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In the past few decades, great progress has been achieved in the understanding

of microbiome-cancer interactions. However, most of the studies have

focused on the gut microbiome, ignoring how other microbiomes interact

with tumors. Emerging evidence suggests that in many types of cancers, such

as lung cancer, pancreatic cancer, and colorectal cancer, the intratumoral

microbiome plays a significant role. In addition, accumulating evidence

suggests that intratumoral microbes have multiple effects on the biological

behavior of tumors, for example, regulating tumor initiation and progression

and altering the tumor response to chemotherapy and immunotherapy.

However, to fully understand the role of the intratumoral microbiome in

cancer, further investigation of the effects and mechanisms is still needed.

This review discusses the role of intratumoral bacteria in tumorigenesis and

tumor progression, recurrence and metastasis, as well as their effect on cancer

prognosis and treatment outcome, and summarizes the relevant mechanisms.

KEYWORDS
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Abbreviations: CRC, colorectal cancer; PDAC, pancreatic ductal adenocarcinoma; BC, breast cancer CDT,

cytolethal distending toxin; BFT, Bacteroides fragilis toxin; STAT3, signal transducer and activator of

transcription 3; ETBF, enterotoxigenic Bacteroides fragilis; MBL, mannose-binding lectin; CDDL, long

isoform of the bacterial enzyme cytidine deaminase; PD-L1, programmed cell death ligand 1; PD-1,

programmed cell death protein 1.
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Introduction

Despite the well-known connection between the microbiome

and human health, insufficient attention has been given to the

microbiome’s effect on the host, particularly the relationship

between tumors and the microbiome (1). All the microorganisms

that inhabit the human body, including bacteria, fungi, archaea,

viruses and protozoa, form the human commensal microbiota (2).

Despite the primary habitat being the gut, thriving microbial

populations can be found in areas throughout the body, such as

the skin, digestive system, respiratory system, and reproductive

system (3). Furthermore, these microbes have the ability to affect a

number of significant physiological processes, including

metabolism, immunity, and the generation of nutrients (4). There

is a complex relationship between microbes and humans that is also

present in cancer. The gut microbiota plays a significant role in

tumorigenesis and cancer treatment according to a multitude of

studies (5–7). Notably, with the improvement of genome

sequencing in recent years, researchers have discovered that

human solid tumors also have microbiomes, which are called

tumor microbiomes (8–10). Although growing evidence shows

that there is a strong relationship between intratumoral bacteria

and human solid tumors, the specific mechanisms underlying the

specific relationship in each cancer remain unclear. This review

focuses on the influence of the intratumoral microbiome on tumor

occurrence, development, recurrence, metastasis, clinical prognosis

and treatment.

It has been suggested that the intratumoral microbiome may

be derived from the gut microbiome. By comparing the

microbiomes of stool samples, PDAC tumor specimens and

nontumor adjacent normal tissues from patients undergoing

Whipple surgery, Riquelme et al. found that ~25% of the

intratumoral microbiome was derived from the gut microbiome,

while there was no trace of the gut microbiome in adjacent normal

tissues. This suggests that the gut microbiome is able to specifically

colonize pancreatic tumors (11). Subsequently, the researchers

transferred microbiotas from patients with advanced PDAC into

the intestines of mice by fecal microbial transplantation.

Interestingly, they were able to detect human donor bacteria

within the tumors of mice after the fecal microbial

transplantation, but the bacteria from donors accounted for less

than 5% of the bacteria in the intratumoral microbiomes. In

addition, they found significant changes in the bacterial

composition of the intratumoral microbiomes in mice after the

fecal microbial transplantation. These results suggest that the gut

microbiome can modulate the intratumoral microbiome, and

these changes can be caused in part by direct transfer of gut

bacteria but more importantly can be achieved by altering the

intratumoral bacterial composition (11).

At a more local level, the commensal microbiota of solid

tumor tissues constitutes a significant part of the tumor

microenvironment, influencing tumor initiation and progression

(5). For instance, Rubinstein et al. demonstrated that colorectal
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cancer (CRC) cells are stimulated to grow by Fusobacterium

