
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Mahbuba Rahman,
McMaster University, Canada

REVIEWED BY

Trupti Pandit,
Alfred I. duPont Hospital for Children,
United States
Ramesh Pandit,
Penn Medicine, United States

*CORRESPONDENCE

Yunjiao He
heyj@sustech.edu.cn
Peng George Wang
wangp6@sustech.edu.cn

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Vaccines and Molecular Therapeutics,
a section of the journal
Frontiers in Immunology

RECEIVED 21 September 2022
ACCEPTED 12 October 2022

PUBLISHED 27 October 2022

CITATION

Papukashvili D, Rcheulishvili N, Liu C,
Wang X, He Y and Wang PG (2022)
Strategy of developing nucleic acid-
based universal monkeypox
vaccine candidates.
Front. Immunol. 13:1050309.
doi: 10.3389/fimmu.2022.1050309

COPYRIGHT

© 2022 Papukashvili, Rcheulishvili, Liu,
Wang, He and Wang. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 27 October 2022

DOI 10.3389/fimmu.2022.1050309
Strategy of developing nucleic
acid-based universal
monkeypox vaccine candidates

Dimitri Papukashvili †, Nino Rcheulishvili †, Cong Liu,
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Until May 2022, zoonotic infectious disease monkeypox (MPX) caused by the

monkeypox virus (MPXV) was one of the forgotten viruses considered to be

geographically limited in African countries even though few cases outside of

Africa were identified. Central and West African countries are known to be

endemic for MPXV. However, since the number of human MPX cases has

rapidly increased outside of Africa the global interest in this virus has markedly

grown. The majority of infected people with MPXV have never been vaccinated

against smallpox virus. Noteworthily, the MPXV spreads fast in men who have

sex with men (MSM). Preventive measures against MPXV are essential to be

taken, indeed, vaccination is the key. Due to the antigenic similarities, the

smallpox vaccine is efficient against MPXV. Nevertheless, there is no specific

MPXV vaccine until now. Nucleic acid vaccines deserve special attention since

the emergency approval of two messenger RNA (mRNA)-based coronavirus

disease 2019 (COVID-19) vaccines in 2020. This milestone in vaccinology has

opened a new platform for developing more mRNA- or DNA-based vaccines.

Certainly, this type of vaccine has a number of advantages including time- and

cost-effectiveness over conventional vaccines. The platform of nucleic acid-

based vaccines gives humankind a huge opportunity. Ultimately, there is a

strong need for developing a universal vaccine against MPXV. This review will

shed the light on the strategies for developing nucleic acid vaccines against

MPXV in a timely manner. Consequently, developing nucleic acid-based

vaccines may alleviate the global threat against MPXV.
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Introduction

Widely neglected disease– monkeypox (MPX) deserves remarkable attention since it

crossed African borders and cases have increased fast. MPX is a zoonotic infectious

disease characterized by smallpox-like symptoms but with less severity and a lower

fatality rate. Monkeypox virus (MPXV) belongs to the Orthopoxvirus genus in the family
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of Poxviridae and has two clades– West and Central African

clades. Remarkably, the Central African clade has more severe

outcomes and a higher mortality rate, up to 11% (1, 2).

Furthermore, it is more severe in younger children where the

mortality rate can reach up to 15% (1, 3). MPXV that is spread

outside of Africa represents the West African clade which has

milder symptoms and a significantly lower mortality rate, ~1-

3.6% (2–4). Besides, the recent outbreak demonstrated that the

virus causes more mortality in developing endemic countries

compared with developed countries probably because of the less

capable health system (2). MPXV was first identified in macaque

monkeys in a Denmark research facility (5). Since then, this

infectious disease is called “MPX”. However, the natural hosts of

this virus are considered to be rodents (6).

