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This work aims to review the role of endothelial dysfunction underlying the

main complications appearing early after autologous and allogeneic

hematopoietic cell transplantation (HCT). The endothelial damage as the

pathophysiological substrate of sinusoidal obstruction syndrome (SOS) is well

established. However, there is growing evidence of the involvement of

endothelial dysfunction in other complications, such as acute graft-versus-

host disease (aGVHD) and transplant-associated thrombotic microangiopathy

(TA-TMAs). Moreover, HCT-related endotheliopathy is not only limited to the

HCT setting, as there is increasing evidence of its implication in complications

derived from other cellular therapies. We also review the incidence and the risk

factors of the main HCT complications and the biological evidence of the

endothelial involvement and other linked pathways in their development. In

addition, we cover the state of the art regarding the potential use of the

biomarkers of endotheliopathy in the prediction, the early diagnosis, and the

follow-up of the HCT complications and summarize current knowledge points

to the endothelium and the other linked pathways described as potential

targets for the prevention and treatment of HCT-complications. Lastly, the
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endothelium-focused therapeutic strategies that are emerging and might have

a potential impact on the survival and quality of life of post-HCT-patients are

additionally reviewed.
KEYWORDS

endothelial, biomarkers, early HCT complications, laboratory diagnosis, prognosis
assessment, response assessment, endothelium as therapeutic target
Introduction

Hematopoietic-cell transplantation (HCT) has been used to

re-establish marrow and immune function in patients with

inherited or acquired hematopoietic disorders, whether benign

or neoplastic, including those of the immune system, and as

enzyme replacement in metabolic disorders. HCT is additionally

a strategy to support treatments that contain high-dose

chemotherapy for which hematologic toxicity would otherwise

limit the drug administration (1, 2). During the last two decades,

allogeneic (allo) and autologous (auto) HCTs have evolved into a

more effective and safe procedure secondary to the refinements

on conditioning regimens, donor selection, graft-versus-host

disease (GvHD) prophylaxis, and supportive care (3, 4).

However, despite these well-documented improvements and

its curative potential, HCT remains associated with non-

negligible rates of morbidity, mortality, and a relevant impact

on patient’s quality of life (5).

Early HCT-related complicat ions, including (in

chronological order) sinusoidal obstruction syndrome (SOS),

engraftment syndrome (ES), capillary leak syndrome (CLS),

transplant-associated thrombotic microangiopathy (TA-TMA),

acute graft-versus-host disease (aGvHD), and vascular

idiopathic pneumonia syndrome (vascular-IPS) –including

diffuse alveolar hemorrhage (DAH), are clinically relevant

events with a recognized common origin in endothelial

cell (EC) activation that can potentially evolve into a non-

reversible multiorgan dysfunction (MOD) (6). Therefore,

a better understanding of these early post-transplant

complications and their association with the endothelium

is essential to establishing effective preventive and

therapeutic strategies.

This review provides information about the incidence,

clinical features, and treatment of early post-transplant

endothelium-related complications by discussing the

endothelium’s role in the pathogenesis and treatment of these

complications. Moreover, the present review summarizes the

potential benefit of using biomarkers of endothelial damage for

the diagnosis and monitoring of vascular post-transplant

endothelial complications.
02
Epidemiology of HCT early
complications of endothelial origin:
Incidence and risk factors

There is increasing evidence that endothelial dysfunction is

involved in a group of early and potentially life-threatening post-

HCT endothelial complications, such as SOS, ES, CLS, TA-

TMA, aGvHD, or IPS/DAH. These events generally appear

during the first 100 days after the stem cell infusion. Their

diagnosis is usually based on the presence of medical signs and

symptoms, and all of them seem to begin at the capillary level

and result from an endothelial dysfunction occasioned by the

administration of chemotherapy, calcineurin inhibitors,

granulocyte-colony stimulating factor (G-CSF), infections, and

allogeneic-derived reactivity (7–9). Below we detail the incidence

and risk factors of the most relevant complications of endothelial

origin occurring during the early post-HCT period.
Sinusoidal obstruction syndrome

SOS (formerly known as veno-occlusive disease or VOD) is a

clinical and potentially life-threatening syndrome occurring

after HCT, chemotherapy regimens alone, and, less commonly,

after high doses of radiation or liver transplantation (10). Other

well-known risk factors for SOS are older age, female gender,

previous hepatic disease, pre-HCT iron overload, previous

treatment with gentuzumab/inotuzumab-ozogamicin, genetic

factors (11), the underlying disease, myeloablative regimens –

especially those containing busulfan or fludarabine- and GvHD

prophylaxis based on the combination of calcineurin inhibitors

and sirolimus (12). The reported incidence of post-transplant

SOS is estimated at around 5-13%, although it can reach 60%,

according to transplant settings, particularly in high-risk

pediatric populations, considering that the presence of several

risk factors might have a summatory deleterious effect (12–15).

Clinical manifestations include hepatomegaly, right upper

quadrant pain, ascites, weight gain, and jaundice, although

anicteric forms may occur, especially among the pediatric

population (14). The diagnostic criteria of SOS slightly differ
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in adult and pediatric cohorts (16, 17). However, they are both

based on clinical and analytical parameters, whereas transjugular

hemodynamic studies or liver biopsies remain complimentary

tests. SOS can significantly affect transplant outcomes, as it can

evolve into a MOD characterized by pleural effusion, pulmonary

infiltrates and hypoxia, renal failure, and confusion or

encephalopathy. This progression is associated with a very

high mortality rate, exceeding 80% in severe forms (18, 19).

