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Ferroptosis increases obesity:
Crosstalk between adipocytes
and the neuroimmune system

Sen Zhang, Zhiyuan Sun, Xing Jiang, Zhimin Lu, Ling Ding,
Chengzhi Li , Xuewen Tian* and Qinglu Wang*

College of Sport and Health, Shandong Sport University, Jinan, Shandong, China
Ferroptosis requires not only the accumulation of iron ions, but also changes in

many ferroptosis-related regulators, including a decrease in GPX4 and

inhibition of SLC7A11 for classical ferroptosis, a deletion of FSP1 or GCH1.

Surprisingly, adipose tissue (AT) in the obesity conditions is also accompanied

by iron buildup, decreased GSH, and increased ROS. On the neurological side,

the pro-inflammatory factor released by ATmay have first caused ferroptosis in

the vagus nerve by inhibiting of the NRF2-GPX4 pathway, resulting in disorders

of the autonomic nervous system. On the immune side, obesity may cause M2

macrophages ferroptosis due to damage to iron-rich ATMs (MFehi) and

antioxidant ATMs (Mox), and lead to Treg cells ferroptosis through reductions

in NRF2, GPX4, and GCH1 levels. At the same time, the reduction in GPX4 may

also trigger the ferroptosis of B1 cells. In addition, some studies have also found

the role of GPX4 in neutrophil autophagy, which is also worth pondering

whether there is a connection with ferroptosis. In conclusion, this review

summarizes the associations between neuroimmune regulation associated

with obesity and ferroptosis, and on the basis of this, highlights their

potential molecular mechanisms, proposing that ferroptosis in one or more

cells in a multicellular tissue changes the fate of that tissue.

KEYWORDS

ferroptosis pathway, obesity, neurological dysfunction, inflammatory response,
metabolic disorders
Introduction

Iron metabolism

Iron, which has the highest content of all essential trace elements in the human body,

plays a critical role as a biologically essential component of every living organism (1),

which is closely related to the development of the human body and the occurrence and

development of diseases. Thus, a constant balance requires to be maintained between
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iron uptake, transport, storage, and usage to maintain iron

homeostasis (2). Iron homeostasis involves the action of

multiple cell types, including red blood cells, intestinal cells,

hepatocytes, and macrophages (3). When the iron steady state is

broken, its basic chemical properties lay the foundation for

potential toxicity via the production of reactive oxygen species

(ROS), including hydrogen peroxide (H2O2), hydroxyl radicals

(·HO), superoxide anions (O2
−), and other reaction

intermediates with free radical properties (4, 5). During ATP

production in mitochondria, some of the oxygen consumption

will be reduced through the monovalent route (5), resulting in

the production of the above reactive intermediates. Moreover,

because of its redox properties, iron can just have a “Fenton

reaction” with H2O2 in it, thereby generating extremely reactive

·HO. Furthermore, when ROS exceeds a certain threshold, it

leads to oxidative stress (6, 7); therefore, too much iron can

negatively impact the body. Increasing studies have proved that

iron overload is the key cause of ferroptosis in cells, and the area

of occurrence in the human body is extremely extensive (8).

Additionally, long-term intake of a high-fat diet can lead to iron

accumulation, which may exacerbate the mechanism of onset

(9). The diseases associated with ferroptosis include

neurodegenerative diseases (such as Alzheimer’s disease and
Frontiers in Immunology 02
Parkinson’s disease), ischemic reperfusion damage to the

heart, brain, lungs, and kidneys, and stomach cancer and

breast cancer (10–17).
Mechanisms governing ferroptosis

Ferroptosis, unlike apoptosis, autophagy, and cell necrosis, is a

regulatory form of cell death that depends on iron and ROS. This

form of death was first reported in Brent R Stock well’s lab in 2012

(18). The mechanism of ferroptosis involves the highly expressed

polyunsaturated fatty acids (PUFAs; such as docosahexaenoic acid

and arachidonic acid) on the cell membrane, which are driven by

acyl-Coenzyme A synthase long-chain family member 4 (ACSL4)

and lysophosphatidylcholine acyltransferase 3 (LPCAT3). As a

result, these PUFAs are modified to long chains and re-esterify

them into phospholipids that infiltrate into lipids and membranes,

forming PUFA-PL with carbon-centered phospholipid radicals

(PL•) (19–22) (Figure 1A). Subsequently, non-enzymatic self-

oxidation occurs with molecular oxygen under the catalysis of

the Fenton reaction, which is initiated by iron and H2O2 to

produce phospholipid peroxyl radicals (PLOO•), which are

generated by removing hydrogen from another PUFA to
A B C D

FIGURE 1

Major regulators of ferroptosis. (A) Glutathione peroxidase 4 (GPX4) is the key regulator of classical ferroptosis, and is mainly involved in the
antioxidant axis system xc

--GSH-GPX4. (B) Many studies have focused on system xc-, with SLC7A11 acting as a mediator of system xc-. (C) FSP1
protects cells from ferroptosis through the NAD (P)H/FSP1/CoQ10 system as a result of genetic deletion or pharmacological inhibition of GPX4.
(D) GTP cyclase hydrolase-1 (GCH1) protects cells from ferroptosis mainly through the GCH1/BH4/DHFR pathway.
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generate PLOOH (6, 22). Simultaneously, with the participation of

iron, PUFA-PL undergoes an enzymatic reaction to generate

PLOOH under the direct or indirect catalysis of lipoxygenase

(LOX) and cytochrome P450 oxidoreductase (POR) (23, 24)

(Figure 1A). When PLOOH is not rapidly neutralized as an

PLOH by glutathione peroxidase 4 (GPX4) in time, PLOOH

further reacts with ferrous ions, and the resulting lipid radicals,

such as alkoxyl phospholipid radicals (PLO•) and PLOO•, react

with PUFA-PLs (8). By continuing the non-enzymatic reaction

catalyzed by the previous removal of hydrogen atoms and the

Fenton reaction with molecular oxygen, the production of

phospholipid hydroperoxides (PLOOHs), known as ferroptosis

executioners, continues. This ultimately generates numerous

secondary products and various cascade peroxide chain

reactions, as well as a large accumulation of lipid peroxides

(such as malonaldehyde and 4-hydroxynenoic acid); these

actions have the potential to destroy the integrity of the

membrane, eventually leading to rupture or organelle

membrane and cell death (25). During this process, O2
−

produced by the mitochondrial tricarboxylic acid (TCA) cycle

and the reduction of nitrogen oxides by NADPH produce H2O2

catalyzed by superoxide dismutase (SOD) and participate in the

Fenton reaction of iron (26) (Figure 1A). Simultaneously, O2
− is

also involved in the recovery of iron; PUFA removal of hydrogen

can reduce trivalent iron ions to divalent iron ions, and trivalent

iron ions can be reduced to divalent iron ions under the action of

O2
− to generate molecular oxygen for PUFA-PL oxidation. The

recovery between iron and ferrous is crucial for the Fenton

reaction and lipid peroxidation process (24, 27).