The first human case was reported in 1970 during the active

smallpox surveillance in Bokenda, a village in the Democratic

Republic of Congo (DRC) (also called Zaire). The infected

patient was a 9-month-old child whose sample was sent to the

World Health Organization (WHO) Smallpox Reference

Centre in Moscow and eventually revealed MPXV by

isolation. Interestingly, the patient’s family admitted that

monkeys were eaten occasionally as a delicacy but they were

not able to recall if it happened during the last month or

whether the child had any contact with the monkey in recent

times (7). Importantly, the boy was not vaccinated against

smallpox unlike the other members of the family (8). After that,

MPX outbreaks mainly occurred in West and Central Africa

until 2003, following the import of infected prairie dogs from

Ghana to the United States (US). Remarkably, those dogs were

housed or transported together with African rodents from

Ghana. In total, 47 MPX cases were reported with no death

(9, 10). In 2021, two cases of MPXV were reported in the US,

both imported from Nigeria (11, 12). Apart from the US, few

single MPX cases were reported in different countries such as
Frontiers in Immunology 02
the United Kingdom (UK), Israel, and Singapore (3, 13–16).

All were related to travel to Africa, particularly Nigeria.

However, since May 2022, the confirmed cases of MPXV

dramatically increased outside of Africa, and currently, it is a

global concern. WHO declared the MPX outbreak a global

health emergency on July 23, 2022 (17). The timeline of MPXV

spread since 1958 is given in Figure 1.

MPXV represents a linear double-stranded DNA (dsDNA)

virus and it has two forms like other poxviruses– intracellular

mature virus (IMV) and extracellular enveloped virus (EEV).

MPXV has a large DNA genome (18) and is quite stable in the

environment as DNA viruses mutate less frequently than RNA

viruses (5, 19). Until 2022, the spread of the virus via secondary

transmission outside Africa was limited (20). The current non-

endemic MPXV outbreak is the first and largest outbreak to date

that is different from the previous waves as an intensive human-

to-human transmission takes place (3). The MPXV can be

transmitted via exposure sources such as scratches and bites

from an infected animal, saliva, respiratory excretions, contact

with the lesion exudate, or even feces (8, 21). Except for the

similarities to the symptoms of smallpox, unlike it, the clinical

manifestation of MPX also includes lymphadenopathy. The rash

appears 1 to 3 days after the onset of fever and lymph node

enlargement. It can be distributed all over the body but mainly

concentrated on the extremities (8), genitals, and anus (3,

22–25).

Despite the availability of a smallpox vaccine that has high

efficiency to MPXV, there is no specific vaccine for MPXV.

Hence, it is urgent to develop a strategy for designing a universal

MPXV vaccine for further unexpected epidemics/pandemics

preparedness. Nucleic acid vaccines, particularly mRNA

vaccines have elicited high efficiency against ongoing

coronavirus disease 2019 (COVID-19) pandemic (26–31).

Moreover, DNA vaccines also show great results (32–36), e.g.,
FIGURE 1

Timeline of MPXV from the first identification until the current outbreak.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1050309
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Papukashvili et al. 10.3389/fimmu.2022.1050309
India has approved a DNA vaccine against severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) (37).

Nucleic acid vaccines have a number of advantages compared

with traditional vaccines. Current review addresses the MPXV

classification, structure, pathogenesis, and the strategy for

designing nucleic acid-based universal vaccine candidates

against MPXV.
Monkeypox viruses– classification
and structure

Along with MPXV, the genus Orthopoxvirus comprises three

more human-pathogen species: variola virus (VARV)– the

causative agent of smallpox, vaccinia virus (VACV), and

cowpox. VARV and MPXV often cause life-threatening

diseases, while VACV and cowpox are usually associated with

local lesions. Out of two clades, the West African clade of

MPXVs is characterized with less antigenic drift and virulence

(38, 39). The Central African clade (clade 1) which is particularly

endemic to the Congo Basin causes more severe symptoms of the

disease as it is more virulent and transmissible (40, 41). The

MPXVs isolated since 2017 are categorized as a clade 3 which

along with clade 2 belongs to the West African clade (41, 42).

