at AJCC stages III–IV showed significantly

higher levels of enrichment in the high-risk subgroup than in the

low-risk subgroup (Supplementary Figure 6B).

To further confirm the clinical significance of the risk model,

the expression levels of eight m5C-related risk genes were

determined in 40 pairs of CRC tumor tissues and corresponding

normal tissues. The RT-qPCR analysis demonstrated the expression

profiles of these genes, which were visualized using a heatmap. Six

m5C-related risk genes were differentially expressed between the

cancer tissues and adjacent normal tissues (Figure 9D;

Supplementary Table 17). The 40 patients with CRC were

stratified into two subgroups according to the risk formula. The

results indicated that the m5C risk score was significantly correlated
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with the AJCC stage, T stage, and N stage (Figure 9E). In addition,

the patients in the T3-T4 or N1-N2 group showed higher risk scores

than those in the T1-T2 or N0 group (Figure 9F). The patients in

the low-risk group exhibited higher levels of immune checkpoint

genes, including PD-1, PD-L1, CTLA4, TIGIT, and IDO1

(Figure 9G). Consistent with the analysis results of the data from

TCGA, the immunofluorescence results revealed that the patients in

the low-risk group showed a higher percentage positivity and cell

counts of PD-L1 and CTLA4 than those in the high-risk group

(Figures 9H, I). The results of the external validation further

confirmed the effectiveness of using the m5C score as an

indicator of CRC prognoses and the relative immune response.
Discussion

Cancer immunotherapy represents a newly-emerging and

rapidly-growing field in precision medicine for clinical

applications and research settings (36). Significant breakthroughs

in cancer immunotherapy have allowed for a broader

understanding of the influence of the tumors genetic landscapes

on the treatment sensitivity of immunotherapy as a critical

cornerstone for the implementation of individualized cancer

therapies (37). Currently, several promising immunotherapies,

such as those involving oncolytic viruses, immune checkpoint

inhibitors (ICIs), chimeric antigen receptor T cells, and cancer

vaccines, represent alternative strategies for treating various cancers

(38). Compared with the standard treatments, immunotherapy

utilizes and manipulates the immune system of the patient

to attack malignant cells, thereby enabling innate and

adaptive immune factors to identify cancer cells and potentially

initiate tumor-specific immune responses (39–41). Cancer

immunotherapy has achieved a remarkable level of efficacy,

especially in treating solid organ tumors and hematological

malignancies (42, 43). CRC, however, is complex and present a

high degree of TME heterogeneity, which introduces major

variability in immunotherapeutic efficacy. Thus, investigating

TME heterogeneity may facilitate improved prognostic

predictions and precise treatment modalities for CRC. In this

study, we identified two distinct m5C modification patterns in

CRC, each being associated with different biological functions,

immunological properties, and prognoses. To the best of our

knowledge, this study presents the most comprehensive analysis

of m5C regulators. We further developed an m5C risk-score model

to quantify patient m5C subtypes and independently validated this

model using two CRC cohorts.

As the most predominant epigenetic modification, RNA

methylation plays an indispensable biological role in malignant

transformation and cancer progression. Accumulating evidences

have confirmed the regulatory effects of m6A RNA modifications

in the TME and innate immunity of CRC (44–46). Another well-

studied RNA modification is m5C, which is a common epigenetic

modification that is widely involved in cancer initiation and
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progression (19–24). SUMO-2/3-modified NSUN2 reportedly

promotes the progression of gastric cancer by regulating m5C

mRNA methylation (23). Chen et al. developed a single-

nucleotide resolution map of m5C modifications in human

urothelial carcinoma of the bladder and identified high m5C

methylation levels in oncogenes (19). Mechanistically, the m5C

methyltransferase NSUN2 and the m5C reader YBX1 drive cancer
Frontiers in Immunology 15
progression by targeting the m5C methylation site of the 3′
untranslated region of HDGF (19). In esophageal squamous cell

carcinoma, NSUN2 and LIN28B enhance the stability of GRB2

mRNA in an m5C-dependent manner, thereby facilitating cancer

emergence and progression (24). However, comprehensive

analyses of m5C RNA modifications and the TME in CRC has

not yet been reported.
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FIGURE 9

External validation of the m5C score using a GEO CRC dataset (GSE38832) and an independent CRC cohort. (A) Kaplan–Meier survival curve for
patients with low and high m5C scores. (B) Heatmap of the associations between the m5C score and the enrichment scores of several therapeutic
signatures in the GSE38832 dataset. (C) Spearman’s correlation analysis of the m5C score with activities of cancer immunity cycles (left) and
immune-related pathways using the GSE38832 dataset. (D) Heatmap of the eight m5C-related risk gene profiles in 40 pairs of CRC tumor tissues
and adjacent normal tissues. (E) Histogram showing the ratio of the AJCC, T, and N stages between the low- and high-risk groups. (F) Relationships
between the m5C risk scores and clinicopathological characteristics of 40 CRC patients in our cohort. (G) The relative mRNA expression levels of
several immune checkpoint genes were examined using RT-qPCR. (H, I) PD-L1 and CTLA4 expression was detected using immunofluorescence
between the CRC patient samples in the low- (left) and high- (right) m5C-score groups. *P< 0.05, **P< 0.01, ns, no significant.
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In this study, high-throughput sequencing and the HPA

revealed imbalances in the expression levels of m5C writers,

readers, and erasers. Theoretically, these imbalances may lead to

aberrant m5Cmodification patterns, ultimately resulting in CRC

tumorigenesis and progression. Moreover, we found that these

m5C genes were highly interconnected and formed a tight

network of molecular interactions. The cluster analysis

identified two independent m5C modification patterns based

on 18 m5C regulators. The survival analysis revealed

significantly worse prognoses for the patients with CRC in

m5C cluster B compared to those in m5C cluster A.