nucleatum, which can adhere, invade, and initiate oncogenic

and inflammatory responses through their distinctive FadA

adhesin (12). In addition to its role in tumor initiation and

development, the intratumoral microbiome can also promote

metastatic colonization in cancer (13). In the study by Fu et al.,

depletion of intratumoral bacteria significantly slowed lung

metastasis of breast cancer without affecting the growth of

primary tumors (14). Similarly, a study showed that

Fusobacterium nucleatum infection may stimulate tumor cells to

secrete specific exosomes that can be taken up by healthy cells to

promote prometastatic behavior (15). Moreover, the treatment

and prognosis of cancer are also affected by the tumormicrobiome

according to several recent studies (16–18). In CRC, the bacteria

in the tumor can alter the biological structure of the

chemotherapeutic drug gemcitabine during therapy, thereby

enhancing the tumor’s resistance to chemotherapy (19). Using

16S rRNA gene sequencing, Riquelme et al. found that the long-

term survival of patients with pancreatic ductal adenocarcinoma

(PDAC) increased with the alpha diversity of the tumor

microbiota (11). In addition, Turicibacter was identified as a

potential independent prognostic factor for patients with

nasopharyngeal carcinoma, and the relative abundance of this

bacteria was negatively associated with progression-free survival

in patients with the disease (20). The differences between the

effects of commensal microorganisms and those of intratumoral

microorganisms on tumor tissues are not always clear and, due to

technical limitations, not always easy to distinguish. In this review,

we summarize several possible mechanisms by which the

intratumoral microbiome affects the biological behavior of

tumors and review the role of the intratumoral microbiome in

different human solid tumors and the implications for

cancer therapy.
Mechanisms by which the
intratumoral microbiome affects
tumorigenesis and tumor metastasis

Intratumoral microbiome and
tumorigenesis

Although existing studies have established an inextricable

relationship between the intratumoral microbiome and

tumorigenesis, the exact mechanisms are not yet fully

understood. The following are three possible mechanisms (4,

5, 21, 22): directly promoting tumorigenesis by increasing the

mutation rate, regulating oncogenic signaling pathways, and

inducing inflammation and altering the local immune

microenvironment of the host (Figure 1).

Members of the microbiota can produce metabolites such as

cytolethal distending toxin (CDT), colibactin and Bacteroides

fragilis toxin (BFT) that directly cause DNA damage and trigger
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mutations (23, 24). Approximately 35% of group B2 Escherichia

coli isolates possess genomic islands known as polyketide

synthetase (pks) islands, which encode colibactin in the form

of a biosynthetic nonribosomal peptide synthetase–polyketide

synthase hybrid gene cluster (25, 26). Colibactin can lead to

double-strand breaks, thereby promoting genome instability and

accelerating oncogenesis (23, 27–29). CDT is secreted by some

gram-negative bacteria belonging to the ϵ and g classes of the

Proteobacteria phylum (30). CDT is a heterogeneous multimeric

protein consisting of three subunits (CdtA, CdtB, and CdtC),

and CdtB is the primary functional unit causing DNA damage

(31–33). Importantly, CdtB acts in a dose-dependent manner,

and its effect gradually changes from inducing single-strand

DNA breaks to inducing double-strand DNA breaks as the dose

increases (34, 35). An abnormal DNA damage responses can

lead to genome instability and promote tumor initiation (29).

BFT is secreted by Bacteroides fragilis and can increase reactive

oxygen species and DNA damage by upregulating spermine

oxidase to induce colon tumorigenesis (24). Moreover, BFT is

capable of inducing the release of PGE2, which induces an

inflammatory response by triggering the expression of

cyclooxygenase-2, a process intricately linked to the formation

of colon cancer (36).

In addition to directly destroying DNA, several microbes

possess proteins that affect host pathways, which can cause

changes in host signaling and promote tumorigenesis. The

Wnt/b-catenin signaling pathway can regulate the biological

properties of cells and thus affects cell growth and is altered in

many malignancies (37). Significantly, some cancer-related

bacteria can affect b-catenin signaling. Fusobacterium
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nucleatum can express the bacterial cell surface adhesion

component FadA, which can activate b-catenin signaling by

binding to E-cadherin and can differentially modulate immune

inflammatory and oncogenic responses, thereby promoting

colorectal carcinogenesis (12, 38). The pathogenic product of

Salmonella, AvrA, is inserted into host cells during infection and

affects eukaryotic signaling pathways. It can upregulate b-
catenin signaling by decreasing the ubiquitination of b-
catenin, increasing the phosphorylation of b-catenin and

increasing nuclear b-catenin (39). Enterotoxigenic B. fragilis

can specifically cleave E calreticulin by secreting BFT, which

triggers nuclear b-catenin signaling, thereby enhancing the

transcription and translation of the proto-oncogene c-Myc and

ultimately promoting the formation of colon tumors (40, 41). In

addition to the Wnt/b-catenin signaling pathway, microbes can

also contribute to tumorigenesis by affecting the ERK and PI3K

signaling pathways. Tsay et al. demonstrated that lung cancer

patients can develop enrichment of oral taxa (Streptococcus and

Veillonella) in the lower airways through upregulation of the

PI3K and ERK signaling pathways (42).