MPXVs identified during the 2017/2019 outbreaks belong to

lineages A.1, A.2, and A1.1, while MPXVs isolated during the

current multi-country outbreak belong to lineage B.1 (41, 43).

Importantly, clade 3 is characterized by the high number of

mutations allowing increasing the adaptability to humans (42).

MPXV like other poxviruses is a large (~280 nm X ~220 nm)

(13), brick- or oval-shaped enveloped virus. The viral core is

dumbbell-shaped and contains the enzymes necessary for

uncoating and replication as well as the large ~197 kb long

viral genome that is a linear dsDNA comprising over 190 open

reading frames (ORFs) (3, 18). The MPXV has a complex

structure and its genome is not fully characterized. Although
Frontiers in Immunology 03
there are at least 90 essential ORFs, most of the ORFs still need to

be identified and studied (3, 44) (Figure 2). Like other

poxviruses, MPXV also has two forms–EEV and IMV. EEV

has an additional outer membrane and is considered to play a

major role in early dissemination while IMV is released during

the cell lysis. Both forms induce the infection (45, 46).
Infection, pathogenesis, and
clinical manifestation

After MPXV transmission through contact with an infected

animal, human, or contaminated objects, the virus enters the body,

disseminates systematically viamonocytic cells, and can infect most

mammalian cells (47). According to the clinical studies, lymphoid

tissues in the neck and throat represent the primary replication

areas for MPXV. After the primary lymphatic dissemination of the

virus, liver and spleen are the major targets for the infection. The

spread of the virus into small dermal blood vessels gives rise to the

skin infection and lesions (48). The extracellular proteins of the

poxviruses attach the glycans (laminin, heparin, and chondroitin

sulfates) of host cells (49–51). H3L (heparan-binding surface IMV

membrane protein), A29L (heparan-binding IMV surface

membrane fusion protein), and E8L (chondroitin sulfate-binding

IMV surfacemembrane adsorption protein) are among the proteins

that are responsible for the attachment (49, 51). After the pH-

dependent fusion and entry into the host cell, viral transcription

takes place. Notably, transcription occurs via the viral DNA-

dependent RNA polymerase. Hence, unlike other DNA viruses,

MPXV does not need to be transported into the nucleus, instead,

with its own machinery, the transcription takes place in the

cytoplasm. Following transcription, translation occurs on the

ribosomes of the host cell (52, 53). The majority of IMVs remain

intracellularly and are released only upon the cell lysis while some of

them become enveloped (intracellular enveloped virus (IEV)) by the

additional outer membranes derived by the endoplasmic reticulum
FIGURE 2

The general structure of MPXV.
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or Golgi apparatus. After theMPXV gains an additional membrane,

it is either transported into the neighbor cell or outside the cell and

becomes EEV (54). It is known that EEV infects the cells more

efficiently compared with the IMV (55). Usually, the incubation

period of MPXV lasts for approximately two weeks (56) and

typically it is resolved within 2-4 weeks (22).

The MPX is characterized by similar symptoms as other

poxviruses along with certain distinctive features. The common

symptoms include fever, chills, body- and headaches, fatigue,

sore throat, and rash that becomes papules and crust later while

healing. Because of these similarities, MPX is often misdiagnosed

with other poxviral diseases. The main difference between MPX

and other poxvirus disease manifestations is that MPXV

infection causes enlargement of lymph nodes before the

development of rash (57–61). The rash is presented all over

the body, usually concentrated on the face and extremities,

however, the current multi-country outbreak of human MPX

demonstrated the new tendency of atypical presentation. During

the 2022 MPXV outbreak the lesions are usually localized in the

genitals and/or anus of the infected patients (3, 22–25) and

patients experience extreme rectal pain and penile oedema (62,

63). The complications of the MPX disease may be even life-

threatening, e.g., encephalitis, sepsis, etc. (22). Besides, MPXV

can be vertically transmitted making pregnant women and fetus

vulnerable (48). Unfortunately, the lack of surveillance and

health care in countries of Africa greatly contributes to the

underdiagnoses of MPX and the spread of the virus, meaning

that the numbers of daily cases have been more likely much

higher than the officially recorded numbers (2). Notably, during

the current outbreak, more MPX cases are detected in men who

have sex with men (MSM) (62, 64–67). When the MPX cases

were identified in Africa before spreading the virus outside the

continent, it was notable that more confirmed cases were male.

