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Inflammation is the body’s physiological response to harmful agents. However,

if not regulated properly, inflammation can become pathological.

Macrophages are key players in the inflammatory process, and modulate the

immune response. Due to the side effects of anti-inflammatory drugs, non-

pharmaceutical therapies for inflammatory diseases must be developed.

Photobiomodulation is a non-invasive therapeutic approach to treating

certain pathological conditions using light energy. Light-emitting diodes

(LEDs) are commonly used as light sources for photobiomodulation

treatment, but their clinical applications are limited. Organic LEDs (OLEDs)

are thin, lightweight and flexible, enabling consistent and even delivery of light

energy to target areas; this makes OLED promising components for

therapeutic devices. In the present study, we examined the effects of OLED

treatment on inflammation in vitro using a lipopolysaccharide (LPS)-induced

macrophage RAW264.7 cell model, and in vivo using a pinna skinmousemodel.

We found that LPS-induced morphological changes and inflammatory

cytokine expression were significantly reduced in RAW264.7 cells subjected

to OLED treatment compared to the LPS-induced controls. This work provides

evidence for the anti-inflammatory effects of OLEDs, demonstrating their

potential to be incorporated into medical devices in the future.
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Introduction

Inflammation is an important immunological system

involved in various physiological and pathological processes

that is triggered by external stimuli, such as infection and

tissue injury (1). Inflammatory responses can be acute,

chronic, localized or systemic, and their pathomechanisms

have been studied extensively (1). Macrophages are key

components of the immune system, playing roles in antigen

presentation and phagocytosis. In addition, they modulate

immune responses during inflammation (2). When primary

host defense systems such as the skin are breached, the

inflammatory response is initiated, resulting in the recruitment

of neutrophils and plasma to the site of infection or damage (2).

In response to potential threats, nearby macrophages and mast

cells are recruited to produce cytokines and chemokines, which

can drive further inflammatory responses (2).

When regulated properly, inflammatory responses and

processes benefit the human body by facilitating recovery from

certain illnesses that would otherwise lead to severe morbidity or

mortality. However, dysregulated inflammatory responses can

cause various pathological conditions, such as septic shock and

autoimmune responses (1). Therefore, regulating the inflammatory

response is crucial for maintaining homeostasis. Inflammatory

conditions are typically treated with pharmacological anti-

inflammatory agents (3–6). However, these pharmaceuticals can

cause serious complications, especially when used long term (7).

Currently, novel treatments with fewer complications are being

developed (4), including non-pharmacological therapeutics.

Photobiomodulation is a non-invasive therapeutic approach

that uses light energy to treat certain pathological conditions (8)

without altering normal physiology. Light energy can

stimulate the proliferation and differentiation of certain cell

types, and can thus be applied as a targeted treatment (9–11).

Photobiomodulation has been demonstrated to confer anti-

inflammatory effects in multiple organs, (12–14) and to trigger

nuclear factor kappa B (NF-kB)−mediated responses (15).

Light-emitting diodes (LEDs) are commonly used as light

energy sources to induce biological photomodulation (8). The

clinical applications of LEDs for photobiomodulation are limited

by a lack of LED delivery methods and difficulties in penetrating

target tissue. Compared to conventional LEDs, organic LEDs

(OLEDs) are thin, lightweight and flexible, enabling more

effective and even delivery of light to target areas (16).

Flexibility is an important characteristic of medical devices for

the delivery of therapeutics to complex biological structures, such

as the intestines and blood vessels, and for even distribution of

therapeutics to curved areas such as the skin. Recently, Lee et al.

reported wearable phototherapy skin patches that can suppress

melanin production using microLEDs with 630 nm wavelength,

but there are limitations in application and portability of various

body parts because form factors are not more free than OLEDs
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(17). Thus, therapeutic photobiomodulation devices using OLEDs

as a light source are a promising alternative light source for

medical devices. A novel therapeutic skin patch employing

OLEDs for photobiomodulation has recently been developed

(18). Furthermore, OLEDs differ from standard LEDs in their

physical properties, such as power and wavelength spectra; as a

result, they may also differ in their therapeutic efficacy and

mechanisms of action. Therefore, the effects and mechanisms of

OLED treatments on inflammatory tissues and organs must be

elucidated prior to their clinical application.

In this study, we investigated the anti-inflammatory effects

of OLED treatment in an in vitro lipopolysaccharide (LPS)-

induced macrophage RAW264.7 cell model, and in an in vivo ear

pinna skin mouse model.
Materials and methods

Cell culture

Murine RAW264.7 macrophages were purchased from the

American Type Culture Collection (ATCC, Manassas, VA,

USA) and cultured in Dulbecco’s modified Eagle’s medium

(DMEM; Corning, Tewksbury, MA, USA) containing 10%

heat-inactivated fetal bovine serum (FBS; Corning) and 1%

penicillin and streptomycin (Corning). Cells were incubated at

37°C in a humidified atmosphere with 5% CO2. LPS (List Labs,

Campbell, CA, USA) was dissolved in distilled water to a stock

concentration of 1 mg/mL and further diluted to 100 ng/mL in

cell culture media.
OLED irradiation

An OLED (WonTech, Daejeon, South Korea) with a

wavelength of 630 nm was used to irradiate the LPS + OLED

treatment group. OLED power was measured from the bottom

of an empty plate prior to irradiation of cells with a VEGA

ROHS power/energy meter (Ophir, Jerusalem, Israel) with a

PD300-TP-ROHS detector head (Ophir). The OLED was

directly irradiated outside the incubator for 10 minutes with

an intensity of 4.5 mW/cm2 on the cell plate (total energy

density: 2.7 J/cm2). Cell plates for control were also taken out of

the incubator for the same period of time to equalize the

conditions. For the mouse pinna inflammation model, OLED

irradiation was conducted on 2 consecutive days at an intensity

of 4.5 mW/cm2 for 10 min (total energy density: 5.4 J/cm2).