This mechanism of death differs from that of other types of

morphology, genetics, and biochemistry. Morphologically,

ferroptosis is marked by a decrease or disappearance of

mitochondrial crests, rupture and contraction of the outer

mitochondrial membrane, and shrinkage and darkening of the

volume and color of the mitochondria, but the morphological

changes in the nucleus are not obvious (28, 29). In terms of

genetics, ferroptosis leads to changes in iron transport pathways,

RAS/MAPK/Raf pathways, and cysteine transport pathways,

such as those including cyclooxygenase-2 (Cox2), ACSL4, and

NADPH oxidases 1 (NOX1) genes, while also downregulating

GPX4, solute carrier family 7 member 11 (SLC7A11), and

Ferritin (30). In terms of biochemistry, ferroptosis occurs due

a series of preparations, mainly manifested in the reduction of

the antioxidant capacity of cells (18, 29, 31). For example, in the

main inhibitory pathway of iron apoptosis, the system xc
–GSH-

GPX4 antioxidant axis, the upstream regulator system xc
- is

inhibited, and the cystine transport pathway is blocked, resulting

in a reduction in cystine transfer and cysteine reduced by

NADPH (8, 25). As the rate-limiting precursor of glutathione

(GSH), cysteine can cause a decrease in the activity of GPX4 and

a large accumulation of lipid peroxides when deficient, which

eventually leads to ferroptosis.
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Main regulator of ferroptosis

GPX4
Since Scott J. Dixon first discovered and named ferroptosis,

the critical role of GPX4 in the inhibition of ferroptosis in his

study has received widespread attention, mainly in the

antioxidant axis system xc
--GSH-GPX4 (18). Due to GPX4’s

excellent antioxidant capacity, it can detoxify intracellular lipid

and cholesterol hydroperoxide product build-up by using GSH

as a cofactor (32, 33). Furthermore, increasing studies have

proven that GPX4 is the core regulator of ferroptosis (8).

Indeed, as long as part of the GPX4 activity is maintained,

cells lacking other selenoproteins can still survive and

proliferate. However, the loss of GPX4 leads to the lethality of

early embryos in mice. For example, in CAMKIIalpha-driven

GPX4 knockout (KO) mice, mitochondrial dysfunction and

ferroptosis due to chelated lipid peroxidation caused mice to

display spinal motor neuron degeneration, paralysis, and death

within 8 days of knockout (34), suggesting that cellular

ferroptosis can be affected by regulating GPX4. GPX4 is also

regulated in terms of activity and stability levels. GSH, as a

cofactor is a direct factor affecting GPX4 (35), is derived from the

tripeptides of glutamic acid, glycine, and cysteine, and is the

most abundant reducing agent in mammalian cells (36).

Notably, independent of the antioxidant properties of GSH, it

also can regulate the NO steady state, forming nitrosyl

mercaptans (37). In summary, GSH is important for the

biological occurrence of iron-sulfur clusters, preventing

oxidative damage, and directly regulating glucose homeostasis.

When system xc
- is inhibited, obstruction of the cystine

transport pathway can decrease GSH and GPX4, which can

lead to cell death due to ongoing oxidative stress (Figure 1A).

In relation to obesity, genetic variants in GPX4 have been

linked to obesity and inflammation in humans (38, 39),

suggesting a role for GPX4 in metabolic disorders. And studies

have described that impaired GPX4 activity is associated with

obesity, although the biological consequences have not yet been

determined (32). It is certain that obesity leads to the expansion

of adipocytes, causing an inadequate supply of oxygen within AT

and promoting the secretion of pro-inflammatory cytokines and

ROS (40–42). The presence of the antioxidant GPX4 has also

been shown to neutralize the ROS produced by the oxidative

stress of AT and control AT inflammation by preventing lipid

peroxidation (43). Furthermore, the same study also revealed

that the activity of adipocytes GPX4 in obese patients is reduced,

but the consequences seem to more of effect on undifferentiated

adipocytes, but not as obvious for mature adipocytes (32, 43, 44).

As a substance necessary for adipocytes differentiation, the

reduction in GPX4 may affect AT remodeling, which is

manifested by the finding that Gpx4−/−AT mice have larger

adipocytes and a considerably increased body weight compared

to wild-type mice; additionally, GPX4 can inhibits the
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phospholipid peroxidation of adipocytes, although the specific

mechanism is unclear (43). Additionally, increased fasting blood

glucose and insulin resistance were also observed in Gpx4−/− AT

mice, and spontaneously produced impaired insulin signaling in

the liver, resulting in systemic inflammation and disorders of

glucose metabolism (43). In conclusion, there is a strong

association between GPX4 and obesity, and GPX4-centered

ferroptosis may be the key link between GPX4 and obesity

FSP1
Ferroptosis-suppressor-protein 1 (FSP1) is a recently

discovered non-GPX4-dependent ferroptosis inhibitory factor,

which exhibits a different pathway of action from GPX4 in the

process of ferroptosis inhibition, mainly regulated by the NAD

(P)H/FSP1/CoQ10 system (45) (Figure 1C). As a consequence,

both ultimately act on lipid radicals to reduce cellular damage

caused by their excessive accumulation, and the loss of FSP1 can

also increase PLOOHs. Apparently, FSP1 provides another

important pathway for ferroptosis that is not limited to

mitochondria (46, 47). Indeed, the sensitivity of different

cancer cells to GPX4 inhibitors is highly variable, and some

are unaffected by GPX4 (48). Therefore, the emergence of FSP1

may compensate for some of the shortcomings of GPX4.

However, whether there is an FSP1-based pathway at play in

adipocytes without ferroptosis when GPX4 is reduced requires

further investigation. The available results suggest that FSP1 can

play an important role in predicting the efficacy of ferroptosis-

inducing drugs in cancer, and FSP1 inhibitors are considered to

have great potential to overcome ferroptosis resistance.