Additionally, we observed significantly-different TME features

between the two clusters, with cluster-specific DEGs also being

associated with immune-related biological functions and cancer-

related pathways.

Conventional radiotherapy and chemotherapy have yielded

limited therapeutic efficacy in patients with advanced CRC. To

date, three ICIs have been approved by the US Food and Drug

Administration for the treatment of CRC, including the

monoclonal antibodies pembrolizumab and nivolumab, which

target PD-1, and ipilimumab, which targets CTLA-4 (47).

Regardless of the significant advances in immunotherapy for

cancer, substantial prognostic heterogeneity remains prevalent

in CRC, which highlights the crucial contribution of the TME to

CRC-targeted immunotherapy. We, therefore, established a

robust risk-score model on the basis of the m5C-related genes.

The results indicated that the m5C score not only accurately

predicted the prognoses of the patients with CRC but also served

as an efficient predictor of their immunotherapeutic response.

Importantly, the patients in the high- and low-m5C-score

groups presented distinct clinicopathological features,

mutation patterns, immune checkpoint characteristics,

immune cell infiltration, and drug sensitivity. Clinical trials of

several ICIs that target PD-L1, CTLA-4, TIGIT, IDO1, TIM-3,

LAG-3, and VISTA are currently underway for advanced solid

cancers, including CRC (48).

In the high-m5C-score group, the expression levels of

common immune checkpoint genes, including PD-L1, IDO1,

CTLA-4, and TIGIT, were significantly lower than those in the

low-m5C-score group. Moreover, the m5C score was negatively

associated with the activities of many anticancer immunity

cycles and immunomodulators, such as CXCR6, CXCL9,

CXCL10, and CXCL11, which are of crucial importance for

the infiltration of anticancer TIICs. Increasing studies have

assessed the contribution of cytotoxic cells, especially CD8 T

cells (49); however, recent studies have revealed that CD4 T cells

exert their antitumor effects by directly inhibiting the tumor cell

cycle (50–52). Indeed, gdT cells are able to recognize and kill

CRC cells in a major histocompatibility complex-unrestricted

manner (53), thereby inhibiting tumor progression. In the

present study, we found that infiltrating levels of CD4 T cells,

CD8 T cells, and gdT cells were significantly higher in the low-
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m5C -score subgroup, indicating their positive functions in

CRC. The results further demonstrated that the high m5C

score reflected a non-inflammatory phenotype, whereas the

low m5C score reflected an inflammatory phenotype.

Targeted and ICI therapies are recommended as the

mainstream treatment options for advanced mCRC. Despite

the progress in the selection of molecular- targeted drugs

based on specific gene loci for the individualized treatment of

CRC, immunotherapeutic benefits have only been observed in a

small percentage of patients with hypermutated MSI-high/

deficient mismatch repair (MSI-H/dMMR) CRC (~15% of

patients with localized CRC and 4% of patients with mCRC)

(54). Despite there being strong evidence that ICI therapies have

yielded potent and persistent effects in patients with MSI-H/

dMMR CRC, some patients stil l fail to respond to

immunotherapy or respond only partially (55). The optimal

treatment regimen for specific patients remains difficult to

determine; therefore, identifying predictive biomarkers with a

higher degree of accuracy is necessary. We found that the m5C

score may represent a biomarker that is capable of guiding

clinical decision-making and facilitating personalized precision

treatments for patients with CRC.

Our results further indicated that the CRC patients with high

m5C risk score were sensitive to molecular-targeted drugs, with

the findings suggesting that the m5C score may be useful in

guiding the personalization of treatments for patients.

Additionally, we established a nomogram model by

incorporating clinical risk factors and the m5C score, which

further improved prognostic performance. These results

strongly indicate that the application of the m5C risk score for

the prognostic stratification of CRC has great potential and

could lead to better understanding of the molecular mechanisms

underlying CRC, which would further contribute to developing

improved therapeutic strategies.

Despite its promising findings, this study, nonetheless, had

several limitations. All of the transcriptomic and expression data

of the patients with CRC were extracted and analyzed from

public databases (TCGA and GEO). Furthermore, this study

utilized a retrospective analysis, which can introduce inherent

selection bias. To address this limitation in future studies, we will

cooperate with the Hubei Provincial Human Genetic Resources

Collection Center and Hubei Key Laboratory of Intestinal and

Colorectal Diseases to establish our own large-sample dataset for

further evaluation and validation of our proposed model.

Additionally, although we highlighted the use of m5C

modification patterns for predicting CRC TME statuses and

prognoses, we did not identify the associated molecular

mechanisms. In the future, we will evaluate the biological

functions associated with m5C modifications and those related

genes to the regulation of the immune microenvironment, as

well as the precise mechanisms underlying the m5C regulators in

CRC based on the results of this study.
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Conclusions

In summary, these findings reveal the crucial role of m5C

modification patterns in the regulation of the TME in CRC. The

comprehensive analysis indicated that the novel m5C risk scores

reflect the distinct prognostic signatures, clinicopathological

characteristics, immunological phenotypes, and therapeutic

opportunities that may promote the applications of precision

medicine for patients with CRC.
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