Representative images of in vitro and in vivo applications of

organic light emitting diode (OLED) devices and the

parameters of the OLED light source are shown in

Supplementary Figure 1.
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Epifluorescence imaging

RAW264.7 cells (3 × 105 cells/well) were seeded onto cover

slips in 6-well plates. After OLED irradiation, the cells on the

cover slips were fixed in cold methanol for 10 min, and then

permeabilized with 0.1% Triton X-100. The F-actin cytoskeleton

was stained with phalloidin (Invitrogen, St. Louis, MO, USA) at

a ratio of 1:40 for 30 min in the dark. Samples were then washed

with phosphate-buffered saline (PBS), mounted on glass slides

with VECTASHIELD mounting medium (Vector Laboratories,

Burlingame, CA, USA), stained with DAPI and imaged using a

confocal microscope (Olympus, Tokyo, Japan).
qRT-PCR

Total RNA was extracted using TRIzol (GIBCO-BRL,

Rockville, MD, USA). RNA concentrations were measured

using a NanoDrop spectrophotometer (ND-1000; Nano Drop,

Wilmington, DE, USA); 1 µg of total RNA was reverse-

transcribed using oligo-dT primers and AccuPower®

RocketScript™ RT PreMix (Bioneer, Daejeon, Republic of

Korea). qRT-PCR was performed using AccuPower® 2×

GreenStar™ qPCR Master Mix (Bioneer) in an RT-PCR

system (ABI 7500; Applied Biosystems, Foster City, CA, USA).

Relative mRNA expression levels were calculated using the

formula: DCt = Ct (gene) - Ct. The 2-DDCt method was applied

to calculate the fold-change of gene expression, which was

normalized to GAPDH expression. The following primer pairs

were used: GAPDH (forward: 5 ’-CCATCACCATCT

TCCAGGAGCG-3’ and reverse: 5’-AGAGATGATGACCCT

TTTGGC-3’), IL-1b (forward: 5’-TACAAGGAGAACCAAGC

AACGACA-3’ and reverse: 5’-GATCCACACTCTCCAGCT

GCA-3’), IL-6 (forward: 5’-CTTCCATCCAGTTGCCTTCTT-

3’ and reverse: 5’-ACGATTTCCCAGAGAACATGT-3’), TNF-

a (forward: 5’-ACGGCATGGATCTCAAAGAC-3’ and reverse:

5’-AGATAGCAAATCGGCTGACG-3’), iNOS (forward: 5’-

AGTGGTGTTCTTTGCTTC-3’ and reverse: 5’-GCTTGCCTT

ATACTGGTC-3 ’) , COX-2 (forward: 5 ’-GGTCTGGT

GCCTGGTCTG-3 ’ and reverse: 5 ’-CTCTCCTATGAG

TATGAGTCTGC-3’).
Western blot

Total proteins were extracted using RIPA lysis buffer (50

mM Tris, pH 7.5, 150 mM NaCl, 0.5% sodium-deoxycholic acid,

0.1% sodium dodecyl sulfate, 1% Triton X-100 and 2 mM

EDTA) containing 1% protease inhibitor and phosphatase

inhibitors (Sigma-Aldrich, St. Louis, MO, USA). Protein

concentrations were calculated using a DC protein assay kit

(Bio-Rad, Hercules, CA, USA). Equivalent amounts of protein
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were subjected to electrophoresis on a 10% sodium dodecyl

sulfate-polyacrylamide gel, and the separated proteins were

electrotransferred onto polyvinylidene fluoride membranes

(Bio-Rad). The membranes were blocked with blocking buffer

containing 5% bovine serum albumin (BSA; Bioshop, South

Korea) for 1 h and then incubated at 4°C overnight with primary

antibodies (COX-2, iNOS, and b-actin; Cell Signaling

Technology, Danvers, MA, USA). Membranes were washed

with Tris-buffered saline Tween-20 (TBST; 20 mM Tris, pH

7.4, 150 mMNaCl and 0.1% Tween-20) and then incubated for 1

h at room temperature with secondary antibodies diluted in

TBST (horseradish peroxidase [HRP]-anti-rabbit and HRP-anti-

mouse; AB FRONTIER, Seoul, South Korea). The membranes

were washed and then developed with a Clarity Western ECL

substrate kit (Bio-Rad), and images were captured using a

ChemiDoc XRS+ Imager (Bio-Rad).
Immunofluorescence assay

RAW264.7 cells (3 × 105 cells/well) were seeded in 6-well

plates with cover slips overnight. After OLED irradiation, cells

on the cover slips were fixed in cold methanol for 10 min, then

permeabilized with 0.1% Triton X-100. After blocking in 5%

BSA for 1 h, cells were incubated with primary antibodies against

NF-kB p65 (Cell Signaling Technology) at 4°C overnight. The

primary antibodies were removed by washing three times with

PBS, and the samples were further incubated with secondary

antibody (Alexa Fluor 488-conjugated goat anti rabbit IgG; Life

Technologies, Carlsbad, CA, USA) for 1 h at room temperature.