GCH1
To identify other ways to regulate ferroptosis sensitivity, a new

set of ferroptosis inhibition genes was identified by genome-wide

activation library screening. As a result, a new ferroptosis

inhibition axis with GTP cyclohydrolase-1 (GCH1) as the core

was finally determined, which was found to be mainly regulated

by the GCH1/BH4/DHFR pathway, which also protected cells

from ferroptosis in a GPX4-independent manner (49, 50)

(Figure 1D). However, studies only points to the key role of

BH4 in protecting cells when GPX4 is inhibited, and its influence

on lipid peroxidation is unrelated to its cofactors, but the specific

mechanism remains unclear (50). Currently, the GCH1-based

ferroptosis inhibition pathway only focuses on the therapeutic

feasibility of tumors and cancer cells, with no obesity-related

studies as of yet (49). However, as a polymorphism site for human

and chronic diseases, including diabetes and hypertension, GCH1

can play a role in adipocytes and their related regulatory pathways.

SLC7A11 (xCT)
With the deepening of ferroptosis research, studies have

strengthened the strategy of using the Cystine/Glutamate reverse

transporter SLC7A11 (xCT) pathway to regulate ferroptosis, the

principle of which is also based on the antioxidant axis system xc
--
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GSH-GPX4, but the focus falls on the key precursor system of the

system xc
- (51). The system xc

- is actually a sodium-independent

antiporter, consisting of the heavy chain subunit solute carrier

family 3 member 2 (SLC3A2) and the light chain subunit

SLC7A11 (52, 53). SLC3A2 can anchor SLC7A11 to the plasma

membrane and maintain the stability of its protein (54), while

SLC7A11 can mediate the activity of the reverse transporter of

system xc
- (55, 56) (Figure 1B). The two work together to transfer

extracellular cystine and intracellular glutamate out in a 1:1 ratio,

thereby driving the efficient operation of the GPX4 antioxidant

axis and protecting cells from oxidative stress damage (57, 58).

However, because the function of SLC3A2 is not limited to cystine

transport pathways, studies mainly focus on regulating SLC7A11

to inhibit the ferroptosis resistance of cancer cells (56). In

addition, the activity and expression of SLC7A11 is strictly

regulated by multiple mechanisms, such as transcription factor

4 (ATF4), nuclear factor erythroid 2–related factor 2 (NRF2),

ubiquitin BRCA1 (Breast cancer gene 1)-associated protein-1

(BAP1), the SWI/SNF complex, and rapamycin complex 1

(mTORC1) (51), through which the expression of SLC7A11 can

be upregulated to enhance the antioxidant defense of cells and

inhibit the occurrence of ferroptosis (Figure 1B).

In general, there are four main mechanisms, GPX4, FSP1,

GCH1 and SLC7A11, to help the body resist oxidative stress. Their

operation is also precisely controlled by many regulators, but even

under the conditions of so many pathways, more and more studies

still regard SLC7A11 as the rate-limiting precursors and GPX4 as

the core antioxidant defense to against ferroptosis (8).
Association between obesity
and ferroptosis

Studies found that obesity is closely related to iron metabolism

disorders, which are mainly reflected as an excessive iron level

(59). Ferroptosis caused by iron accumulation is accompanied by

elevated ROS and inflammatory response, insulin resistance and

mitochondrial dysfunction, leading to metabolic disorders and the

development of obesity (60). As a result, the link between obesity

and ferroptosis in different aspects has gradually become clear.

At the iron level, a previous study found that iron

accumulation occurred in the epididymal adipose tissue (eAT)

of polygenic obese and diabetic mice, but did not occur in the

subcutaneous and brown adipose tissue (61). The available data

are sufficient to show that iron accumulation is more obvious in

the pancreas, liver, and heart, all of which are traditional tissues

with excessive iron. Adipose tissue (AT) iron overload is also

closely related to macrophages, mainly reflected in the important

role of macrophages in controlling iron metabolism (62). Studies

have shown that obesity induces increased M1macrophages (M1)

polarization in mice, which may further promote iron deposition,

according to in vitro studies (63). Interestingly, studies have
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identified adipose tissue macrophages (ATMs) with iron-

processing phenotypes, noting that a high-fat diet (HFD)

promotes iron entry into adipocytes and inhibits the ability of

ATMs to process iron (64). These studies also further illustrate the

role of ATMs in the connection between iron and adipocytes. In

addition, another study in mice with high-speed rail diet

intervention also yielded an interesting result, showing that eAT

produced robust remodeling, which was accompanied by AT

weight reduction and a significant increase in iron content. This

further suggests that processes associated with ferroptosis may

play roles in AT remodeling (61). In a word, these findings further

embody the relevant metabolic regulatory network in complex

biological systems, with ferroptosis and obesity caused by iron

accumulation as the connection point, and the parallel occurrence

of the inflammatory response and insulin resistance.

Under an inflammatory environment and oxidative stress, as

obesity progresses, the increased secretion of pro-inflammatory

cytokines and chemokines, such as monocyte chemotin-1, tumor

necrosis factor (TNF) a, and interleukin (IL)-6, lead to a low-grade

inflammatory response throughout the body (65). This is similar to

the environmental changes that accompany ferroptosis. Moreover,

the increased iron is also accompanied by oxidative stress in the

pancreas, liver, and eAT. In polygenic obese mice, iron chelating

agents inhibit inflammatory factors and the production of oxidative

stress, as well as the infiltration of ATMs to improve the

hypertrophy of adipocytes (66, 67), which further indicates that

ferroptosis may occur in AT. Indeed, the development of obesity

and ferroptosis indicates the weakening of the body’s antioxidant

capacity, which in turn leads to a series of metabolic disorders.

Regarding insulin resistance, studies have shown that omental

adipocytes size and insulin resistance are positively correlated, and

long-term obesity induces systemic inflammation and insulin

resistance (68, 69). Moreover, an increase in inflammatory factors

and a decrease in adiponectin may also lead to the interruption of

insulin signaling pathways, reducing insulin sensitivity (70, 71). An

increase in iron storage also causes insulin resistance, and insulin

sensitivity increases after reducing serum iron levels. During insulin

therapy, iron uptake can be increased by increasing the transferrin

receptor 1 (TfR1) in adipocytes (72).

Regarding mitochondrial function, obesity can lead to

mitochondrial dysfunction, an abnormality that mostly occurs in

the liver, muscles, and AT that are associated with high energy,

nutrient, and lipid overload (73). Furthermore, the morphology and

number of mitochondria in obese patients have also changed. For

example, the mitochondria in their skeletal muscle have become

smaller and shorter, while those of white adipose tissue (WAT) are

small and elongated, with an irregular crest, and the larger the

adipocytes, the less mitochondria are present (74–76). Additionally,

mitochondrial dysfunction in AT under obese conditions can

significantly increase respiration and biogenesis, promote fatty

acid oxidation and alter metabolism, all of which lead to the

production of excess acetyl-CoA (77, 78). This is due to the fact

that obesity enhances the production of ROS in mitochondrial,
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the respiratory chain in the mitochondria, as well as DNA (77). In

summary, obesity leads to decreased mitochondrial function and

increased insulin resistance. It is thought that there is a close link

between the two given the known mitochondrial dysfunction

caused by iron accumulation in adipocytes.