Nevertheless, early interventions have been correlated to a

survival benefit, enhancing the importance of prevention and

early diagnosis.
Engraftment syndrome

ES is a clinical syndrome that can occur during neutrophil

engraftment in patients undergoing autologous and allo-HCT.

The reported incidences of ES range from 5 to 20% in

autologous HCT (20, 21), and from 1% to 15% after

allogeneic HCT (22, 23) respectively. Risk factors for ES are

female gender, the lack of intense chemotherapy-based

schemes previous to the HCT (p.e induction treatments in

myeloma patients (24)) and the use of G-CSF for the peripheral

blood stem cells mobilization or neutrophil recovery. Although

different criteria have been defined for diagnosing ES (25), the

ones proposed by Maiolino et al. seem to be the most sensitive

(20). Those consist of the presence of non-infectious fever plus

any of the following: erythroderma involving ≥25% body

surface area not attributed to medication, non-cardiogenic

pulmonary edema, or diarrhea (21). First-line treatment for

ES generally is based on high-dose corticosteroids, leading to a

rapid clinical response in most cases. However, ES has been

associated with a higher risk of non-relapse mortality and

shorter overall survival (22, 23).
Capillary leak syndrome

CLS is a rare but potentially life-threatening complication

after HCT, characterized by a generalized abnormal

accumulation of fluids and macromolecules in the

extravascular space leading to anasarca, hemoconcentration,

severe hypotension, and, ultimately, vascular collapse and

shock. CLS was postulated as one endothelial complication of

HCT by extrapolation of the biological findings observed in the

idiopathic systemic capillary leak syndrome or Clarkson

disease (26–28). Nevertheless, the clinical presentation of

CLS is unspecific and shared with most of the complications

reviewed here, raising doubt about whether CLS should be

considered an independent entity per se. Allo-HCT, the use of

intensive doses of chemotherapy or radiation, the selection of

mismatched or matched unrelated donors, and the use of G-

CSF have been identified as predictors for the development of
Frontiers in Immunology 03
CLS after stem cell infusion. The incidence of pure CLS after

allo-HCT is extremely low (29, 30). Limited data have been

reported regarding the outcome of CLS and its impact on post-

transplant survival. However, CLS has been consistently

associated with a high mortality rate secondary to the

directly induced endothelial hyper-permeability and

endothelial barrier breakdown induced by this post-

transplant complication (31).
Transplant-associated thrombotic
microangiopathy

TA-TMA results from the accumulation of micro-thrombi

occluding the microcirculation leading to ischemic organ

dysfunction, especially in the renal, intestinal, and

neurological vascular beds (32). The reported TA-TMA

incidence ranges from 10 to 35% in the literature and is

more prevalent after allo-HCT. Moreover, the usual range

time to onset of TA-TMA is generally from day 20 to 90

after the stem cell infusion (33). Risk factors include older age,

female gender, HCT from unrelated donors, the use of

myeloablative conditioning regimens or total body

irradiation, and the diagnosis of viral or fungal infections or

GvHD. The gold standard technique to confirm TA-TMA

diagnosis would be performing a biopsy of the affected

organ. However, it is often omitted as it has been associated

with bleeding complications. Considering this limitation,

different diagnostic criteria have been defined over the last

decades (34–37). These criteria are based on clinical and

analytical parameters, and, especially for adults, there is not

yet a consensus about which ones should be used. In 2014,

Jodele et al. defined the following diagnostic criteria for TA-

TMA for pediatric patients undergoing HCT: acute elevation

of LDH, proteinuria >30 mg/dL, anemia, thrombocytopenia,

the presence of schistocytes, and hypertension (37, 38).

These diagnostic criteria could potentially be extrapolated

to the adult population as they are the most realistic and

feasible for diagnosing this complication. The reported

mortality rates in patients with clinically relevant TA-TMA

have been up to 75%, partially due to the irreversible

organ damage caused by delayed diagnosis on some

occasions (37, 39). The use of eculizumab, a monoclonal

antibody against the fraction C5 of the complement system,

has improved survival in patients with severe forms of this

complication, although mortality rates in treated patients still

exceed 30% (40, 41).
Graft-versus-host disease

Acute and chronic GvHD is one of the principal non-

relapse complications after allo-HCT, which still causes
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substantial morbidity and mortality despite significant

advances in treatment and supportive care (42, 43), and the

prevention of GvHD, is, therefore critical to the success of allo-

HCT. The main risk factor for the development of acute and

chronic GvHD is the HLA disparity. Furthermore, increased

age of both the recipient and the donor, gender disparity,

multiparous female donors, high-intensity conditioning

regimens, the infusion of peripheral blood stem cell grafts

-opposed to those from bone marrow-, and the use of

ineffective GvHD prophylaxis are known to be additional

predictors for the development of GvHD (42, 44). The

diagnosis for this complication is based on clinical features,

patient symptoms, laboratory values, and in most cases,

histological confirmation. Systemic steroids alone or

combined with additional immunosuppressant drugs

continue to be the first line of treatment for clinically

relevant GvHD. Nevertheless, novel and exciting prophylaxis

and therapies are being investigated, including targeting early

events in GvHD pathogenesis, such as interactions between

tissue damage-associated antigens and T-cells, endothelial

toxicity, and T-cell trafficking (44, 45).
Vascular idiopathic pneumonia
syndrome/diffuse alveolar hemorrhage