It has been shown that inflammation is inextricably linked to

the development of cancer through a variety of pathways (43).

The interaction between the commensal microbiota and the

human immune system is in a dynamic balance during healthy

periods. This immune system-microbial alliance induces a

protective immune response against pathogens when the host

organism is functioning optimally. However, once this balance is

broken, the microbiota can trigger proinflammatory responses

or immunosuppressive programs to influence the body’s

immune response to tumors and thus promote tumorigenesis
FIGURE 1

Interaction between the intratumoral microbiome and tumor cells. Although the mechanism by which the intratumoral microbiome promotes
tumorigenesis remains unclear, three major mechanisms may contribute to tumorigenesis: increasing the mutation rate by directly destroying
DNA, regulating oncogenic signaling pathways, and initiating inflammation and interacting with the host immune system.
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(5, 44). Signal transducer and activator of transcription 3

(STAT3) has been found to promote cell proliferation,

differentiation and inhibition of apoptosis (45). For example,

the cytotoxin-associated gene A protein-eukaryotic translation

elongation factor 1-alpha 1 (CagA−eEF1A1) complex in CagA+

Helicobacter pylori can affect the activity of STAT3 by recruiting

PKCd, which promotes cell proliferation and tumorigenesis by

upregulating the expression of cell cycle regulators and the

proto-oncogene MYC (43, 46). In addition, Zhang et al.

demonstrated that Salmonella enterica serovar typhimurium

carrying STAT3 siRNA can silence STAT3 to cease cell growth

and enhance cell death (47). Of course, apart from STAT3,

bacteria can also promote tumorigenesis through other

molecules. Jin et al. demonstrated that the lung commensal

microbiome can induce the activation and proliferation of Vg6
+Vd1+gdT cells by stimulating myeloid cells to produce Myd88-

dependent IL-23 and IL-1b, IL-17 and other small molecules,

which ultimately promote inflammatory responses and

neoplastic hyperplasia (10). Fusobacterium nucleatum can

form an immune inflammatory microenvironment that

promotes intestinal tumorigenesis by recruiting tumor-

infiltrating immune cells (48). Moreover, the fap2 protein of

Fusobacterium nucleatum can interact with TIGIT receptors

expressed on NK cells and lymphocytes, which can inhibit

NK-cell cytotoxicity and T-cell activity, ultimately weakening

antitumor immune responses (49). These studies explain the role

of bacteria in tumor initiation and provide new insights into

potential targets in cancer therapy.
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Intratumoral microbiome and tumor
metastasis

Although the specific mechanism by which intratumoral

bacteria affect tumor metastasis is still unclear, recent studies

have shown that exosomes secreted by infected cancer cells may

be one of the mechanisms. Exosomes are 40-100 nm vesicles with

5’-nucleotidase activity that are released by a variety of cultured

cells. They bear various proteins, lipids, and RNAs, mediating

intercellular communication between different cell types in the

body and thus affecting normal and pathological conditions (50–

52). Tumor-derived exosomes can transfer miRNAs and proteins

to normal tissues and promote tumor metastasis through multiple

mechanisms, such as remodeling the tumor microenvironment,

promoting tumor cell proliferation and inhibiting apoptosis,

promoting epithelial-mesenchymal transformation, inhibiting

the antitumor immune response, and promoting hematological

tumor metastasis and angiogenesis (53–56) (Figure 2). Notably,

many studies have shown that tumor cells infected by bacteria

may secrete more exosomes, thus accelerating the metastasis of

the tumor (15, 57, 58).