E.g., When 760 cases were detected in DRC during 2005-2007

through the surveillance program, the male patients (62.1%)

predominated females (68). Martinez et al. have revealed that in

Spain, a region of Madrid, by June 2022, 508 MPX cases were

identified out of which 99% were men. 84.1% of the total number

of cases had condomless sexual intercourse with multiple

partners before the onset of the MPX symptoms. 93% of them

were men who had sex with men. The distribution of the rash

indicates that this type of close physical contact plays a major

role in disease transmission (69). Remarkably, the tendency of

smallpox vaccination among MSM is increasing (70). The

illustration of MPX symptoms is given in Figure 3.
Reasonings of 2022 MPX outbreak

On the one hand, the global concern has increased as MPXV

crossed the African borders and cases have been increased fast,

especially, since May 2022. However, it should not be considered an

unexpected and unpredicted outbreak as there were many warning
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signs before MPX spread worldwide. Before the current outbreak

took place, there was some favorable basis for MPXV to be

disseminated worldwide. Noteworthily, a few months earlier before

MPXV turned out into the center of global attention, Bunge et al.

systematically reviewed human MPX epidemiology changes. They

summarized that MPX cases were escalating, especially in DRC but it

was also spreading to other countries, and besides, the median age

was growing from young children to young adults (71).

There are several possible reasons that laid the groundwork

for spreading MPXV worldwide in an unusual manner since

May 2022. Some of the reasonable assumptions are: increased

animal trade and making a favorable environment for crossing

species barriers (8); increased international travel (3); long-term

cryptic dissemination of MPXV in humans and animals in non-

indigenous countries (42) along with the lack of the surveillance

programs and less funding for health care in endemic countries

(8); introduction of the virus in non-endemic countries by the

super-spreader events (42); vanishing the global immunity

against smallpox due to the eradication of smallpox infection

and vaccination cessation since 1980 (5, 8, 72, 73) and acquiring

the clinical relevance of MPXV (74); affected immunity due to

the COVID-19 pandemic along with the increased adaptability

of MPXV via increased mutation rate. The possible reasons for

2022 MPXV multi-country outbreak are illustrated in Figure 4.

As the smallpox vaccine is also effective (up to 85%) (74) in

preventing MPXV and today approximately 70% of the world

population is unvaccinated to smallpox and lacks vaccine-derived

immunity (3), this reason seems to be one of the most rational for

the current MPXV outbreak. Moreover, most of the MPX patients

are under 50 and have never been vaccinated against smallpox.

Interestingly, Adler et al. performed a retrospective observational

study and found that there were 7 MPX patients registered in the

UK from 2018 to 2021. Four of them acquired the disease outside,

while 3 of them were in the UK. Out of these 3 patients, 2

developed the symptoms after arriving from Nigeria while the

third patient was a healthcare worker who got MPX symptoms 18

days after contact with one of the other patients while taking care.

More importantly, the third patient was vaccinated against

smallpox (56). This also underlines the fidelity of long-term

cryptic dissemination of the MPXV before the 2022 outbreak.