Idiopathic pneumonia syndromes (IPS) are early non-

infectious complications after HCT causing acute lung

dysfunction. IPS encompasses different entities sub-classified

depending on the pulmonary area affected (parenchyma,

vascular endothelium, or airway epithelium) (46). Among

vascular-IPS, diffuse alveolar hemorrhage (DAH) is developed

in a small proportion of patients (2-14%) in both, the autologous

and the allogeneic settings (47) and is characterized by the

progressive bloodier return of the bronchoalveolar lavage fluid,

in at least three segmental bronchi, indicating the presence of

blood in the alveoli (48). Different risk factors for IPS have been

identified: older recipient’s age, malignancy other than leukemia,

HLA mismatch, high–intensity conditioning regimens, and the

presence of concomitant acute GvHD. Diagnostic clinical

criteria for Vascular-IPS include signs and symptoms of

pneumonia, multilobar radiographic infiltrates, abnormal

pulmonary function, and the absence of infectious etiology or

other causes for fluid overload which could justify the syndrome

(49, 50). The first line of treatment includes high doses of steroid

therapy. However, despite the prompt start of treatment, IPS-

related mortality rates are very high, ranging from 60% to 80%,

and superior to 95% in patients requiring mechanical ventilation

(46, 49). Specifically, overall mortality in patients presenting

DAH is also very high, although it seems less dramatic when it

appears early after HC (51).
Frontiers in Immunology 04
The role of endotheliopathy and
other linked pathways in the
development of HCT early
complications

Endothelial cells (EC) tightly regulate the vascular

homeostatic balance by upholding an anti-inflammatory and

anti-thrombotic state to preserve proper blood circulation.

Different innate and adaptative immune reactions and

pathogen-associated molecular patterns in infections, together

with toxic agents such as immunosuppressant medications or

chemotherapies and radiation used as part of the preparative

regimens have been identified as noxa towards the endothelium

(52–63). Moreover, the HCT process per se has been

demonstrated to induce endothelium dysregulation leading to a

hypercoagulable state (64) by incrementing the levels of pro-

coagulant molecules and decreasing the ones of the main natural-

anticoagulant molecules, among other mechanisms (65, 66).

In consequence, the endothelial dysfunction occurring after

HCT and derived from the mentioned stressors consists of: a)

the increased synthesis of angiopoietin-2 (Ang-2), a molecule

involved in the endothelial inflammation that increases its

permeability, and that is upregulated over its antagonist,

angiopoietin-2 (Ang-1), which has endothelial-protective

properties in its counterpart (67); b) the overexpression of

adhesion molecules (such as intercellular adhesion molecule 1

(ICAM-1), vascular-cell adhesion molecule 1 (VCAM), E-

selectin, P-selectin), which induce leukocyte recruitment and

transmigration through the endothelium (68); c) dysregulation

of the vascular tone, due to the decreased synthesis of endothelial

nitric oxide (NO) and prostacyclin; and d) the elevation of

angiogenic molecules such as vascular endothelial growth factor

A (VEGFA), fibroblast growth factor 2 (FGF2), and Ang-2,

which operate through their respective receptors (VEGFR1 and

VEGFR2, FGR1 and TIE-2) (69) (Figure 1).
Sinusoidal obstruction syndrome

Almost thirty years ago, the first evidence of endotheliopathy

as the pathophysiological substrate of SOS (70, 71), constituted a

true hallmark in the HCT-therapeutics. In particular, the

histological findings subjacent in SOS consisted of severe

damage of the sinusoidal endothelial cells causing centrilobular

coagulative necrosis, sinusoidal hemorrhage, and subendothelial

fibrosis, causing portal hypertension (72). The depletion of

glutathione, as a response to an acute endothelial injury,

negatively affects the metabolism of some alkylating drugs

used in the conditioning, potentiating their toxic effect on the

ECs (73). Moreover, the obstruction of the hepatic sinusoids is
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caused by the overactivity of the matrix metalloproteinase (74),

which increases the endothelium permeability and permits the

extravasation of platelets and other blood cells into the space of

Disse. The impaired production of nitric oxide (NO) by

sinusoidal endothel ial cel ls after being injured by

monocrotaline was demonstrated in a mice model, where the

ulterior administration of a NO-donor proved to restore the

endothelial integrity and prevent SOS development (75).

Fur thermore , hypofibr ino ly s i s a l so enhances the

prothrombotic phenotype of this complication (72, 76, 77).