Enterotoxigenic Bacteroides fragilis (ETBF) can inhibit

exosome-packaged miR-149-3p and further promote PHF5A-

mediated alternative splicing of KAT2A RNA in CRC cells,

which ultimately promotes cell proliferation in CRC (57). The

facultative intracellular bacterium Fusobacterium nucleatum is

an important CRC-associated intratumoral bacterium. It can

stimulate tumor cells to generate miR-1246/92b-3p/27a-3p-rich
FIGURE 2

The intratumoral microbiome promotes tumor metastasis by facilitating the production of tumor-derived exosomes. Exosomes are active
vesicles carrying various DNAs, miRNAs and proteins. The intratumoral microbiome can cause infected tumor cells to secrete more exosomes,
which promote tumor metastasis through various mechanisms, such as remodeling the tumor microenvironment, promoting tumor cell
proliferation and inhibiting apoptosis, promoting epithelial-mesenchymal transformation, inhibiting the antitumor immune response, and
promoting hematological tumor metastasis and angiogenesis.
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and CXCL16/RhoA/IL-8-bearing exosomes, which can be

delivered to uninfected cells to promote prometastatic

behaviors (15). Moreover, it has been demonstrated that the

activation of Toll-like receptor 4 in tumor cells supports tumor

progression by stimulating the release of immunosuppressive

exosomes, which allow tumor cells to escape immune

surveillance and even play a role in the metastatic process

(58). However, our research on the effect of intratumoral

bacteria on tumor metastasis is still in its infancy, so we need

more research to confirm these findings.
Intratumoral microbiome and
human solid tumors

Lung cancer

The lung is the largest surface area mucosal organ of the human

body, and it is directly connected with the external environment.

Therefore, it provides a favorable environment for microorganism

colonization. However, lung tissue in healthy people had always

been considered sterile in the past. Fortunately, with the emergence

of culture-independent 16S rRNA sequencing technologies, a

growing number of microbial populations have been found in the

lung (59–61). The lung microbiota is quite different from the nasal,

oral, skin, gut and vaginal microbiotas. In the healthy lung,

Firmicutes, Actinobacteria, Bacteroidetes and Proteobacteria are

the most abundant phyla, while the core microbiota genera

include Veillonella, Haemophilus, Neisseria, Streptococcus,

Fusobacterium and Prevotella (60, 62). An increasing number of

studies have shown that bacterial dysbiosis in lung tissue is related

to lung cancer (60, 63–66).

According tothe latest statistical report, lungcancerhas thehighest

mortality rate among human cancers at present, and the number of

deaths is 2.5 times that of CRC. It is estimated that approximately 80%

of lung cancer cases are caused by smoking (67). Interestingly, among

the bacteria found in lung tumors, thosewithmetabolic pathways that

degrade chemicals in cigarette smoke are significantly enriched,

indicating a close relationship between intratumoral bacteria and

tumorigenesis (8). For instance, Lee et al. found that two phyla

(TM7 and Firmicutes) were significantly enriched in lung cancer

patients. Furthermore, four genera (Megasphaera, Selenomonas,

Atopobium, and Veillonella) were more abundant in patients with

lung cancer (63). How do intratumoral bacteria affect the occurrence

and progression of lung cancer?

First, the lung microbiome can directly promote the growth of

tumor cells. The regulatory effects of commensal microbes on the

occurrence and development of lung cancer are mainly achieved

by modification of the local immune environment. Dysregulation

of lung microbial communities may promote changes in

carcinogenic pathways through specific microbial components

(66). The most commonly mutated gene in lung cancer is the

cancer suppressor gene TP53 (68), and certain missense
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mutations in this gene result in enhanced oncogenic ability (69).

Greathouse et al. found that patients with squamous cell

carcinoma who are smokers have enrichment of Acidovorax.

The researchers found that the same genus were further

enriched in patients with TP53-mutated squamous cell

carcinoma (70). In addition to TP53, the intratumoral

microbiome can also promote lung cancer proliferation and

invasion by upregulating the phosphoinositide 3-kinase (PI3K)

pathway (71). Tsay et al. showed that upregulation of the PI3K

and ERK signaling pathways can induce enrichment of oral taxa

(Veillonella and Streptococcus) in the lower respiratory airways of

lung cancer patients. These same signaling pathways are also

upregulated in airway epithelial cells exposed to Streptococcus,

Veillonella and Prevotella in vitro (42).