Finally, the cells were mounted with Vectashield mounting

medium, stained with DAPI (Vector Laboratories) for

visualization of the nucleus, and photographed under a

confocal microscope (Olympus).
Experimental design of mouse pinna
inflammation model

Nine-week-old C57BL/6 mice (Nara Biotech, Inc., Seoul,

South Korea) were used for the in vivo experiment. The breeding

environment was a temperature of 23 ± 3°C, aa relative humidity

of 50 ± 10%, a ventilation frequency of 10-20 times/h, and the

light-dark cycle was adjusted in units of 12 h (illuminance 150-

300 Lux). All animals were bred with solid feed (Purina: Nestle

Purina PetCare Korea Ltd., Seoul, Seoul Korea) and water ad

libitum, and all breeding equipment was sterilized. All animal

experiments complied with the National Institutes of Health

(NIH) regulations, and the experimental procedures were

performed with the approval of the Animal Research Institute

of Dankook University (IACUC) (DKU-20-008). Animals were

divided into three groups: control group (n = 5), LPS-only group

(n = 5), and LPS + OLED group (n = 5). First, 10 mL of LPS at a
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concentration of 1 mg/mL was injected into the LPS-only and

LPS + OLED groups for 2 consecutive days; the same amount of

sterile distilled water was injected into the control group.

Commencing on day 2 of the LPS injection, the LPS + OLED

group was irradiated with OLEDs for 2 consecutive days.

Doppler scans (PeriScan PIM 3 System; PERIMED,

Stockholm, Sweden) were performed after the final OLED

irradiation. Pinna biopsies were fixed in 10% formalin

overnight and embedded in paraffin. The tissues were

stained with hematoxylin and eosin and toluidine blue.

Immunohistochemistry was then conducted using Avidin-

Biotinylated-Horseradish Peroxidase kits (Vector Laboratories)

and a DAB-Detection System (Vector Laboratories). After

deparaffinization, sections were treated and anti-neutrophil

primary antibody, anti-CD11b antibody, anti-IL-1b antibody,

anti-IL-6 antibody, and anti-TNF-a antibody (Table 1) were

each diluted in 5% BSA and incubated at 4°C for 18 h. PBS was

removed, and the appropriate biotinylated secondary antibody

was added in 5% BSA (Table 2). Secondary antibody was

incubated in sections for 1 h at room temperature. Secondary

antibody was washed in PBS under gentle agitation for 5 min.
Statistical analysis

All statistical analyses were performed with GraphPad Prism

software (GraphPad Software Inc., San Diego, CA, USA) and

SPSS software (IBM SPSS Statistics, New York). All data are

presented as the mean ± standard deviation. Shapiro-Wilks

normality tests with statistic specialist consultation (Kyung-

Hwa Choi) (19, 20) were performed to determine whether the

data were parametric or nonparametric. Levene’s tests were

performed for equality of variance. One−way ANOVA or

Kruskal-Wallis test (non-parametric distribution) with a post

hoc Scheffe test (applied to both equal and unequal sample size
Frontiers in Immunology 04
comparisons) or Games-Howell test (unequal variance) or

Dunn’s multiple comparison test (non-parametric distribution)

were used for comparisons between groups (21). All statistics

were reviewed by an institutional statistic specialist. P values less

than 0.05 were considered to represent statistical significance. In

the Figures, P values are shown as *p < 0.05, **p < 0.01

and ***p < 0.001.
Results

OLED treatment decreased LPS-induced
morphologic changes in RAW264.7 cells
in vitro

LPS exposure causes RAW264.7 cells to undergo

morphological changes (22, 23), including the cytoplasmic

extensions and an increase in cellular size. Here, we compared

the morphological and inflammatory responses of RAW264.7

cells without LPS treatment (control group), with LPS

stimulation only (LPS-only group) and with LPS stimulation

and subsequent OLED treatment (LPS + OLED group).

RAW264.7 cells were cultivated for 24 h and then treated with

LPS; cells in the LPS + OLED group were irradiated for 10 min

after LPS treatment. Cells were harvested 18 h after LPS

treatment (Figure 1A) and stained with phalloidin and 4′,6-
diamidino-2-phenylindole (DAPI) for fluorescence imaging.

Cytoplastic extensions appeared on the cells after LPS

treatment. However, the number of cells exhibiting

cytoplasmic extensions was lower in the LPS + OLED group

compared to the LPS-only group (Figure 1B).

The length of each cell was measured in the major and minor

axes, and cell areas were calculated using Image J software (11).

The major cellular axis length was significantly larger in the LPS-

only group compared to the LPS + OLED and control groups
TABLE 1 Primary antibodies tested in mouse pinna tissues.

Target antigen Supplier Catalogue No. Antibody raised in Dilutions

Neutrophil Abcam, UK Ab2557 Rat 1/500

CD11b MyBioSource, USA MBS555372 Chicken 1/500

IL-1b Abcam, UK Ab205924 Rabbit 1/50

IL-6 Abcam, UK Ab208113 Rabbit 1/200

TNF-a GeneTex, USA GTX110520 Mouse 1/100
fro
TABLE 2 Secondary antibody reagents for mouse pinna tissues.