All the abovementioned reasons indicate that the 2022 MPX

outbreak was expected to occur.
Prevention and treatment

The genome sequence of currently spread MPXV was

reported on May 19, 2022, and was identified as a virus of the

West African clade (67). Although this clade is characterized by

less mortality and milder forms of the disease (75), it can still

cause considerable morbidity and mortality. MPXV is still not a

sufficiently studied virus and the treatment and prevention

strategies are based on the methods used for the treatment of
frontiersin.org
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other Orthopoxviruses such as smallpox. E.g., Matias et al. have

demonstrated that a pan-Orthopoxvirus inhibitor tecovirimat

(TPOXX) which is approved by food and drug administration

(FDA) for treatment of smallpox (76) could treat hospitalized

MPX patients (77). Alternatively, there is another FDA-

approved drug brincidofovir for the treatment of smallpox

which is under investigation and has already shown efficacy

against MPX inMPXV prairie dog models (78, 79). Additionally,

cidofivir has demonstrated efficacy against Orthopoxviruses in

vitro and in vivo studies (80–82). As the VAC immune globulin

intravenous (VIGIV) is licensed by FDA for the treatment of

complications caused by VAC vaccination, it is also considered

one of the reasonable drug targets against MPXV for
Frontiers in Immunology 05
investigation (82). Currently available vaccines are JYNNEOS

(VACV-based) and ACAM2000 (VACV-based) that are

originally developed against the smallpox virus (83, 84).
From variolation to nucleic
acid vaccines

In 1774, the time when smallpox was spread, in the UK,

farmer Benjamin Jesty was the first to immunize his family with

material obtained from the cattle infected with cowpox (animal

virus) to protect from smallpox (deadly human virus). As a

result, all of them stayed healthy despite the numerous exposure
FIGURE 4

Possible reasons for 2022 MPXV multi-country outbreak.
FIGURE 3

Pathogenesis and clinical manifestation of MPXV.
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to the smallpox virus (85). In 1796, key advancement in

vaccinology took place. In the UK, Edward Jenner used a

substance taken from the cowpox lesions of young dairymaid

to inoculate an 8-year-old boy named James Phipps. Later,

Edward Jenner inoculated the boy with the substance obtained

from a fresh smallpox lesion and no disease was developed (85).

As the word for a cow in Latin is “Vacca” and cowpox was used

for the immunization against smallpox, Edward Jenner called

this immunization procedure vaccination (85). He was the first

person to confer scientific status on this new procedure and pave

the way for the following scientific studies. This was the historic

origin of immunization even though viruses as the causative

agents of diseases were not yet identified (86). Smallpox which

killed over 300 million people in the 20th century was finally

eradicated thanks to Edward Jenner’s enormous contribution

(86). Interestingly, before this milestone, another turning point

that had laid the groundwork for the development of

immunization was variolation (inoculation)– an ancient Asian

technique of infecting people with fluid from the smallpox

pustules of a patient with a mild form of the disease. This

strategy was also introduced in Europe, particularly, in the UK

where Edward Jenner had experienced variolation himself when

he was a little boy (87, 88). Several decades after the development

of the first vaccine against smallpox (1798), in 1885, Louis

Pasteur developed an inactivated virus vaccine against rabies

(89). This is when the era of vaccinology and preventive

medicine was launched. Anti-rabies vaccine continues saving

millions of potential victims globally. Later in 1937, Max Theiler

worked on the attenuation of the yellow fever virus and laid the

groundwork for using live attenuated viruses for immunization.

It was followed by the development of a series of live attenuated

vaccines such as measles, rubella, varicella, etc. (86).

World scientists have kept advancing the prophylactic and

therapeutic vaccinology all the time and the morbidity and

mortality caused by various infectious diseases kept decreasing.

Except for the physically or chemically inactivated and live

attenuated vaccines, subunit vaccines comprising purified

antigens, toxoid vaccines (inactivated bacterial toxins), as well

as nucleic acid vaccines have been developed (90). Indeed, since

the COVID-19 global pandemic has emerged, the new epoch of

next-generation vaccines has begun. Evidently, the mRNA-based

approach is advantageous owing to its high efficacy, safety, rapid

development, low-cost, and cell-free manufacturing (26, 27, 91).