The special link between adipocytes and ferroptosis. Although

there are substances, genes, and environmental changes within AT

that are required for ferroptosis. However, there seems to be a

contradictory result between adipocytes and ferroptosis, as shown

by the proliferation of adipocytes despite being under ferroptosis

conditions (79). Therefore, to demonstrate whether adipocytes can

undergo apoptosis in response to oxidative stress, one study treated

mature adipocytes with H2O2 and found that an increase in ROS

enhanced adipocyte apoptosis (80). These results suggest that not

only AT remodeling but also differentiated adipocytes can still be

affected by ferroptosis. So how do adipocytes in AT defend against

ferroptosis? One speculation is that although adipocytes have

reduced GPX4, adipocytes may be similar to some tumor cells,

which still have a high level of GSH in their cells, so that although

adipocytes are in an overall oxidative stress condition, the

remaining GPX4 from GSH is still needed to neutralize large

amounts of ROS and remove some of the lipid peroxides,

resulting in differentiated adipocytes that are not or less affected

by ferroptosis (81). Compared to the former speculation, another

study found that adipocytes can secrete specific fatty acids to induce

ferroptosis resistance in breast cancer cells, and this process was

dependent on the fatty acid synthetase ACSL3, confirming that

breast cancer cells co-cultured with peri-tumor adipocytes showed

resistance to ferroptosis (82). In addition, the team verified the

protection of adipocytes against ferroptosis in triple-negative breast

cancer through animal models. These results provide a new idea as

to why adipocytes in obese AT do not undergo ferroptosis and

continue to proliferate.

In conclusion, on the basis of these studies, this review

speculated that there may be two mechanisms of ferroptosis

leading to obesity: (i) In the autonomic nervous system, vagus

and parasympathetic nerves in some organs or tissues may be

affected by ferroptosis and become dysfunctional, while the

inflammatory factors released from adipocytes lead to excessive

sympathetic activation and hypothalamic neuronal ferroptosis

which promotes the development of obesity through a series of

processes; (ii) Ferroptosis may have occurred in certain anti-

inflammatory immune cells in AT, which allows a large increase

in pro-inflammatory immune cells, further causing systemic

inflammation and insulin resistance, and ultimately leading to the

development of obesity. Unfortunately, although ferroptosis, a novel

mode of cell death, has received widespread attention from

researchers since its discovery, there are still few studies on AT

related to ferroptosis. Most of the studies are still mainly focused on

tumor cells (50), and a certain theoretical system has not yet been

formed, resulting in many specific mechanisms related to it are not

very clear.
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At present, the rapidly rising prevalence of obesity has become a

global problem that needs to be solved. The discovery that AT can

be affected by the process of ferroptosis provides us with another

idea to treat obesity. Therefore, this review will investigate whether

the neurological and immune systems can regulate the ferroptosis

process in AT. Finding out the role of ferroptosis in AT, and thus

provide a new therapeutic target for the treatment of obesity, which

is important for the clinical treatment of human obesity.
Neuromodulation of obesity
and ferroptosis

The nervous system is known to play a leading role in the

regulation of physiological functional activities, but is also closely

related to AT as a result of the dynamic crosstalk between

adipocytes and other types of cells in the highly neurologically

innervated and vascularized tissue matrix (83). Therefore, a large

number of studies in recent years have actively explored the

innervation of AT, and the results have confirmed the presence

of only sensory innervation and sympathetic innervation within AT

(83). Among them, the fat sensory nerve will convey the metabolic

signal in AT to the central nervous system, and then instruct AT
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through the sympathetic nerve (84–86), so that it can carry out the

corresponding lipolysis and thermogenesis according to the

instruction (87, 88) (Figure 2). However, under obese conditions,

the number of nerve fibers within the AT appears to be drastically

reduced, which not only leads one to ponder whether there is some

association with ferroptosis. Besides, the exact mechanism leading

to the reduction of nerve fibers remains unclear. What is known is

that the expansion of adipocytes causes tissue inflammation and

diminished sympathetic signaling (83, 89). This leads to

dysregulation of sympathetic neurotransmitter levels of NPY,

ATP and NE, resulting in a chronic over-activation of

sympathetic nerves, but with reduced sensitivity of b-adrenergic
receptors, resulting in a weakened regulation of AT and a

proliferation of adipocytes. Moreover, cytokines released from

adipocytes such as leptin stimulate AT sensory nerve fibers and

may lead to their hyperactivation and release of inflammatory

factors, further inflammatory stimulation and oxidative stress

may inhibit normal hypothalamic and nervous system function

(89–91). In addition to the innervation within the AT, the

autonomic nervous system is known to populate all organs and

tissues of the body. As a whole, there is also a network of alternating

influences between these autonomic nervous systems and the AT.

For example, in the vagus nerve, although postganglionic neurons
FIGURE 2

Neural regulation of obesity and ferroptosis. A high-fat diet (HFD) leads to increased secretion of pro-inflammatory cytokines such as IL-6 and
IL-8 in adipose tissue (AT), which stimulates AT sensory nerves and subsequent vagal-parasympathetic transmission to the nociceptors, which
then transmit regulatory information directly to AT via sympathetic nerves, as well as by targeting tissues and organs elsewhere in the body to
promote AT lipolysis and thermogenesis. However, the emergence of obesity disrupts these transmission pathways. Parasympathetic: obesity
decreases hepatic GSH, NO levels, pancreatic cholinergic pathway block (Cpd), and cardiac NRF2 and GPX4 levels, which may cause ferroptosis
in hepatic, pancreatic, and cardiac parasympathetic nerves, thus promoting AT amplification. Vagus nerve: part of the parasympathetic nerve.
The presence of obesity may cause hepatic vagal ferroptosis, which further leads to possible ferroptosis of islet and intestinal and gastric vagal
nerves. Sympathetic nerves: obesity leads to over-activation of sympathetic nerves, including cardiac and renal sympathetic nerves, and reduced
levels of the sympathetic transmitters NPY, ATP, and NE, which also reduce their direct innervation of AT. Hypothalamus: AgRP neurons do not
undergo ferroptosis after the knockdown of GPX4, do not undergo ferroptosis after knockdown, yet still resulted in the appearance of obesity,
which was not observed in POMC neurons. Interestingly, AgRP and POMC neurons also led to obesity after inactivation.
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of the vagus nerve may be located outside of AT, studies have found

that some preganglionic axons of the vagus nerve terminate on

neurons of unknown phenotype in the adrenal, celiac, and superior

mesenteric ganglia. Since neurons in these ganglia may contribute

to sympathetic innervation of at least the intraperitoneal AT, this

could also be a potential pathway for vagal innervation. Not only

that, but studies has found ferroptosis in the nervous system (92).