Target species Supplier Catalogue No. Antibody raised in Dilutions

Rat Vector Laboratories, USA BA-4000 Rabbit 1/500

Chicken Vector Laboratories, USA BA-9010 Goat 1/500

Rabbit Vector Laboratories, USA BA-1100 Horse 1/500
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(one-way analysis of variance ([ANOVA with Welch test],

p < 0.0001; F = 81.62; df = 159; control (n = 81), LPS

(n = 33), LPS + OLED (n = 48). Games-Howell test: control

vs. LPS-only, p < 0.001; LPS-only vs. LPS + OLED, p = 0.011)

(Figure 1C); the minor axis was significantly longer in the LPS-

only group compared to the control group (one-way ANOVA,

p < 0.0001; F = 14.45; df = 161; control (n = 84), LPS (n = 30),

LPS + OLED (n = 48). Scheffe test multiple comparison test:

control vs. LPS-only, p = 0.003; LPS-only vs. LPS + OLED,

p = ns) (Figure 1D). Furthermore, cellular area was significantly

larger in the LPS-only group compared to the control and LPS +

OLED groups (one-way ANOVA with Welch test, p < 0.0001;

F = 89.77; df = 162; control (n = 83), LPS (n = 32), LPS + OLED

(n = 47). Games-Howell test: control vs. LPS-only, p < 0.001;

LPS-only vs. LPS + OLED, p < 0.001) (Figure 1E). These results

indicate that morphological changes occurred in the RAW264.7

cells as a result of LPS application, and that OLED reduced the

LPS-induced morphological changes.
Frontiers in Immunology 05
OLED treatment reduced the expression
of LPS-induced inflammatory mediators
in RAW264.7 cells

To examine the expression levels of macrophage-specific

pro-inflammatory mediators and cytokines following LPS and

OLED treatment, we performed quantitative real-time

polymerase chain reaction (qRT-PCR) on the control, LPS-

only and LPS + OLED groups 2.5 h after LPS treatment. Cells

were subjected to OLED treatment 2 h after LPS application in

the LPS + OLED group (Figure 2A). The mRNA levels of the

inflammatory mediators interleukin (IL)-6, tumor necrosis

factor-a (TNF-a), IL-1 b, inducible nitric oxide synthase

(iNOS) and cyclooxygenase-2 (COX-2) are shown for each

group in Figures 2B–F. The levels of four mRNAs (IL-6, TNF-

a, IL-1 b and COX-2) were significantly higher in the LPS-only

group compared to the control group (one-way ANOVA: IL-6,

p = 0.0001, F = 498.4, df = 8, n = 3; TNF-a, p = 0.0001, F = 1632,
B

C D E

A

FIGURE 1

Epifluorescence analysis of lipopolysaccharide (LPS)-induced RAW264.7 cells after organic light-emitting diode (OLED) irradiation. (A)
Experimental timeline for the epifluorescence analysis involving phalloidin staining after OLED irradiation in cells stimulated with LPS. (B) Images
showing harvested cells stained with phalloidin (red) and 4′,6-diamidino-2-phenylindole (DAPI) (blue) for the visualization of actin fibers and
nuclei. Following LPS application, cytoplasmic extensions (arrow) appeared. The number of cells exhibiting cytoplasmic extensions was lower
with LPS and OLED treatment compared to treatment with LPS alone (scale bar: 20 mm). The major axial length of actin filaments was
significantly lower in the OLED-treated compared to LPS-treated cells (C). However, there was no significant difference in minor axial length (D)
between the LPS-only and LPS+OLED treatment groups. (E) The cell area was significantly smaller in OLED-treated compared to LPS treated
cells. Control (n = 84), LPS (n = 33), LPS + OLED (n = 48); *p < 0.05, **p < 0.01 (control group vs. LPS-only group); ***p < 0.001 (LPS+OLED
group vs. LPS-only group).
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df = 8, n = 3; IL-1b, p = 0.0001, F = 228.1, df = 8, n = 3; COX-2,

p = 0.0001, F = 53.72, df = 8, n = 3. Scheffe test: IL-6, p < 0.0001;

TNF-a, p < 0.0001; IL-1b, p < 0.0001; COX-2, p = 0.0002). The

levels of all mRNAs examined (IL-6, TNF-a, IL-1 b, iNOS and

COX-2) were significantly lower in the LPS + OLED group

compared to the LPS-only group [one-way ANOVA: IL-6,

p = 0.0001, F = 498.4, df = 8, n = 3; TNF-a, p = 0.0001,

F = 1632, df = 8, n = 3; IL-1b, p = 0.0001, F = 228.1, df = 8, n = 3;

iNOS1, p = 0.0251, F = 4.756, df = 17, n = 6; COX-2, p = 0.0001,

F = 53.72, df = 8, n = 3. Scheffe test: IL-6, p < 0.0001; TNF-a,
p < 0.0001; IL-1b , p < 0.0001; iNOS, p = 0.025;

COX-2, p = 0.001).

Next, we performed Western blots for each experimental

treatment group of RAW264.7 cells 42 h after LPS treatment to

examine iNOS and COX-2 protein expression. OLED treatment

was applied 18 h after LPS treatment in the LPS + OLED group

(Figure 3A and Supplemental Figure 2). The iNOS and COX-2

protein expression levels for the control, LPS-only and LPS +

OLED groups are shown in Figure 3B. The protein expression

levels of iNOS and COX-2 were significantly higher in the LPS-

only group compared to the control group (one-way ANOVA:
Frontiers in Immunology 06
iNOS, p = 0.0001, F = 283.9, df = 14, n = 3; COX-2, p < 0.0001,

F = 91.04, df = 14, n = 3. Scheffe test: iNOS, p < 0.0001; COX-2,

p < 0.0001) and compared to the LPS + OLED group (Scheffe

test: iNOS, p < 0.0001; COX-2, p = 0.003). Taken together, these

results suggest that the inflammatory responses and

morphological changes that take place after LPS treatment are

mitigated by OLED therapy.
LPS-induced nuclear translocation of
NF-kB is reduced in RAW264.7 cells
following OLED treatment