The growing knowledge of the pathophysiology of SOS laid

the foundations for the development of its first treatment,

defibrotide, focused on the protection and the re-establishment

of the anti-inflammatory and anti-thrombotic properties of the

endothelium (78–80). Although the role of defibrotide as a

prophylactic strategy in front of HCT complications has been

extensively explored (81–83), the approved indications for its

use are still restricted to the treatment of severe cases of SOS with

renal or pulmonary dysfunction (84, 85). Since then,

endotheliopathy has been a common pathway involved in

other early HCT complications characterized by an
Frontiers in Immunology 05
inflammatory, pro-vascular permeability and/or prothrombotic

clinical presentation.
Engraftment syndrome

ES is likely the result of a systemic endothelial damage

produced by the massive release of pro-inflammatory

cytokines (such as IL-2, TNF-a, IFN-g, IL-6), and products of

degranulation and oxidative metabolism of neutrophils (86, 87).

In addition, the concomitant administration of G-CSF, a potent

endothelial toxic (62, 88), has been observed to contribute to ES

development (86, 87, 89, 90). Moreover, endothelial dysfunction

has recently proven to lie beneath ES and precede its

development (91).
Capillary leak syndrome

As mentioned above, the current evidence of the

endotheliopathy underlying CLS is by extrapolation with the
FIGURE 1

At left, the main noxa towards the endothelium in the context of the HCT are summarized. In the upper part of the figure, the principal
pathways started after a loss of the endothelial-function equilibrium are described. Below, different biomarkers of endothelial dysfunction are
shown and their color represents the pathway in which are involved. At right, the principal treatments developed targeting the endothelium are
exposed. NO, nitric oxide; sTM, soluble thrombomodulin; VWF, von Willebrand factor; PAI-1, plasminogen activator inhibitor 1; EVs, Endothelial
extracellular vesicles; CEC, Circulating endothelial cells; eNOS, endothelial nitric oxide synthase; Ang-2, angiopoietin 2; Ang-1, angiopoietin 1;
sICAM-1, soluble intercellular Adhesion Molecule 1; sVCAM-1, soluble vascular cell adhesion molecule-1; ST2, soluble suppression of
tumourigenicity 2; FGF2, fibroblast growth factor 2; VEGF, vascular endothelial growth factor A; TNFRI, soluble TNF receptor I; NETs, neutrophil
extracellular traps; sC5b-9, soluble c5b-9 complex.
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biological data in Idiopathic Systemic CLS or Clarkson disease,

which has a possible link with monoclonal gammopathies (28,

30, 92). A relationship between the administration of

granulocyte macrophage colony-stimulating factors, G-CSF,

and pro-inflammatory cytokines, and the development of CLS

has been observed (30). In addition, the increment of circulating

levels VEGF and Ang-2 documented in patients with CLS has

supported the role of endotheliopathy as its pathophysiological

substrate (26).
Transplant-associated thrombotic
microangiopathy

In the allogenic HCT setting, TA-TMA has been broadly

ratified as an essentially vascular complication. This syndrome is

characterized by affecting the renal and intestinal arterioles,

mainly. Histologically, the intestinal TA-TMA shows the

presence of schistocytes, fibrin, and, in severe cases,

microthrombi in the intraluminal space and endothelial cell

detachment (93). In the renal TA-TMA, the glomerular

capillaries are also affected (94). Moreover, a tight link

between TA-TMA and severe or refractory GVHD has been

demonstrated in several studies, clinically and biologically

(95–98).

Among all the biological pathways affecting the

endothelium, the activation of the complement system seems

to be the main protagonist in the TA-TMA scenario. The

complement cascade is a part of both, the innate and the

adaptative immune system, and can be activated by several

triggers, such as residues in pathogen surfaces, deregulation of

the unspecific basal activation, and the antigen-antibody union.

All these pathways collide in the membrane attack complex,

composed of the assembled proteins C5b-9, which binds and

perforates the surface of pathogens or cells for their destruction.

Moreover, products released by mobilized neutrophils, such as

neutrophil extracellular traps (NETs), have a determinant role in

activating the complement cascade (99, 100). NETs are double

DNA strands able to trap circulating pathogens, activate the

complement system, and induce a direct cytotoxic effect in the

endothelium (101). Whereas the quantification of the deposit of

C5b-9 on cultured endothelial cells has been demonstrated to be

a sensitive tool for the functional diagnosis of other thrombotic

microangiopathies, like atypical hemolytic uremic syndrome

(aHUS) and severe pre-eclampsia (102, 103), its role for the

diagnosis of TA-TMA is still under investigation.
Acute graft-versus-host disease

The pathogenesis of aGvHD was firstly attributed exclusively

to the T-cell-based immune alloreactivity of the graft towards
Frontiers in Immunology 06
the recipient’s tissues since the histology of the affected organs

reveals the presence of inflammatory cellular infiltrates, mainly

composed of CD3+ lymphocytes. Nevertheless, other effectors

such as innate myeloid cells, damage-associated molecular

patterns (DAMPs), pathogen-associated molecular patterns

(PAMPs), mainly from bacterial growth, and pro-

inflammatory cytokines are known today to be also involved

in its development (104, 105). Based on the pathways initiating

GvHD, some common with other complications after the allo-

HCT, previous studies pointed to the endothelium as a

centerpiece for its development (106–108). Cordes et al.

recently demonstrated the presence of signs of blood-vessel

apoptosis in intestinal biopsies from patients with aGvHD.