In addition, the lung microbiome can induce local chronic

inflammation by promoting the release of chemokines, cytokines,

and other proinflammatory factors and ultimately promote cancer

progression (5, 62). Because it is directly connected with the

external environment due to respiration, the lung is exposed to a

multitude of environmental pollutants and airborne microbes,

making it a crucial site of interaction between a microbiome and

the immune system (62, 72–74). Jin et al. found that when the

local bacterial enrichment patterns and microbiota composition

changed, myeloid cells could be activated to produce Myd88-

dependent IL-23 and IL-1b. These cytokines can induce

Vg6+Vd1+ gd T-cell activation and proliferation, thus producing

IL-17 and other cytokines, which ultimately promote the

occurrence of an inflammatory response and the proliferation of

tumor cells (10). Moreover, after the treatment of mice with

aerosolized antibiotics, Le Noci et al. found that the bacterial load

in the lungs of mice decreased while the activation of NK cells and

T cells increased, which paralleled a significant reduction in the

lung metastasis of B16 melanoma. Additionally, the probiotic

Lactobacillus rhamnosus was found to strongly promote

immunity against B16 lung metastases (75). In conclusion, these

studies prove that intratumoral bacteria can promote the

occurrence and development of lung cancer by inducing

inflammation and regulating the local immune response.
Pancreatic cancer

Pancreatic cancer has a poor prognosis and is one of the

most aggressive types of malignancies, with a five-year survival

rate of less than 11% despite continuous efforts by researchers

and clinicians. The latest data show that pancreatic cancer is the

sixth leading cause of cancer-related mortality in China and the

third leading cause in the United States (67, 76). Similar to lung

tissue, the pancreas was considered sterile in the past, but recent

studies have shown that pancreatic tissue also has its own

microbiota (77). Pushalkar et al. used 16S rRNA sequencing

and found that Proteobacteria (45%), Bacteroidetes (31%) and

Firmicutes (22%) were more enriched in pancreatic cancer tissue
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than in normal pancreatic tissue (78). A growing number of

studies have demonstrated that the intratumoral microbiome

has a critical impact on the occurrence, progression and

prognosis of pancreatic cancer (8, 11, 19, 78–80). This is

achieved primarily through the ability of the microbiota to

regulate the body’s immune system and metabolize drugs.

Pushalkar et al. found through bacterial ablation techniques

that the pancreatic cancer microbiome can promote tumorigenesis

by inducing innate and adaptive immune suppression (78). In

addition to bacteria, intratumoral fungi can also promote

pancreatic tumorigenesis. Aykut et al. found that the number of

fungi in human and mouse PDAC was approximately 3000 times

higher than that in normal pancreatic tissue. Specifically,

Malassezia spp. are fungal community members predominantly

found in PDAC in humans andmice. The glycans in the cell wall of

this fungus can activate the host complement cascade by binding

mannose-binding lectin (MBL), thus promoting PDAC. Tumor

progression can be prevented when MBL or C3 is absent in tumor

cells in the extratumoral region or when c3ar is knocked out (80).

Additionally, intratumoral bacteria can also influence the

responsiveness of pancreatic cancer to chemotherapeutic drugs.

Geller et al. found, through their analysis of human CRC samples,

that there was bacterial DNA in 76% of samples, with

Gammaproteobacteria being the dominant class. The long

isoform of the bacterial enzyme cytidine deaminase (CDDL) in

these bacteria can alter the biological structure of the chemotherapy

drug gemcitabine and render it inactive, thus promoting PDAC

chemotherapeutic drug resistance (19).

In addition, some intratumoral bacteria also enhance

antitumor immunity. For example, by analyzing the intratumoral

bacterial composition of PDAC patients with different survival

times, Riquelme et al. found that the a-diversity of patients’

intratumoral bacteria increased with increasing survival time and

determined an intratumoral microbiome signature (Bacillus

clausii-Streptomyces-Pseudoxanthomonas-Saccharopolyspora)

with the ability to predict long-term survival. The bacteria in this

signature facilitate the activation and recruitment of CD8+ T cells,

thereby promoting antitumor immune responses (11).Collectively,

these findings strongly suggest that the intratumoral microbiome

can influence pancreatic cancer progression by modulating the

local immune response.
Colorectal cancer

CRC is the second leading cause of death among cancer

patients, with an incidence of 10.2% and mortality of 9.2% (67,

81). Commensal microorganisms in the distal intestine are

particularly abundant and diverse (21); the gut bacteria and

their byproducts influence the residency and recruitment of

myeloid cells in tissues, and these cells promote cancer

development by secreting cytokines and attenuating the

normal effects of antitumor immunity (82).
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An increasing number of studies have confirmed the role of the

intratumoralmicrobiome inCRC.Mechanistically, the bacteria can

promote tumorigenesis by directly damaging host DNA,

modulating the local immune microenvironment and engaging

host pathways involved in carcinogenesis (12, 48, 83). Studies using

16S rRNA gene sequencing, whole-genome sequencing, or

transcriptome sequencing have determined that CRC tissue is

rich in Fusobacterium nucleatum (84–86). Subsequent studies

have proven that Fusobacterium nucleatum can promote tumor

cell proliferation and tumor growth (87). According toKostic et al.,

one possible mechanism is that Fusobacterium nucleatum can

increase the level of tumor-infiltrating immune cells to create an

inflammatory microenvironment conducive to CRC progression

(48). In addition, Fusobacterium nucleatum can stimulate CRC

progression by secreting the FadA adhesin. FadA activates b-
catenin signaling by binding E-cadherin and regulates the