The transcription factor NF-kB regulates the expression of

several genes involved in the inflammatory response (24, 25). To

investigate the mechanisms driving the anti-inflammatory

effects of OLED treatment in LPS-induced RAW264.7 cells, we

performed epifluorescence microscopy to examine NF-kB
expression and localization in the control, LPS-only and LPS +

OLED groups. OLED treatment was performed 5 min after LPS

application in the LPS + OLED group. Epifluorescence analysis
B C D

E F

A

FIGURE 2

mRNA levels of inflammatory mediators in lipopolysaccharide (LPS)-induced RAW264.7 cells after organic light-emitting diode (OLED)
irradiation. (A) Experimental timeline for examination of the relative mRNA expression levels of interleukin (IL)-6, tumor necrosis factor-a (TNF-
a), IL-1 b, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) revealed by quantitative real-time PCR after OLED irradiation of
LPS-stimulated cells. The relative mRNA levels of IL-6 (B), TNF-a (C), IL-1b (D), iNOS (E) and COX-2 (F) are shown. OLED irradiation significantly
reduced the mRNA levels of inflammatory mediators. n = 3; *p < 0.05, ***p < 0.001 (LPS+OLED group vs. LPS-only group).
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was performed 30 min after LPS application (Figure 4A). In the

control group, NF-kB (green) was clearly present in the

cytoplasm. By contrast, NF-kB (green) localized to the DAPI-

stained nuclei (blue) in the LPS-only group, which was in

accordance with previous reports of NF-kB nuclear

translocation upon LPS stimulation in RAW264.7 cells (26).

For the LPS + OLED group, NF-kB was present in both the

cytoplasm and nucleus (Figure 4B). We then compared the

relative intensities of nuclear NF-kB among the experimental

groups; significantly higher NF-kB fluorescence intensities were

observed in the nuclei of the LPS-only group compared to the

nuclei of the control and LPS + OLED groups (Kruskal-Wallis

test: p = < 0.0001, KW statistic = 65.2, n = 26−32. Dunn’s

multiple comparison test: control vs. LPS-only, p < 0.0001; LPS-

only vs. LPS + OLED, p = 0.0005) (Figure 4C). These results

suggest that OLED treatment disrupts the nuclear translocation

of NF-kB in LPS-induced RAW264.7 cells. To confirm these

outcomes further, protein ratio of p- NF-kB/NF-kB and p-AKT/

AKT (which is expressed earlier than NF-kB) were accessed by

Western blot analysis. Statistically significant difference was not

observed in NF-kB protein expressions. While significant

difference was observed in AKT expression ratio, statistically

higher ratio of p-AKT/AKT were observed in LPS group

compared to control and OLED group (one-way ANOVA: p =

0.0013, F = 12.24, Scheffe test: control vs. LPS-only, p = 0.002;

LPS-only vs. LPS + OLED, p = 0.002) (Supplemental Figure 3

and Figure 4). Due to the relative large temperature deviation

(Figure S1) by OLED application which might trigger cell

response and alter cytokine production, we have included the

comparison NF-kB expression pattern (30 min after LPS)

between two different culture condition which differs only

temperature (28°C and 31°C for 10 min) (Figure 4D). In both
Frontiers in Immunology 07
temperature conditions, LPS application induced nuclear

translocation of NF-kB (Figure 4E). Reduced nuclear

translocation which was observed in the OLED + LPS group

was not observed. There was no statistical difference between

temperatures in both control (without LPS) and LPS

groups (Figure 4F).
OLED treatment dampened the
inflammatory response after LPS
injection in mouse pinna

To investigate the anti-inflammatory effects of OLED in vivo,

a mouse skin inflammation model was employed. Mice were

divided into three groups: control, LPS-only and LPS + OLED.

LPS (10 mL, 1 mg/mL) was injected into the ear pinnae of mice in

the LPS-only and LPS + OLED groups on two consecutive days;

the same amount of distilled water was injected into control

group mice. Mice in the LPS + OLED group were subjected to

OLED treatment on the second day of LPS injection for 2

consecutive days. Doppler examinations were performed 1 day

after OLED treatment, and a histological evaluation of the

immune response was performed 2 days after OLED treatment

(Figure 5 and Figure 6A). On experimental day 4, the pinnae of

mice from the LPS-only group exhibited hyperemia (reddish

color change), whereas the pinnae of control and LPS + OLED

mice exhibited a normal skin color (Figure 5B). The doppler

examination revealed higher vascular blood flow in the pinnae of

LPS-only mice compared to those of LPS + OLED and control

mice (Figure 5C). Relative intensities were measured and

averaged (n = 3 for each experimental group); the mean

intensity was significantly higher in the LPS-only group
B

A

FIGURE 3

Western blots showing the protein expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in
lipopolysaccharide (LPS)-induced RAW264.7 cells after organic light-emitting diode (OLED) irradiation. (A) Experimental timeline for the Western
blot analysis examining the expression levels of iNOS and COX-2 proteins following OLED irradiation. (B) The protein levels of iNOS and COX-2
were significantly lower in OLED-treated compared to LPS-treated cells. n = 5; **p < 0.01, ***p < 0.001 (LPS+OLED group vs. LPS-only group).
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compared to the control and LPS + OLED groups (one-way

ANOVA: p = 0.0149, F = 9.195, df = 8, n = 3. Scheffe test: control

vs. LPS-only, p = 0.006; LPS-only vs. LPS + OLED, p =

0.005) (Figure 5D).