Moreover, they observed, also by histological analysis, severe

alterations in the endothelial microstructure and decreased

expression of endothelial tight junction proteins in the organs

affected by aGvHD in their murine model (109). Early

angiogenesis has even been postulated as an initiator of

aGvHD by enhancing the leukocyte transmigration toward the

affected organs (110).
Vascular idiopathic pneumonia
syndrome/diffuse alveolar hemorrhage

Although the evidence of an infectious process is a criterion

of exclusion for IPS, the presence of pathogens in the

bronchoalveolar lavage in IPS patients indicates that infections

might participate in IPS’s etiology and determine its prognosis

(111). The lung histology from IPS patients is characterized by

endothelial injury in pulmonary arterioles, seen as intravascular

fibrin deposits, perivascular concentric fibrosis, and luminal

thrombosis (49). The pathogenesis of DAH, specifically,

is based on diffuse capillaritis caused by an intense

inflammatory reaction, mediated mainly by tumor necrosis

factor alpha (TNF-a), and significant apoptosis of pulmonary

endothelial cells (112). In addition, he generalized loss of the

integrity of the alveolar-capillary barrier leads to increased

leukocyte extravasation, feedback of the inflammatory

reaction, and accumulation of cells on the alveolar space

(113, 114).
Other syndromes with endotheliopathy
as pathophysiological substrate

Endotheliopathy has proven to be involved in the

development of the toxicities of other cellular therapies, such

as cytokine release syndrome (CRS) or immune effector cell-

associated neurotoxicity syndrome (ICANS) in chimeric antigen

receptor (CAR) T-cell immunotherapy (115–118) although their

exact pathogenesis is still under study.
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Biomarkers of endothelial damage
for the diagnosis, prognostic
assessment and follow-up of early
HCT complications

Different biomarkers of endothelial activation and

dysfunction have been found to be increased in all the post-

HCT complications mentioned above. Nevertheless, most of them

have been focused on evaluating the diagnosis or treatment

response of SOS, TA-TMA, and GVHD, as their prevalence and

clinical repercussion are higher than other post-transplant

vascular endothelial complications. With this evidence,

significant efforts have been made in the last years to explore

whether some of these biomarkers might have a role in predicting

their appearance and prognosis or in developing target EC

therapies (119). However, despite the multiple efforts dedicated

to the investigation and definition of biomarkers for post-

transplant endothelial complications, the majority of them are

cost-effective, not easily reproducible, and do not present sufficient

specificity to be implemented in daily clinical practice
Frontiers in Immunology 07
Table 1 provides an overview of the potential utilities of

different identified endothelial activation and dysfunction

biomarkers. As reported in the previous section, the first step

toward endothelial dysfunction is loss of vascular integrity and

inflammatory response leading to a local increase in

permeability or significant endothelium contraction, resulting

in subendothelial exposure and provoking a protein “landscape”

of the cell membrane. These dynamics generate the synthesis or

overexpression of different adhesion or angiogenic molecules,

coagulation factors, or pro-inflammatory mediators that can be

harnessed as soluble biomarkers of endothelial dysfunction (67–

69). In addition, endothelial damage can progress in a loss of EC

integrity and shedding of endothelial cells into the bloodstream,

generating a potential biomarker target of endothelial

dysfunction. In particular, the presence and proportion of

circulating endothelial cells (CEC) and endothelial progenitor

cells (EPC) in blood correlate with vascular health homeostasis,

being the presence of CEC a recognized biomarker of ongoing

endothelial damage, whereas EPC could potentially evaluate

vascular repair suitability (145). Nevertheless, the presence of

CEC in bloodstream samples is also a dynamic phenomenon
TABLE 1 Summary of the potential uses of biomarkers of in the diagnosis, prediction, prognosis or evolution assessment of the early-HCT
endothelial complications.

Diagnostic confirmation Prediction/Prognosis Follow-up

SOS ST2, Ang-2, L-Ficolin, HA, sVCAM-1 (120) L-Ficolin, HA, sVCAM-1 (120) EVs (121)

PAI -1 Ag (72, 76, 77) EASIX score (123)

EVs (121)

MiRNA (122)

ES TNFRI (91) VWF, TNFRI (91)

CLS VEGF, Ang-2 (26).

TA-TMA NETs, sC5b-9 (100, 124) ST2 (125) sC5-b9 (131)

Decreased haptoglobin (35) NETs (126)

sC5-b9 (127)

Factor Ba (128–130)

aGVHD VWF, TNFRI (132) Ang-2, sTM, HGF, IL-8 (139)

IL-2, IL-8, TNFRI, HGF (133) IL-2, IL-8, TNFRI, HGF (133)

CEC (134) Ang-2 (140)

EVs (135–138) MAGIC score (ST2, REG3a) (141, 142)

miR155 (138). ST2 (125)

NETs (98)

EVs (135–138)

miR155 (138)

Vascular-IPS/DAH ICAM-1, VCAM-1, eNOS (49)