The reason may be related to the high activity of brain nerves. The

high metabolic rate and high oxygen consumption of brain

parenchyma will inevitably lead to the production of a large

number of by-products ROS, and may further cause oxidative

stress (93). At the same time, the brain is relatively limited in

antioxidant factors, but it is also rich in iron, which can react with

endogenous H2O2 to promote lipid peroxidation (94). And

membranes with high PUFA-PL content should be particularly

susceptible to peroxidation, as has been demonstrated in neurons

(93). In addition to this, the iron accumulation seen in the liver of

obese patients is an interesting echo of hepatic parasympathetic

dysfunction. In conclusion, the systemic inflammation induced by

obesity may accelerate the process of ferroptosis in certain neuronal

cells, and this could potentially further promote the development of

obesity (95).

Vagus nerve

The vagus nerve is the main nerve of the parasympathetic

branch (96), which can participate in taste sensation and innervate

most organs, including the liver, stomach, and pancreas, and

regulate circulation, breathing, and digestion by conducting

sensory impulses in organs, particularly those controlling the

activity of the heart muscle, glands, and smooth muscles (97,

98). In terms of the relationship with obesity, studies have found

that in obese humans and rodent models, autonomic imbalances

include excessive activation of the vagus nerve (99, 100), and a

decrease in the mass of WAT is induced after vagus nerve

resection (100). However, this idea, while demonstrating the

ameliorative effect of vagus nerve excision on the association

with obesity (101), is limited by the absence of significant changes

in some lean animals and some populations (98), as well as the

increased occurrence of secondary trauma and mortality after

excision (102). As an important component of regulating

metabolism and immune homeostasis, the vagus nerve can

regulate WAT content through the central nervous system to

control sympathetic peripheral muscle bundles, and can also

regulate the release of GSH and NO to enhance antioxidant

capacity and prevent ferroptosis (36). Thus, the vagus nerve

may be involved in maintaining oxidative homeostasis and

responding to external stimuli or injury. For example, in acute

respiratory distress, ferroptosis has been found in mouse lung

tissue, together with iron accumulation, increased ROS, and lipid

peroxidation (103). The use of electro-acupuncture to stimulate

the Zusanli (ST36) acupoint can activate the a7 nicotinic
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acetylcholine receptor in the lung tissue through the cervical

vagus nerve and sciatic nerve to protect the ferroptosis in the

lung tissue, which also verifies the importance of the vagus nerve

in protecting the oxidative damage of cells (104) (Figure 2). The

vagus nerve can also inhibit the release of pro-inflammatory

cytokines in such a way that mediates selective cholinergic

activation in the inflammatory response, thereby improving

inflammation and obesity (97, 98, 105). Surprisingly, the

emergence of obesity seems to break the protective ability of the

vagus nerve, not only the oxidative damage of organs and tissues

(i.e., the liver and pancreas), but also in terms of transmission

signal interruption and decreased plasticity (98) (Figure 2).

Indeed, some studies have pointed out that this phenomenon

may be an important mechanism for developing obesity (106).

Overall, autonomic imbalances caused by obesity may be

associated with the first occurrence of ferroptosis in the vagus

nerve, which impairs its ability to transmit information collected

by the sensory nerve to the nerve center, as well as its ability to

mobilize GSH and NO to prevent ferroptosis.

Parasympathetic nerve

As another major component of the autonomic nervous system

that neutralizes sympathetic activity, and has a complete mediated

pathway to the pancreas, the parasympathetic nervous system plays

an important role in maintaining metabolic homeostasis, such as

maintaining blood sugar (107). Parasympathetic efferent nerves can

transmit neuropeptides and acetylcholine to the islet liver,

increasing insulin release and liver NO production through

muscarinic receptors and lowering blood sugar. In addition,

despite a lack of evidence of the parasympathetic innervation of

WAT (108, 109), it can still affect WAT through multiple pathways,

and studies have suggested that reduced parasympathetic activity is

associated with obesity (110). Correspondingly, the link between

parasympathetic injury and ferroptosis has gradually became clear.

Diabetes mellitus, which is a complication of obesity, can activate

satellite glial cells of the supracervical ganglia through P2Y

receptors, resulting in increased expression of pro-inflammatory

cytokines such as IL-1b, and causing oxidative damage to the

autonomic nerves such as via an inflammatory response (111,

112) (Figure 2). Among them, oxidative damage to the autonomic

nervous system due to iron accumulation associated with diabetes

may be due to changes in the NRF2-GPX4 pathway in ferroptosis

(113, 114), the transcription factor that regulates SLC7A11 (51) can

effectively prevent oxidative damage in various pathological

conditions upon NRF2 activation (115, 116). Furthermore, both

obesity and diabetes are accompanied by significant increases in

ROS and decreases in NRF2 and GPX4 levels, indicating a

weakening of antioxidant capacity and activation of the

ferroptosis process. Simultaneously, ferroptosis may be involved

in the progression of cardiac autonomic neuropathy (DCAN)

through the P2Y14 receptor (a new member of the metabolic
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receptor family), while P2Y14 targeting naringin can alleviate

DCAN by promoting the NRF2-GPX4 pathway to eliminate ROS

and inhibit ferroptosis (117) (Figure 2). Surprisingly, another study

showed that diabetes-related cardiovascular autonomic damage is

first manifested in the vagus nerve (106), which may involve a

ferroptosis-mediated overall decrease in parasympathetic tone,

ultimately leading to over-activation of the sympathetic nerve and

the worsening development of metabolic complications. In

conclusion, these studies elucidate the role of obesity and diabetes

in promoting autonomic nervous system imbalances and metabolic

disorders through the ferroptosis process (106).