Next, we performed a histological examination of pinna

tissue samples collected from mice in each experimental group

to compare the inflammatory responses to LPS and OLED

treatment. Dermal and epidermal thickness were measured
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(27–29) and the numbers of mast cells, leukocytes and

macrophages were quantified (30, 31). Hematoxylin and eosin

staining of pinna tissues revealed that both the dermis and

epidermis were thicker in the LPS-only group compared to the

control and LPS + OLED groups (Figure 6B). Toluidine-blue

staining revealed that the number of mast cells was higher in

pinna skin samples taken from LPS-only mice compared to

control and LPS + OLED pinna samples (Figure 6C).
B

C

D E

F

A

FIGURE 4

The nuclear translocation of nuclear factor kappa B (NF-kB; p65) after organic light-emitting diode (OLED) irradiation in the lipopolysaccharide
(LPS)-stimulated RAW264.7 cells. (A) Experimental timeline for the analysis of NF-kB (p65) localization by immunofluorescence staining. (B)
Immunofluorescence images showing p65 localization (green) and 4′,6-diamidino-2-phenylindole (DAPI)-stained nuclei (blue) in LPS-induced
RAW264.7 cells. In the control cells (no LPS stimulation), basal p65 was distributed throughout the cytoplasm. Following LPS stimulation, nuclear
translocation of p65 can be observed (merged blue and green colors). OLED irradiation disrupted the nuclear translocation of p65 in LPS-
induced RAW264.7 cells. Scale bar: 20 mm. (C) Quantification of the relative fluorescence intensities of p65 localized to nuclei. The LPS-only
group exhibited significantly higher p65 nuclear fluorescence compared to LPS+OLED. n = 3; ***p < 0.001 (LPS+OLED group vs. LPS-only
group). (D) The experimental schedule for comparing NF-kB expression pattern (30 min after LPS) between two different culture conditions (28°
C and 31°C for 10 min) is shown. (E) LPS application induced nuclear translocation of NF-kB in both temperature conditions. (F) No statistical
difference between temperatures in both control (without LPS) and LPS groups was observed.
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Furthermore, the population of neutrophils and macrophages

(stained for CD11b) was denser in the LPS-only pinna samples

compared to those of the control and LPS + OLED groups

(Figures 6D, E). Statistical analyses of the above findings

revealed that the dermis and epidermis were significantly

thicker, and the numbers of mast cells, neutrophils and

macrophages were statistically higher, in the LPS-only group

compared to the control (Table 3 and Figure 6F). Moreover, the

dermis and epidermis were significantly thinner, and the

number of neutrophils and macrophages were significantly

lower, in the pinnae of the LPS + OLED group compared to

those of the LPS-only group (Table 3 and Figure 6F). Moreover,

immunostains confirmed that increased inflammatory cytokines

by LPS injection (IL-6, TNF-a) was reduced (Figures 6G–I). IL-6

showed statistically significant reduction (Figure 6J and Table 3).

The findings from these in vivo studies further support our in

vitro data, which together suggest that OLED treatment can

mitigate LPS-induced inflammation both in vitro and in vivo.
Discussion

In the present study, we found that LPS exposure in the

inflammatory cell line RAW264.7 triggered morphological

changes, and that these changes were inhibited by

photobiomodulation (OLED) treatment. As discussed above,

OLEDs possess properties such as flexibility, making them

more appropriate for certain medical devices than

conventional LEDs. Our in vitro study provided evidence that

OLEDs can confer anti-inflammatory effects on a common

inflammatory cell line. To investigate this in more detail, we
Frontiers in Immunology 09
quantitatively assessed the mRNA and protein levels of

inflammatory mediators in OLED-treated cells; we found that

LPS treatment alone caused upregulation of inflammatory

cytokines in the macrophage cell line, and that OLED

treatment significantly mitigated this effect. Moreover, the

nuclear translocation of NF-kB, one of the key factors

regulating inflammation in response to LPS, was inhibited in

cells treated with OLED. Our results provide evidence for the

anti-inflammatory effects of OLED photobiomodulation

treatment, as well as insight into the possible mechanisms

underlying this response (Figure 7).

We then investigated the effects of OLED treatment using an

in vivo animal model, in which inflammation was induced in

mouse ears by injecting pinnae with LPS; the physiological

effects of subsequent OLED treatment were then examined.

Following LPS injection, we observed inflammatory responses

in mouse ear pinnae such as soft tissue thickening, increased

blood flow and the recruitment of inflammatory cells. Notably,

these responses were reversed or inhibited in mice subjected to

OLED treatment. The difference between the in vitro and in vivo

study exists (inflammatory cytokines). It would be due to

experimental time points. Since in vivo studies were performed

at a later stage, it is possible that acute phase cytokines could

have been normalized. Taken together, the results from the in

vitro and in vivo experiments suggest that OLED treatment

reduces inflammation. It is not clear whether this positive effect

is temporary delay or cessation of long term inflammation.