In 1987 a key experiment was done by Robert Malone when he

mixed mRNA with the synthetic cationic lipid incorporated into

the liposome resulting in the successful transfection into the

NIH 3T3 mouse cells and expression (92). Later in 1997

biochemist Katalin Kariko and immunologist Drew Weissman

worked on the development of a human immunodeficiency virus

(HIV) vaccine based on mRNA technology but as a result, a

strong inflammatory response was observed in mice. Hence, they

worked on the nucleoside modification and their approach was

successful as mRNA was capable to escape innate immune
Frontiers in Immunology 06
response and increase the translation efficacy (93). Ultimately,

the effective mRNA vaccines against COVID-19 that have

emergency authorization– BNT162b2 (developed by

BioNTech/Pfizer) and mRNA-1273 (developed by Moderna),

contain the modified nucleobase N1-methylpseudouridines

(m1Ys) that modulates immune evasion, protein production,

and effectiveness (94).

Along with the mRNA, DNA vaccines should not be forgotten

as well. Both nucleic acid vaccines carry genetic information of the

viral antigen into the host cells and allow them to produce the

corresponding protein. This helps the body to develop

immunological memory and to fight the real virus in a timely

and effective manner in case of exposure (90, 95). mRNA needs to

be delivered in the cytoplasm of the host cell to be translated into

the target protein while DNA vaccine needs to be transported into

the nucleus where it will be transcribed and after translocation of

mRNA into the cytoplasm translation into the protein will take

place (96). On the other hand, the time of DNA vaccine

development from the design to commercialization is shorter

(33). DNA vaccines, are considered to be safe (97), and compared

to mRNA vaccines they elicit more stability at ambient

temperatures (98). There are already approved DNA vaccines

for veterinary use against highly pathogenic H5N1 influenza A

virus in poultry (98), West Nile virus in horses, etc. (99). Same as

in mRNA vaccines, the first human DNA vaccine was also

approved for SARS-CoV-2 for emergency use in India (37).

Additionally, there are a number of DNA (37, 100) and mRNA

(101, 102) vaccines in clinical development.
Need for vaccine development

For many years MPXV was considered to be geographically

limited and it was not the center of foci for scientists. It recently re-

emerged as the cases increased rapidly outside of Africa. This

should be a wake-up call for other viruses as well, such as

Crimean-Congo hemorrhagic fever (CCHF) virus, Zika, Ebola,

etc. Fortunately, out of two major clades of MPXV, the West

African clade is spread which is less severe compared with the

Central African clade. Interestingly, the fatality rates for these two

clades have a big difference as it is mentioned above (71).

Nevertheless, we are not secure that the Central African clade of

MPXV will never become an unpredictable deadly pandemic. It is

also noteworthy that the MPX outbreak in Nigeria (West Africa)

during 2017-2018 reported 122 confirmed cases with 7 deaths out

of whom 4 were HIV-positive with poor disease control (103).

Gay or bisexual men should be more careful and it is

recommended for them to take active preventive measures such

as vaccination. Even though it is reported that the smallpox

vaccine provides protection against MPXV (104, 105), cases of

MPX disease manifestation in smallpox-vaccinated patients are

still observed (106). Moreover, rare but serious side effects such as

myocarditis and pericarditis are still reported and certain groups
frontiersin.org
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of population are vulnerable to vaccination. Besides, the first and