Sympathetic nerve

The sympathetic nervous system plays a key role in regulating

metabolic control as an important hub that connects the brain to

most organs, glands, and tissues, including the heart. Particularly in

regulating AT, which is only innervated by the sympathetic nerves,

while the liver, skeletal muscle, and pancreas are under the control

of the parasympathetic nervous system (118). Studies have shown

that sympathetic hyperactivation is strongly associated with

hyperinsulinemia, impaired baroreceptors, angiotensin II, apnea

syndrome, and adipokines (119). Furthermore, studies have

highlighted that ROS can activate the sympathetic nervous system

(120), suggesting that the sympathetic nervous system may be less

inhibited under high oxidative stress. However, it has also been

shown that sympathetic neurons undergo lipid peroxidation

following cleavage of the p75 neurotrophic factor receptor,

causing degeneration and cell death (121). Considered another

way, sympathetic hyperactivation indicates that the inhibitory

effects of the vagus and parasympathetic nerves have weakened,

which may also be an important mechanism for developing obesity.

In obese conditions, the vagus and parasympathetic nerves may be

damaged due to ferroptosis, which also promotes further

sympathetic activity and autonomic nervous system imbalance.

Furthermore, studies have found that antioxidants can reverse

sympathetic dysfunction, oxidative stress, and hypertension in

male obese rats following intervention with antioxidants (122). It

has also been shown that impaired baroreceptor reflexes are caused

by reduced inhibition of the vagus and parasympathetic nerves

(123). In conclusion, these data show that the overactivation of the

sympathetic nerve under obese conditions is closely related to

ferroptosis of the vagus nerve and the parasympathetic nervous

system. Additionally, the sympathetic nervous system may have a

complex mechanism that inhibits the effects of oxidative stress

represented by ferroptosis.

AgRP and POMC neurons

In addition to the vegetative nervous system described above,

traces of ferroptosis have been found in neurons in some specific

areas associated with obesity. For example, HFD has increased
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secretion of free fatty acids and pro-inflammatory cytokines. When

these pro-inflammatory mediators reach the hypothalamus, they

increased the levels of oxidative stress and neuronal inflammation

in the hypothalamus through processes such as microglia

proliferation (124, 125). Insufficient GSH, the only antioxidant in

the hypothalamus, may cause ferroptosis in some neurons, leading

to further metabolic disorders. Leptin-activated hypothalamic

proopiomelanocortin (POMC) and agouti-related protein (AgRP)

neurons located in the arcuate nucleus are typical (126, 127). The

former increases appetite and the latter suppresses appetite, both of

which are critical for the metabolic homeostasis of the body (128).

Studies have shown that a high-fat, high-sucrose (HFHS) diet

decreased GPX4 expression and activity in the hypothalamus of

mice associated with elevated GPX4 levels in WAT (129).

Surprisingly, the decrease in GPX4 failed to damage the integrity

of both neurons, and mice that only lost GPX4 in AgRP neurons

experienced weight gain, while POMC neurons required for ROS

buffering and metabolic homeostasis were unaffected by GPX4

deletion (129) (Figure 2). This phenomenon is indeed elusive, but it

is speculated that there may be other antioxidant pathways that

inhibit this process. In contrast, another study that specifically

induced the death of AgRP and POMC neurons, profound

metabolic disorders and obesity emerged (129) (Figure 2). In

summary, although the two neurons did not die of GPX4

reduction, the study focused on only one point of GPX4 and did

not delve into other regulators, indicating that there are other

pathways affecting the activity of POMC neurons under obesity

conditions (129). However, this phenomenon also confirms that the

increase in high levels of plasma under previous obesity conditions

can cause POMC neuron stimulation, which will further induce

sympathetic activation. Additionally, these studies continue to

demonstrate that GPX4 deletion can cause oxidative damage to

membranes and exacerbate neuroinflammation. Therefore,

improving obesity by improving oxidative stress caused by

ferroptosis in the hypothalamus and nervous system is an

essential consideration.

Immunomodulation with obesity
and ferroptosis

With the continuous in-depth study of obesity, the importance

of AT immune cells as a key hub for regulating the AT environment

has become recognized. AT immune cells not only promote AT

homeostasis, but also change phenotype and increase their number

to promote the maintenance and development of local AT

inflammation. AT immune cells also secrete pro-inflammatory

cytokines and other pro-inflammatory products into the systemic

circulation, which affect the entire body, thus representing a key

factor in the transition from simple obesity to cardiovascular

disease, type II diabetes, and related metabolic disorder

complications (130). It should be clarified that although the

contribution of immune cells to metabolic diseases is mainly
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concentrated in AT, an effective source of such inflammation also

exists in the liver, intestines, and other metabolic regulatory tissues,

promoting the production of inflammation and obesity throughout

the body through the circulation (131). In addition, AT remains the

most commonly studied source of immune-mediated inflammation

in obesity. In the case of eWAT, an increase in endogenous fatty

acids following adherence to a HFD activates two sensors within

adipocytes, Toll-like receptor 4(TLR4) and inflammasomes, which

causes an influx of neutrophils to enter the eWAT, leading to

increased levels of chemokine and cytokine expression (132).

Among them, the most typical is the chemokine Leukotriene B4

(LTB4), the increased expression of which causes recruitment of

neutrophils, ATMs, T cells, and B cells, which increase expression of

pro-inflammatory cytokines, eventually leading to the development

of eWAT inflammation and obesity (132) (Figure 3). Therefore, in

response to iron accumulation and high levels of ROS within AT,

certain anti-inflammatory immune cells may also be affected by the

ferroptosis process, resulting in their inability to neutralize the
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inflammatory response caused by pro-inflammatory cytokines in a

timely manner. Currently, known immune cells present within AT

include ATMs, T cells (CD4+, CD8+, Tregs), natural killer T cells, B

cells, neutrophils, eosinophils, and dendritic and mast cells (130,

133, 134). Based on current research progress and the association of

these immune cells with obesity and oxidative stress, this review

identified macrophages, T cells, B cells, and neutrophils, which are

closely related to oxidative stress and metabolic disorders, and

sorted out their changes in obesity and these immune cells

complication-related pathways to identify ferroptosis traces.
Macrophages

ATMs are central players in obesity-related inflammatory and

metabolic diseases and can be involved in the regulation of

adipocytes energy metabolism and mitochondrial function

(133), thereby promoting post-inflammatory or post-injury
FIGURE 3

Immunoregulation of obesity and ferroptosis. In the early stages of obesity, HFD stimulates TLR4, a sensor within VAT, and inflammatory vesicles
to release certain signals to promote neutrophil entry into VAT, followed by the release of chemokines (LTB4) by neutrophils to further promote
the aggregation of ATMs, T cells, and B cells in VAT. Simultaneously, their pro-inflammatory phenotype releases numerous pro-inflammatory
cytokines, which increases the levels of ROS, iron, pro-inflammatory cytokines, adipocyte-secreted chemokines, and leads to increased
inflammation due to ferroptosis in some types of anti-inflammatory immune cells. ATMs: obesity impairs the iron reserve capacity of MFehi