According to our data we can speculate that this response

would last longer than 4 days since the in vivo analysis was

mostly performed at 3 to 4 days time points and shows reduction

of inflammation signs. Considering the fact that acute
B C

D

A

FIGURE 5

The effect of organic light-emitting diode (OLED) irradiation on blood flow in lipopolysaccharide (LPS)-injected mouse ear pinnae. (A)
Experimental timeline for the experiments. (B) Representative photographs of ear pinnae in C57BL/6 mice injected with LPS. The pinnae of LPS-
only mice were more hyperemic than LPS+OLED mice. (C) Laser Doppler images of mouse ear pinnae. The pinnae of LPS+OLED mice exhibited
reduced blood flow compared to the LPS-only group. (D) Quantitative analysis of tissue blood flow in Doppler images revealed significantly
reduced blood flow in the control and LPS+OLED groups compared to the LPS-only group. DW, distilled water; n = 3; **p < 0.01 (LPS+OLED
group vs. LPS-only group).
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inflammation responses are defined as reaction lasting for

minutes to hours to days, it is highly likely that OLED PBM is

not just delaying the process.

The clinical applications of OLED treatment include the

treatment of conditions in which inflammation is pathological

and cannot be regulated by the patients’ natural homeostatic

systems. Currently, medications are used to treat such
Frontiers in Immunology 10
inflammatory diseases; however, anti-inflammatory drugs are

typically non-specific and can cause severe side effects. OLED

devices can potentially overcome the current limitations of

conventional LED-based photobiomodulation devices, which

include limited access to target tissues and low penetration

rates. Flexible OLED devices could benefit patients

experiencing uncontrolled inflammation in specific tissues that
TABLE 3 Statistical analysis of histology after OLED irradiation.

One way ANOVA (P value) Control vs LPS LPS vs LPS + OLED

Dermis thickness < 0.0001* < 0.0001* 0.002*

Epidermis thickness < 0.0001* 0.001* 0.002*

Mast cells number 0.001** 0.001** 0.279

Neutrophils number 0.0002* 0.018* 0.049*

Macrophage number 0.002** 0.002** 0.040**

IL-6 0.007** 0.033** 0.011**

TNF-a 0.027** 0.023** 0.2403
*One way ANOVA with Welch test for unequal variance (post hoc Games-Howell test). **One way ANOVA (post hoc Scheffe test).
Bold: statistically significant.
B C D E

F

G H I

J

A

FIGURE 6

The effect of organic light-emitting diode (OLED) irradiation on the histological features of lipopolysaccharide (LPS)-injected mouse ear pinna tissue.
(A) Timeline for the experiments. (B) Images of ear pinna tissues stained with hematoxylin and eosin. Numbers 1 and 2 indicate the epidermis and
dermis, respectively. The pinna epidermal layers are thicker in the LPS-only group compared to the control and LPS+OLED groups. (C)
Representative images of ear pinnae collected from each group stained with toluidine blue. Arrows indicate mast cells. The number of mast cells
was lower in the control tissue compared to the LPS-only and LPS+OLED groups. Moreover, the number of mast cells was lower in the LPS+OLED
pinna tissue compared to the LPS-only group; however, the difference was not significant. (D) Images of ear tissue sections immunostained for
neutrophils. The number of neutrophils was lower in LPS+OLED ear pinna tissue compared to the LPS-only group. (E) Images of ear tissue sections
immunostained for CD11b. The number of CD11b was lower in LPS+OLED ear pinna tissue compared to the LPS-only group. Scale bar: 100 mm,
magnified image scale bar: 5 mm. (F) The histological immunofluorescence staining was quantified and the data presented here are the mean ±
standard error of mean (SEM). Compared to the LPS-only group, the epidermal and dermal layers were significantly thinner, the neutrophil and the
macrophage counts were significantly lower in the pinna tissue of the LPS+OLED group. n = 5; *p < 0.05, **p < 0.01 vs. LPS-only group. ***p <
0.001 (n=5, control group vs. LPS-only group). Images of ear tissue sections immunostained for (G) IL-1b; (H) IL-6; (I) TNF-a. Scale bar: 100 mm. (J)
Quantitation of the histological analysis levels were presented as the mean ± SEM. Quantification of these data showed differences between groups
and was statistically lower in the OLED irradiation group compared to the LPS induced group. (control: n = 3, LPS, LPS+OLED: n=5; *p < 0.05,
versus LPS injection group).
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cannot currently be accessed by photobiomodulation

delivery apparatuses.

After 10 min irradiation, which is the duration of OLED

exposure in our experiment, about 2~3-degree increase was

observed in the experimental model measuring temperature

changes (Figure S1). However, there was a difference between

actual experiment and temperature measurement. Since the

OLED irradiation was performed outside the incubator, plastic

cover was applied to minimize the contamination (plastic cover

did not alter OLED intensity; Figure S1H). On the other hand,

for the temperature measurement, plastic cover could not be

applied. We strongly believe that this plastic cover would

minimize the thermal conduction to cells in actual

experiments. Extremely minimal change of temperature in

areas ‘outside (number 2 and 3)’ which is closer to the OLED

board supports the theory. In addition, no difference in nuclear

translocation of NF-kB (Figure 4E) between the two

temperatures supports the no thermal effect theory. It is rarely

possible but even though this thermal change was made in actual

experiment, temperature was below 35 degree which is the below

thermal threshold for activation of heat shock proteins (32) and

immune cell activation (33). These both responses will promote

inflammation which is opposite to the outcome of current study

(down regulation of inflammatory response). Several models
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have been proposed to explain the anti-inflammatory effects of

photobiomodulation, including mitochondrial activation by the

light-responsive cytochrome c oxidase. In this model, ATP

production is increased following mitochondrial activation,

which in turn may alter the inflammatory pathways regulated

by NF-kB.
Lasers are currently the dominant light sources for

photobiomodulation. Until recently, lasers were thought to

exert biologically beneficial effects; however, recent studies

have suggested otherwise (34, 35). The major difference

between lasers and LEDs is the bandwidth. LED-based light

therapy has recently been established in many healthcare centers

due to the lower cost and larger possible treatment area of LEDs

compared to lasers. Photobiomodulation using LEDs has been

actively researched since 2001, and is now widely accepted to be

an effective therapy (8). Flexible and wearable LED devices for

photobiomodulation treatment could be developed using

OLEDs, which were shown to be effective in this study.