the second doses of JYNNEOS are administered 28 days apart. As

it is unclear whether the first dose is enough for the sufficient

efficacy, in case of post-exposure vaccination, 28 days is too late to

protect from the MPX disease. Importantly, the risks of creating

new virus strains via exchanging genetic information when

infected with MPXV in vaccinated individuals is not

understood. Moreover, the rate of recombination of the genes

from live or attenuated poxvirus-based vaccines with MPXV is

unknown (48). Hence, the specific, truly universal vaccine

development for MPXV is essential. Additionally, the case of

human-to-dog transmission of MPXV has already been detected

which makes the eradication of the outbreak even more difficult

(107). Moreover, if we observe the rationale of the tendency of

infection outbreaks, we should appreciate the danger of other

relatively forgotten viruses such as smallpox that has been already

eradicated. If the MPXV emerged because of the wanned

immunity against smallpox, smallpox itself with a mortality rate

of 10-75% (108) might also re-emerge with a much deadlier

outcome. Furthermore, although, MPXV is usually resolved by

itself, the current international outbreak showed that it might be

life-threatening as well (106). Indeed, MPXV belongs to biosafety

level 3 pathogens according to the EU regulations and is

categorized as a high-threat virus (109). Alarmingly, the

COVID-19 pandemic still exists and infects hundreds of

thousands of people daily which makes the world population

more vulnerable to MPXV. The high mutation rate of MPXVs

isolated during the recent outbreak (42) along with all the

abovementioned indicates the urgent need for developing

specific, universal MPXV vaccine candidates to ultimately

control this emerging virus and be prepared for any sudden

outbreak. Considering all the above-stated information along

with the extremely advantageous characteristics of nucleic acid-

based vaccines, developing a new, next-generation MPXV vaccine

certainly makes sense. The efficacy, safety, and simple and rapid

production will make the nucleic acid-based MPXV vaccine

clinically and socio-economically valuable.
Design of potentially universal
MPXV vaccine based on
conserved elements

Nucleic acid vaccines do not require a complicated

manufacturing process as after the immunization, the body

becomes a bioreactor of the viral antigen. Thus, the process of

vaccine development is cell-free, simpler, cost and time-effective.

Above all, these types of vaccines are favorably safe. In order to

design a potentially universal vaccine that will be effective against

MPXV, VARV, and VACV, making the multi-epitope vaccine

based on the conserved elements of the reasonably selected

antigens seems to be the excellent way. First, the antigens should
Frontiers in Immunology 07
be selected according to their function in viral infection. In case of

MPXV, the antigens listed in Table 1 seem to be reasonable targets.

After selecting the antigens, the conserved sequences of the selected

viral proteins should be determined via immunoinformatics tools

(112–114). Luckily, there is a number of immunoinformatics

approaches that can be used. The experimentally tested epitopes

containing these conserved sequences can be found or predicted on

the immune epitope database (IEDB) (115). After the final mRNA or

DNA construct is designed using the preferable epitopes and optimized

via selecting certain 5’ and 3’ untranslated regions (UTRs), proper

linkers, and immune-modulator adjuvants (116), again

immunoinformatics analyses should be conducted such as prediction

of vaccine structure, immunogenicity, protectiveness, allergenicity,

physicochemical properties, receptor-binding capacity, immune

response caused via immune simulation, etc. (117–130). This will

save time to anticipate the potential outcome of the designed vaccine.