macrophages and promotes their polarization toward the M1 phenotype. At the same time, a large number of pro-inflammatory cytokines
also inhibit the upregulation of the NRF2 gene and GSH levels through glucose metabolism and the pentose phosphate pathway in Mox
macrophages, which have antioxidant capacity, resulting in reduced GPX4 levels and ferroptosis in M2 macrophages. T cells: Obesity causes T
cells to release IFN-g and CD40-CD40L to promote M1 and B2 production. Tregs undergo ferroptosis due to reduced levels of NRF2, GPX4,
and GCH1. B cells: obesity promotes the entry of B cells into VAT via the LTB4R1 receptor, whereas B1 cells may also undergo ferroptosis due
to reduced GPX4. Neutrophils: neutrophils activate the CaMKIV/CREMa axis to induce apoptosis spontaneously, which may involve ferroptosis-
related processes.
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repair, as well as tissue remodeling (135). ATMs have two main

phenotypes: M1 macrophages (M1) is considered the culprit of

AT inflammation, can participate in glycolysis to rapidly produce

ATP, and plays a key role in the initiation and maintenance of

systemic inflammation and insulin resistance; and M2

macrophages (M2) uses the effective coupling of respiration in

the electron transport chain to enhance oxidative phosphorylation

(OXPHOS), reduces ROS production, and promotes improved

obesity and systemic glucose homeostasis by inhibiting adipocytes

proliferation (136, 137). Additionally, studies have identified two

new ATMs that are closely related to iron metabolism and

oxidative stress: iron-rich ATMs (MFehi) and antioxidant ATMs

(Mox) (138). Impaired MFehi affects iron distribution, leading to

AT dysfunction and adipocyte iron overload in obese patients;

Mox inhibits oxidative damage by upregulating NRF2-dependent

antioxidant enzymes and producing GSH, which has been shown

to be the main ATMs for lean AT (64, 138).

At present, the interaction between ATMs and ferroptosis is

gradually becoming clear, studies have shown that ATMs secrete IL-

6, TNF-a, IL-1b, and iNOS, which can induce or inhibit the process
of ferroptosis through different routes (139–142). Notably, IL-6 not

only modulates hepcidin to affect the release of stored iron from

ATMs and intestinal absorption, but also reduces transferrin

expression and aggravates iron accumulation by promoting

hepcidin production. IL-6 can even induce the polarization of

ATMs to M1 or M2 (143). IL-1b can also activate hepcidin to

promote transferrin degradation and iron accumulation, which is

also related to the occurrence of ferroptosis (144). In addition, the

ROS produced by ATMs first affect their recruitment and

polarization, especially in cases such as diabetes, ROS induces

ATMs to polarize towards M1 and the release of inflammatory

factors (145, 146). Based on these results, an interesting association

emerged, in that obesity leads to the accumulation of ATMs; indeed,

in most obese individuals, up to half of the cells in the fat pool are

ATMs (147). However, iron accumulation still occurs in AT in

obese patients, which indicates that IL-6 and IL-1b in ATmay cause

induce damage to MFehi and Mox, resulting in high levels of

oxidative stress and lipid peroxidation of AT (64) (Figure 3).

Furthermore, as HFD mice show a decrease in M2 marker

expression, does the inflammatory environment and iron

accumulation cause M2 ferroptosis? Recent reports have found

that GPX4 deletion induces iron apoptosis in M2, while M1 does

not, largely because iNOS is a negative regulator of iron apoptosis

and promotes M1 survival (148). In addition, another study showed

that ATMs taken from the bone marrow died of iron in M0 in the

absence of GPX4 (148). As the original source of ATMs, this

phenomenon also provides a certain basis for the possibility of

ferroptosis of ATMs. In short, AT under obese conditions due to

the presence of many pro-inflammatory factors and iron

accumulation, which may trigger the occurrence of ferroptosis

and inflammation in M2, eventually leads to high rates of

adipocytes proliferation and further development of obesity.
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T cells

Following the identification of macrophages as the culprit of

most inflammatory events, studies have found that when the obese

phenotype is activated, T cells are involved in the inflammatory

response (149, 150). However, more T cells located in visceral

adipose tissue (VAT) play a role compared to those in subcutaneous

fat; this is because VAT contains more immune cells compared to

subcutaneous fat and the main immune cell types in VAT are

ATMs and T cells, which play a more critical role in immune

metabolic homeostasis (151). Similar to ATMs, T cells have both

pro- and anti-inflammatory action types; indeed, Th1 cells have

pro-inflammatory effects (a CD4+ T cell subsets) as do CD8+ T cells,

while Th2 cells and regulatory T cells (Tregs) have anti-

inflammatory effects (152). Tregs are mainly derived from the

thymus gland or peripheral gland and serve to regulate local and

systemic inflammation and metabolism. However, studies have

shown that Tregs in HFD mice VAT decrease with age, and Treg

cells are also significantly reduced in obese patients (153, 154).

Interestingly, another study mentioned the key role of GPX4 in

preventing ferroptosis in activated T cells (155). Thus, under obese

conditions, inhibition of antioxidant enzyme pathways may cause

ferroptosis in activated Treg cells, decreasing their number and

increasing inflammation and metabolic disorders (156).

Surprisingly, according to the previous system, the obesity-

induced oxidative stress should lead to ferroptosis of traditional T

cells, but the number of CD4+ T cells with pro-inflammatory effects

and CD8+ T cells has been found to increased significantly (152).

However, there are currently fewer mechanisms for regulating ROS

in T cells, so it is still difficult to explain how the altered systemic

metabolic environment after obesity affects T cells in the context of

the immune response. However, another study demonstrated that

NRF2 is a key factor in facilitating Treg resistance to ROS (157,

158). HFD inhibits the transcription of key antioxidant genes by

triggering NRF2 translocation into obese mouse Tregs nucleus,

causing a rapid decline in HO-1 expression in Tregs, leading to

enhanced oxidative stress and possible ferroptosis, and causing an

intensification of obesity and inflammatory responses (156)

(Figure 3). Additionally, studies have pointed to the effect of BH4

inhibiting ferroptosis in T cells, and when the rate-limiting enzyme

GCH1 of BH4 is deficient, it will inhibit the proliferation of T cells

(159) (Figure 3). In summary, a large decrease in Tregs under obese

conditions may be greatly related to ferroptosis, which may also fall

on the classic antioxidant axis xc
−-GSH-GPX4, serving to induce

ferroptosis in activated Tregs in this antioxidant pathway.