Several studies have been conducted to investigate the

wavelength-specific effects of lasers and conventional LEDs on

various cell lines and organs. However, in vitro studies

investigating OLED systems are limited. In a recent study,

OLED treatment with 630−690 nm wavelength and 10−30

min exposure time caused an increase in cellular activity. In

addition, OLEDs with 630−650 nm wavelengths were effective at

lower powers (3−6 J/cm2), whereas those with 670−690 nm

wavelengths were more effective at higher powers (6−9 J/cm2)

(18). Therefore, the OLED parameters used in the present study

(630 nm wavelength, 10 min exposure at 5 J/cm2 power) were

selected to optimize the effects on cell lines and tissues.

Invasive pathogens such as bacteria, viruses and fungi trigger

cell differentiation, and the production of cytokines and

proteases in monocytes and macrophages (36). LPS is a

macromolecule comprising lipids and polysaccharides that is

present in the cell walls of Gram-negative bacteria (37). LPS is

recognized via Toll-like receptors (TLRs), which stimulate a

potent immune response (38). In particular, TLR2 and TLR4 act

as key sensors for the immune system, triggering a counter

response to the invasion of pathogenic bacteria (39). The

binding of LPS to TLR2 and TLR4 activates the NF-kB
signaling pathway, which induces the transcription of pro-

inflammatory mediators such as IL-1b, IL-6, TNF-a,
prostaglandin E2, iNOS and COX-2. iNOS and COX-2 are

considered to be major inflammatory mediators; however,

their overexpression can have detrimental effects on cells

(40–42).

Treating RAW264.7 cells with LPS induces morphological

changes, such as an increase in cell size. In addition, Guo et al.

found that NF-kB drives LPS-induced morphological changes in

RAW264.7 cells by regulating the actin cytoskeleton (43, 44). In

the present study, we found that the LPS-induced morphological

changes in RAW264.7 cells were partially suppressed by OLED

treatment. This led us to hypothesize that OLED irradiation
FIGURE 7

The potential inflammatory suppression mechanism of PBM.
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prevented cytoskeletal restructuring by inhibiting NF-

kB signaling.

The anti-inflammatory effects of OLED treatment were

further demonstrated via the inhibition of nitric oxide (NO)

production, where NO is an important mediator of

inflammatory reactions such as phagocytosis. A reduction of

pro-inflammatory factors by LED irradiation has previously

been reported; however, OLED-induced reductions in the

expression of pro-inflammatory cytokines, such as COX-2 and

iNOS, were reported in this study for the first time (45). Notably,

we compared the anti-inflammatory effects of LED and OLED

treatment, and found that OLED treatment inhibited the

expression of some inflammatory factors to a greater extent

than LED treatment (data not shown).

The immunomodulatory effects of OLED treatment were

reflected in the suppression of NF-kB localization in OLED-

treated cells. The NF-kB pathway plays an essential role in

inflammation and responses to cellular damage (46). Upon

induction of the inflammatory response by LPS, genes related

to inflammation are upregulated following the translocation of

NF-kB from the cytoplasm to the nucleus (46). However, in

OLED-irradiated cells in this study, the process of NF-kB
nuclear migration was inhibited; therefore, we inferred that the

expression and secretion of pro-inflammatory cytokines was also

suppressed. The findings from our in vivo animal experiments

further supported this hypothesis. We found that mouse ear

pinnae injected with LPS exhibited increased blood flow. and

dermal and epidermal thickening. due to capillary expansion

and immune cell recruitment; however, this response was

suppressed in mice treated with OLED following LPS

injection. Furthermore, tissue staining revealed a reduction in

the number of mast cells and neutrophils in OLED-treated ear

tissue compared to ears treated with LPS only. In another study,

the present authors inhibited cell death by effectively inhibiting

the generation of ROS under H2O2-induced oxidative stress by

irradiating LEDs of the same wavelength (under revision). Based

on this, when OLED is irradiated to the inflammation-induced

tissue, it can be inferred that the inhibition of ROS production by

neutrophil production ultimately suppresses the inflammatory

response (47). It is strongly predicted that OLED irradiated after

antioxidant treatment would inhibit the NF-kB expression

pathway as well. In addition, there is a report showing a

combination effect of antioxidant and PBM conditioning in

auditory hair cells which shows partial synergistic effect (48).

But for this current experiment, seeking the combination effect

was not the purpose.

The anti-inflammatory effects of LEDs have been

demonstrated for a variety of diseases; however, investigations

into the effects of OLEDs have tended to focus on wound healing

(18). In this study, we found that OLEDs can elicit similar anti-

inflammatory responses to LEDs. OLEDs and conventional

LEDs differ in their physical properties; as OLEDs have the

ability to distribute light over curved surfaces with a uniform
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energy intensity and wide spectral bandwidth, they have many

promising applications in the medical field (S Video 1).

Therefore, with more following researches proving the

efficiency of the OLED application to various inflammatory

conditions, development of flexible medical devices using

OLED for controlling the inflammatory responses in near

future is expected.
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