Ang-2 (143, 144).
fro
SOS, sinusoidal obstructive syndrome; CLS, capillary leak syndrome; TA-TMA, transplant-associated thrombotic microangiopathy; aGvHDGVHD, acute graft versus host disease; IPH,
idiopathic pneumonia syndrome; DAH, diffuse alveolar damage; ES, engraftment syndrome; ST2, soluble suppression of tumourigenicity 2; Ang-2, angiopoietin 2; HA, hyaluronic acid;
VCAM-1, vascular cell adhesion molecule-1; PAI-1, plasminogen activator inhibitor 1; VEGF, vascular endothelial growth factor; NETs, neutrophil extracellular traps; sC5b-9, soluble c5b-9
complex; ICAM-1, intercellular Adhesion Molecule 1; eNOS, endothelial nitric oxide synthase; TNFRI, soluble TNF receptor I; VWF, vonWillebrand factor; sTM, soluble thrombomodulin;
IL-2, interleukin 2; IL-8, interleukin-8; REG3a, regenerating islet-derived 3-alpha; Factor Ba, fragment from factor B formed by the activation of the alternative pathway of the complement
cascade. EVs, endothelial extracellular vesicles; miR155, microRNA-155; CEC, circulating endothelial cells; NETs, Neutrophil extracellular traps.
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after HCT because is affected by several factors, such as the

condit ioning regimen, engraftment, infect ions and

immunosuppressive treatments and this fact has to be

considered when investigating the utility of these parameters

as diagnostic or prognosis biomarkers for post-HCT

complications (146). Lastly, endothelial cell progenitors,

miRNAs, and extracellular vesicles (EV) seem to have a

promising utility for the diagnostic, prediction, or targeted

treatments of early post-HCT complications (122, 135, 147).

However, further investigations are still needed as limited

studies have been conducted on this setting.
Sinusoidal obstruction syndrome

The endothelial dysfunction underlying SOS has been

demonstrated through different soluble biomarkers from in vitro

and ex vivo studies. Higher circulating of coagulation factors such

as Von Willebrand Factor (VWF), thrombomodulin (TM),

plasminogen activator type-1 (PAI-1) together with membrane-

bound intercellular adhesion molecule-1 (ICAM-1), E-selectin

levels or circulating angiogenic factors, as for example, VEGF and

ang-2, have been documented in patients with SOS. Based on these

investigations, Aki et al. designed a biomarker panel including L-

Ficolin, HA, and VCAM1 to identify patients with high-risk SOS

when measured on the day of the stem cell infusion, and a second

biomarker panel including circulating soluble suppressor of

tumorigenicity 2 (ST2), Ang-2, L-Ficolin, HA, and VCAM1 for

the diagnosis of this complication (120). Different studies have

demonstrated increased levels of plasminogen activator inhibitor-1

(PAI-1), a hypofibrinolysis soluble biomarker, in patients with SOS

(72, 76, 77). These results support the existence of an ongoing

procoagulant and hypofibrinolytic status, suggesting a possible role

for anticoagulant therapy in this setting. Higher circulating levels of

PAI-1 have been documented in patients with SOS but not in those

with GVHD or other liver diseases, supporting its potential use as a

diagnosis marker due to its higher sensitivity (60). Moreover, the

measurement of decreased PAI-1 during the first two weeks of

defibrotide treatment correlated with a higher probability of

presenting a complete SOS response at three months post-

HCT (148).

Recent studies investigated the potential utility of miRNA or

endothelial extracellular vesicles (EVs) as biomarkers in SOS

(121, 122, 147). EVs are bone-marrow-derived mesenchymal

stem cells circulating in peripheral blood and involved in

intercellular communication by transferring proteins, lipids,

and genetic material (mRNA, microRNA, lncRNA) to target

cells (122). Different studies have documented that these

microparticles induce angiogenesis and may repair injured

endothelium by releasing paracrine mediators. Piccin et al.

observed an early post-HCT increase of CD144+ EVs in

plasma samples of SOS patients. Moreover, PAI-1 levels

showed an increased relationship with platelet counts and
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were inversely correlated with EVs, and the EVs generated by