Once the results are favorable, the in vitro and in vivo studies will

eventually validate the protectiveness of a potentially universal vaccine

against MPXV. For the experimental validation, the following steps are

proposed to be done: plasmid DNA expressing the gene of interest is

synthesized and transformed into DH5a competent E. coli strain for

amplification. It is followed by the extraction of plasmids from bacterial

cells and purification. When the successful protein expression is

confirmed via mammalian cell transfection, the plasmid can be used

as a DNA vaccine for further in vivo studies or it should be linearized

and in vitro transcribed into mRNA. mRNA is capped (5’-cap) for

stability, protection from degradation, and facilitation of ribosomal

recruitment (94). After mRNA is purified, its expression levels should

be tested via cell transfection that can be followed by encapsulationwith

the proper delivery system such as lipid nanoparticles (LNPs) (28) and

animal immunization experiments can be proceeded. Cellular and

humoral immune responses elicited by the mRNA vaccine and the

protection after viral challenges should be evaluated with the proper

analyses. The outline of the development of a universal nucleic acid

vaccine against MPXV is illustrated in Figure 5. In terms of mRNA

vaccine side effects, it mainly depends on the dosage. Remarkably, this

problem might be solved with self-amplifying (saRNA) or trans-

amplifying RNA (taRNA) vaccine development that represents the

next-generation nucleic acid vaccines owing to their lower dosage

requirements. E.g., Vogel et al. demonstrated that 64-fold less material

is needed for inducing the same immunity with saRNA compared to

conventional mRNA vaccine against influenza virus (131). Compared

with the mRNAmolecule (~2000 nt), saRNA is longer (~10,000 nt) as

besides the gene of interest, it contains the viral replicase genes which is

based on the four non-structural proteins (nsPs) of alphaviruses. The

presence of nsPs replicon, allows the molecule to be self-amplified in

the host cell, producing the great number of desired antigens (132, 133).

The viral replicase replicates the entire RNA as well as the sub-genomic

RNA (133). As a result, higher and long-lasting antigen expression

takes place. Remarkably, the challenge of saRNA large size can be dealt

with using taRNA. The taRNA technology denotes splitting the saRNA

molecule into two shorter molecules– encoding replicase and gene of

interest separately (133, 134).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1050309
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Papukashvili et al. 10.3389/fimmu.2022.1050309
TABLE 1 List of the potential target antigens of MPXV and their corresponding proteins in VARV and VACV for the nucleic acid vaccine design,
their location, function, and characteristics.

Name in MPXV Name in VARV Name in VACV Location Function and characteristics Ref.

A5L A4L A4L IMV Immunodominant virion core protein;
Needed for the progression of the infection

(51, 110)

A29L A30L A27L IMV Surface membrane fusion protein;
Binds to cell surface heparan;
Neutralizing antibody target

(45, 51,
110)

A30L A31L A28L IMV Envelope protein;
Virus entry into a host;
Cell-cell fusion (syncytial formation);
Neutralizing antibody target

(51, 111)

A35R A36R A33R EEV Envelope glycoprotein;
Formation of actin-containing microvilli and cell-to-cell spread of
virion;
Neutralizing antibody target

(51)

B2R J9R A56 EEV EEV membrane glycoprotein hemagglutinin;
prevents cell fusion

(51, 111)

B6R B7R B5R EEV Palmitylated glycoprotein;
Required for efficient cell spread;
Complement control

(51)

C15L C13L F9L IMV Neutralizing antibody target (51, 111)

H3L I3L H3L IMV Surface protein;
Binds heparin and cell surface proteoglycans

(51, 111)

M1R M1R L1R IMV Myristylated surface membrane protein;
Virus entry into a host;
Neutralizing antibody target

(51)
Frontiers in Immuno
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FIGURE 5

Outline of designing universal multi-epitope vaccine against MPXV, VARV, and VACV.
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Summary

Even though MPXV is not characterized as highly contagious

virus as SARS-CoV-2, and smallpox vaccine that is effective

against MPXV is available, attention should not be relaxed on

developing specific vaccine candidates and seeking treatment ways

for this virus. Unequivocally, it is much better to prevent disease in

healthy populations than to make an effort to treat disease in

already sick patients. The realignment of vaccination strategies as

proposed here will work for the common well-being of the human

population, particularly for the vulnerable population or those

who have close contact with animals such as monkeys or rodents.

It is also important that lately MPX was identified in a pet dog

which worsens the situation meaning that the virus might

circulate in animals and impede its eradication. Here, we

provide the rationale for a potentially universal immunization

strategy for multi-epitope nucleic acid-based vaccine design. The

proposed vaccine construction is based on the conserved epitopes

that gives the basis of its potential universality among newly

formed mutated strains of MPXVs as well as strengthening the

immunity against VARV, and VACV. Thus, the proposed strategy

may be one step forward to speeding up overcoming the current

outbreak as well as preventing other potential outbreaks.
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