Simultaneously, GPX4 is essential for the maintenance, immunity,

and proliferation of regular T cells.

B cells

Recently, studies have shown that B cells are also involved in the

regulation of obesity-induced AT inflammation and insulin
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resistance (131, 160–162). As effector cells that produce specific

antibodies, B cells can be mainly divided into B1 and B2 cells;

among which, B2 cells have a pro-inflammatory effect. In an obese

environment, many B2 cells are recruited into VAT through the

action of the chemokine leukotriene B4 (LTB4) and its receptor

LTB4R1, leading to tissue inflammation and the development of

insulin resistance (163) (Figure 3). For B1 cells, B-1b cell subsets and

the anti-inflammatory IgM natural antibodies alleviate dietary

glucose intolerance and obesity metabolic dysfunction (164).

However, among the pro-inflammatory and anti-inflammatory B

cells, obesity is largely characterized by B2 cell accumulation and B1

cell damage within VAT (163, 165). Interestingly, GPX4 prevents

ferroptosis due to lipid peroxidation in B1 cells, but is optional for

maintenance and development in B2 cells (166). Therefore, it is

important to determine whether the high concentration of ROS and

the decline in antioxidant capacity caused by obesity causes

ferroptosis in B1 cells. This is currently uncertain, with many

unexplained mechanisms between AT, GPX4, and immune cells.

It is certain that while B1 cells from the spleen did not die of iron

during GPX4 deficiency, B1 cells taken from the abdominal cavity

of mice experienced a higher degree of ferroptosis at the time of

GPX4 defect (166) (Figure 3). It is worth pondering whether B1

cells in the obesity eAT will also undergo similar changes.
Neutrophils

New research data suggest that neutrophils are also involved in

the development of AT inflammation and insulin resistance, for

instance, by infiltrating AT early in obesity and producing

chemokines and cytokines that promote ATM infiltration (167).

Neutrophil-derived proteolytic enzymes (i.e., myeloperoxidase and

elastase) may also be involved in the initiation of AT inflammation

(132). On this basis, some studies have indicated that an HFD

caused by the NF-kB pathway increases the specific expression of

IL-1b in eWAT neutrophils, which far exceeds the contribution of

ATMs (132). Taken together, these results support the idea that

neutrophils penetrate AT, causing high numbers of ATMs and IL-

1b levels to drive obesity and insulin resistance (132). Surprisingly,

to prevent activated neutrophils from releasing their highly

cytotoxic inflammatory mediators into the tissue environment

and damaging surrounding tissues along the bloodstream,

neutrophils spontaneously undergo apoptosis. Although the

mechanism that triggers this apoptosis remains unclear, the

apoptosis process plays a key role in maintaining immune

homeostasis and eliminating inflammation (168). Furthermore,

neutrophil apoptosis is accompanied by a lack of GSH, and GSH

may play an important role in this apoptosis process.

Correspondingly, treatment with exogenous GSH and LPS was

found to delay apoptosis and reduce the level of the pro-apoptotic

protein caspase-3 (169). Although the relevant data do not prove

the effect of ferroptosis in this process, the effect of GSH infers an

association with ferroptosis. Therefore, to explore whether there is
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an association between neutrophils and ferroptosis, another study

explored the role of GPX4 in neutrophil ferroptosis and identified

two key factors, namely serum autoantibodies and IFN-a (170),

both of which induce iron apoptosis in neutrophils by activating the

CaMKIV/CREMa axis, leading to SLE neutropenia. An increase in

the nuclear translocation of CaMKIV/CREMa decreases GPX4,

which is accompanied by an increase in intracellular lipid-ROS,

eventually leading to neutrophil iron apoptosis (170) (Figure 3).

Although the focus of the study was on systemic lupus

erythematosus, the data demonstrate that ferroptosis can occur in

neutrophils (170). Overall, these data suggest a strong link between

neutrophils and ferroptosis. The accumulation of many neutrophils

in obese AT shows that neutrophils are unaffected by ferroptosis,

which may be similar to other pro-inflammatory immune cells.

However, the role of neutrophil ferroptosis in immunodeficient

diseases is worth considering, particularly whether there are shared

pathways that mediate the process of ferroptosis.
Conclusions and outlook

This review summarizes the characteristics of iron metabolism

in humans, the association between obesity and ferroptosis, and the

neuroimmune regulation associated with obesity and ferroptosis.

While many of these mechanisms are still unknown, there is

growing evidence that ferroptosis plays a key role in obesity and

its complications, including type II diabetes, hypertension,

nonalcoholic steatohepatitis, atherosclerosis, and obese

cardiomyopathy (171). Moreover, ferroptosis may not only play a

direct role in AT, but also indirectly promote the development of

obesity through the inflammatory response and insulin resistance

caused by liver autonomic and immunomodulatory disorders

(Figure 4). Indeed, ferroptosis occurs through the intersection of

multiple pathways to form an intricate regulatory network with

obesity, so that one or more cells in the AT ferroptosis has the

potential to change the fate of the entire tissue development.

Therefore, research related to obesity with different ferroptosis

targets is constantly emerging, and its specific mechanisms are

gradually becoming clear. In addition to this, research into

cuprotosis, which is similar to ferroptosis, has also appeared in

recent years. As the name suggests, this is a form of cell death

caused by copper, in which copper ions directly bind to protein

lipoylation components in the tricarboxylic acid circulation

pathway, causing abnormal aggregation of lipoylated proteins and

loss of iron-sulfur cluster protein, resulting in protein toxic stress

responses and cell death (172). Interestingly, the cuprotosis

approach to cell death caused by the tricarboxylic acid cycle is

similar to ferroptosis, in that ferroptosis also involves mitochondrial

dysfunction and the production of excess acetyl-CoA. Thus, it is

worth exploring whether the development of cuprotosis is indirectly

related to ferroptosis. Ultimately, the current research on both

ferroptosis and cuprotosis is still in its infancy, and it is not yet

possible to confirm their specific mechanisms. However, the
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performance of nerve and immune cells involved in their action

process still proposes novel therapeutic targets for obesity and

related metabolic diseases, as well as cancer. With the

continuation of research, the mechanism of ferroptosis and

obesity metabolic disorders will likely be deciphered in the near

future, opening up the option to reasonably mediate cellular

ferroptosis through accurate scientific targets for treating obesity.
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FIGURE 4

In VAT, HFD leads to an increase in ferroptosis-related factors, which may further contribute to the development of obesity from both
neurological and immune aspects.
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