the rupture of gap junctions increased in SOS patients and

showed a change over time (121). Based on these results, the

measurement of PAI-1 and, eventually, EVs could potentially be

used for SOS diagnosis or monitoring. Although, further

research is needed before universalizing these biomarkers as

part of the routine diagnostic work-up for SOS, and to evaluate

their potential clinical repercussion if used for targeted therapies

in this setting.
Transplant-associated thrombotic
microangiopathy

In the setting of TA-TMA, NETs and soluble C5b-9 have

been postulated as potential biomarkers for diagnosis

confirmation (100, 124), and it might be used to foresee the

development of TA-TMA (126) and of aGvHD (98). Also, the

early assessment of some coagulation factors, such as VWF and

TM, together with soluble vascular CAM protein 1 (sVCAM-1),

or biomarkers belonging to the complement cascade, such as

sC5b-9 or Factor Ba, can predict TA-TMA development (128–

130) and even guide the treatment (131). Jodele et al. recently

demonstrated that activated terminal complement, measured by

elevated blood soluble C5b-9, alone, is a valuable indicator of

reduced survival in a prospective study including 130 patients

undergoing HCT with a diagnosis of TA-TMA published in

2022 A “dose effect” was observed between higher sC5b-9 levels,

higher risk for developing multiorgan dysfunction syndrome,

and worse outcomes. This study lastly suggests that scheduled

soluble C5b-9 measurements could promptly identify patients at

risk for poor outcomes and would facilitate early TA-TMA-

directed therapy to prevent organ injury. Moreover, an updated

TA-TMA risk algorithm incorporating laboratory biomarkers,

clinical findings, and comorbid conditions was generated using

this study’s findings for managing TA-TMA (127). Lastly, the

measurement of haptoglobin in blood samples from TA-TMA

patients has been proposed as diagnostic criteria. Moreover,

recent proteomics profiling on serum performed in patients

undergoing HCT has permitted the isolation of a 17 KDa

haptoglobin degradation product that was differentially

expressed in patients who developed TA-TMA (35). This non-

invasive biomarker showed diagnostic value toward TA-TMA

and could allow earlier intervention.
Acute graft-versus-host disease

Different soluble biomarkers of endothelial dysfunction have

been postulated for GVHD diagnosis. These biomarkers involve,

among others, coagulation factors such as VWF or soluble

thrombomodulin (sTM), circulating angiogenic factors such as

VEFG or ang-2, or inflammatory cytokines such as TNFa (132).
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In addition, higher levels of ang-2, soluble thrombomodulin

(sTM), hepatocyte growth factor (HGF), and interleukin 8 (IL-8)

have been identified as potential GVHD predictive biomarkers

or as predictors of corticosteroid refractoriness (139, 140).

Identifying different soluble biomarkers has also permitted the

design of different panels for diagnosis or prognostic

stratification. Paczesny et al. developed a model composed by

four biomarkers (Il-2, TNFR1, IL-8, and HGF) for the laboratory

confirmation of GvHD and its prognostic stratification In the

same line, and using proteomics approaches, the Mount Sinai

Acute GVHD International Consortium (MAGIC) went a step

further and validated an algorithm for the prediction of the risk

of severe GvHD, non-relapse mortality (NRM) (141) and long-

term outcomes in patients with steroid-refractory GVHD (142).

Although the model was composed of two parameters meant as

gastrointestinal-damage biomarkers (ST2 and REG3 a), ST2 is

also produced by endothelial cells, supporting the need for

assessing endothelial biomarkers in other prognostic scores.

The predictive ability of MAGIC panel has demonstrated high

sensitivity, and the results have been validated externally with

notable success . These results have permitted the

implementation of this diagnostic panel in different clinical

centers. Lastly, increased pre-transplant levels of ST2 indicate

a higher risk of TA-TMA (95) and, when measured at day +28,

can be useful in predicting the likelihood of GvHD, together with

non-relapse mortality and overall survival (125).

Different research is being conducted exploring the potential

role of CEC count measurement and the quantification of

circulating miRNAs and EVs in GVHD (134, 135). A

relatively increased CEC count has been described by Almici

et al. in patients with GvHD compared to those without this

complication, and more interestingly, CEC values returned to

basal pre-transplant values in responding patients. These results

suggest that CEC values could eventually be treated as markers

of GVHD onset or evaluate treatment response (134). Different

free circulating miRNAs, such as miR155, miR146a, miR19a,

miR20a, miR30, miR181, miR150, miR194, miR100, and

miR518f, have been isolated in plasma/serum before HCT, two

weeks after the stem cell infusion, and before the onset of

GVHD, suggesting a possible prognostic use in GVHD (135).

Interestingly, mir155 could potentially be used as a diagnostic

biomarker among all these miRNAs, as serum up-regulation of

miR155 has been observed in patients with confirmed GI-

GVHD and in GVHD experimental models with mices (136).

Furthermore, blocking miR155 function with a synthetic

oligonucleotide complementary to miR155 has been shown to

improve GVHD symptomatology in different investigations

suggesting that miR155 can potentially be used as a

therapeutic target in this setting. Lastly, the potential role of

serum EVs as biomarkers of GVHD is also under investigation

(135, 136). Lia et al. observed a significant expression change of

three EVs membrane antigens in post-transplant patients before
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the onset of GVHD, suggesting that the routine measurement of

EVs before and after HCT could have a potential utility for

GVHD prediction (137). Moreover, an association between

increased EVs and higher levels of circulating miR155 has

been observed in both patients and animal models at the time

of GVHD onset but also before starting the clinical

manifestations suggesting a possible prognostic use of miRNAs

together with EVs (138). Nevertheless, although the results

provided by these investigations are promising, the potential

utility of these biomarkers for GVHD diagnosis, prognosis, or

for the design of specific targeted-treatments is not yet defined,

validated, or standardized
Additional biomarkers in early post-
transplant complications

Increased plasma levels of VWF and TNFRI have been

documented in patients with ES, suggesting that these

biomarkers could have potential use for diagnostic

confirmation. Moreover, increased levels of TNFR1 were

identified on day +5 after auto-HCT in patients who after

developed this complication suggesting that TNFR1 could also

be a useful biomarker for ES prediction (91). Moreover, levels of

circulating VEGF and Ang-2 have also been found to be elevated

in CLS (26), and higher levels of the endothelial-damage

biomarkers ICAM-1, VCAM-1, eNOS (49), and Ang-2 have

been described in patients with IPS/DAH (143, 144).

Lastly, the Endothelial Activation and Stress Index (EASIX)

was developed as a biomarker-based laboratory formula defined

as creatinine (mg/dL) x lactate dehydrogenase (LDH; U/L)/

platelets (x 109/L) to predict mortality in patients with

aGVHD (149). EASIX, when measured at different time points

before and after the stem cell infusion, has additionally been

shown to be useful for the prediction of mortality after allo-HCT

(150), TA-TMA (150), ICU admission (151), and SOS (123).

Moreover, a modified version of EASIX, which substitutes

creatinine for C reactive protein, demonstrated predictive

utility for CRS and ICANs in CAR-T cell patients (152, 153).

Although the use of EASIX is not yet standardized, its

implementation in clinical practice can potentially simplify the

prediction of different vascular ECs after HCT, eventually

permitting the arrangement of additional diagnostic tests or

preemptive interventions.
The endothelium as a therapeutic
target in HCT

Considering the role of the endothelium in the

pathophysiology of these early post-HCT complications,

different treatment strategies focused on targeting EC
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dysfunction have been approved or are under investigation with

promising results (7, 9).
Defibrotide

Defibrotide has been shown to reduce EC activation and to

exert a fibrinolytic effect through the enhancement of tissue

plasminogen activator (t-PA) and thrombomodulin synthesis

and by decreasing the expression of PAI-1 (79, 85). Furthermore,

its efficacy was proved in a controlled, phase 3 trial, where,

compared with historical control cases, the use of defibrotide for

the treatment of post-HCT SOS with multiorgan failure

increased the probability of day +100 post-transplant survival

from 25% to 38%. Consecutively, defibrotide was demonstrated

to be effective for treating SOS without MOD, and its use

resulted in a day +100 probability of survival of 56% (154).

Secondary to its efficacy, using defibrotide as primary or

secondary prophylaxis for SOS is considered in high-risk

patients (19, 155). Furthermore, although its use in this

context is not yet approved, prophylactic defibrotide effectively

decreases the incidence of TA-TMA and GvHD in pediatric

patients (155–157).
Other anticoagulant and fibrinolytic
agents

Heparin, whose anti-inflammatory effects have also been

demonstrated (158), has been shown to decrease the incidence of

SOS without significant bleeding complications when used at

low doses (159, 160). Other agents with anticoagulant properties,

such as protein C concentrates (161) and recombinant

thrombomodulin (162, 163), might have a role in the

prevention and treatment of SOS. Recombinant tissue

plasminogen activator (Rt-PA) has also been demonstrated to

effectively treat SOS (164, 165), although a risk-benefit balance

must be considered before its use.
Anti-inflammatory agents

High-dose corticoids are considered the first line of

treatment for acute GvHD and other endothelial-related post-

transplant complications such as ES, IPS, and DAH (9).

Corticosteroids have anti‐inflammatory effects that may

mitigate endothelial damage and are commonly used to

manage the pro‐ inflammatory state associated with

endothelial‐related HCT complications (46, 49). The use of the

anti‐TNFa agent etanercept to restore EC function and decrease

inflammatory chemokine expression to treat IPS has been

explored by different investigators (166). However, reported

data has been inconsistent, and the reduced sample size of
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patients has limited the conclusions included in the studies.

Nevertheless, hypotheses are sustained that its use with

corticosteroids could potentially increase post-transplant

outcomes in patients who did not require positive pressure

ventilation at the time of diagnosis (166).
Complement inhibitors

The complement protein C5 antibody eculizumab is an

effective therapeutic strategy for post-transplant patients with

high-risk TA-TMA. Its use has been associated with high rates of

clinical response and an improvement in 1-year overall survival

(40, 131). The role of other inhibitors of the complement

cascade, such as ravulizumab, coversin, pegcetacoplan,

crovalimab, avacopan, iptacopan, danicopan, BCX9930, and

AMY-101, is currently being explored in the setting of TA-

TMA (167).
Re-establishers of the endothelial redox
and the anti-inflammatory balance

N-acetylcysteine (NAC) is an antioxidant agent with an

excellent safety profile, which has been demonstrated to be

effective in treating SOS in a limited cohort of pediatric

patients (168). In addition, other agents known as endothelial

stabilizers, such as Ang-1 (169) and nitric oxide-prodrugs (75),

sildenafil (109) and statins (170, 171) demonstrated to restore

the physiological endothelial properties when administered

exogenously in murine models or in vitro. Nevertheless, their

effects in the specific context of HCT complications still need to

be explored.
Conclusions and future perspectives

There is growing evidence pointing to the endothelium and

other linked pathways as pathophysiological substrates of the main

HCT complications. Panels composed of endothelial-damage

biomarkers are being developed to early predict these

complications, their risk stratification, and the ulterior follow-up.

In addition, multiple therapeutic and prophylactic strategies

oriented to endothelial protection are being proposed, and their

impact on the incidence of complications and non-relapsemortality.

The use of non-invasive biomarkers for detecting and

diagnosing early post-HCT endothelial complications is a

promising field of research. However, the lack of consistency

among studies, probably secondary to patient`s heterogenicity

and discrepancies in transplant techniques, difficult to

implement these biomarkers in clinical practice. Moreover, the

lack of validation techniques and additional costs derived from

measuring certain biomarkers are also difficult on a daily basis.
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Nevertheless, based on the extensive data on endothelial

circulating biomarkers’ role as practical tools for the

mentioned purposes, further efforts must be done to

implement these techniques in clinical practice.
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