inflammatory response, ultimately promoting CRC progression

(12).Other commensal bacteria, such as ETBF and Escherichia coli,

have also been shown to be directly associated with colon cancer

(88, 89). Wu et al. found that BFT, a toxin secreted by ETBF, can

stimulate the transcriptionand translationof theproto-oncogenec-

Myc, thereby triggering persistent cellular proliferation (40). The

researchers found that the colibactin secreted by Escherichia coli

contains a cyclopropane ring, an active structural motif found in

natural products inducing DNA alkylation, suggesting that

colibactin can alkylate DNA in vivo and participate in the

development of CRC (90).

Additionally, intratumoral bacteria also have an indispensable

influence on the cancer treatment response. For example, Yu et al.

found enrichment of Fusobacterium nucleatum in tissues of colon

cancer patients with recurrence post chemotherapy. In addition, the

researchers also found that Fusobacterium nucleatum promotes

resistance of CRC to chemotherapy. Mechanistically, Fusobacterium

nucleatum downregulates microRNAs (miR-18a and miR4802) to

activate the autophagypathwayandpromote chemoresistance inCRC

(18). In contrast, another study demonstrated that Bifidobacterium

accumulates in the tumor microenvironment and promotes

immunotherapy efficacy through the STING signaling pathway (91).

Overall, tremendousprogresshasbeenmadethus far in thestudyof the

effects of intratumoral microbes on CRC, but the mechanistic details

still need to be explored more deeply to provide potential avenues for

the prevention and treatment of CRC.
Breast cancer

BC is the most frequent malignancy in women worldwide

and the most common cause of cancer death (92). Since 2014,

the incidence of female BC has been slowly increasing at a rate of

0.5% per year (67). Human mammary tissue is not sterile, and a

rich microbiome is also present. Furthermore, the resident

microbiomes of healthy breast tissues, BC tissues and even GC

tissues of different subtypes are different (93–95). Lactobacillus,
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Fusobac t e r ium , Hydrogenophaga , Atopob ium and

Gluconacetobacter were enriched in the breast tissue of women

with invasive BC compared to normal breast tissue (94). In

addition, Banerjee et al . detected Cardiobacterium ,

Arcanobacterium, Escherichia, Bifidobacterium and Citrobacter

in endocrine receptor-positive BC samples, while Bordetella,

Pasteurella, Chlamydia, Campylobacter, Chlamydophila and

Legionella were closely related to triple-positive BC.

Streptococcus was enriched in human epidermal growth factor

receptor 2-positive BC, while Arcobacter, Aerococcus, Rothia,

Orientia and Geobacillus were related to triple-negative BC (95).

These studies reveal the same result: the intratumoral

microbiome is inextricably linked to BC. As such, what is its

role in BC initiation and progression?

The intratumoral microbiome can promote the growth of

BC by activating estrogen signaling, regulating the metabolism

of cancer cells, promoting the development of local

inflammatory responses and reducing the number of

lymphocytes. Furthermore, the intratumoral microbiome can

also promote the metastasis and recurrence of BC by supporting

cell movement, transforming epithelial cells into mesenchymal

cells, and promoting tumor stem cell function (96). Parhi and his

colleagues showed that Fusobacterium nucleatum colonizes BC

via Gal-GalNAc, which is abundant in tumor cells, and

promotes BC development and metastasis by inhibiting T-cell

aggregation in the local tumor tissue (13). Fu et al. studied a

mouse spontaneous mammary tumor model and showed that

reduction of intratumoral bacteria significantly reduced lung

metastasis but did not affect the growth of tumors at the primary

site. In addition, the researchers demonstrated that intratumoral

bacteria can enhance the resistance of circulating tumor cells to

fluid shear stress by reorganizing the actin cytoskeleton, thereby

promoting breast cancer metastasis (14).

Several recent studies have shown that the intratumoral

microbiome can also have an impact on BC prognosis. For

example, by comparing the microbiome composition of different

subtypes of BC, Banerjee et al. found that differences in

prognosis between different subtypes of BC were strongly

associated with a diverse intratumoral bacteria (97).

Mechanistically, intratumoral bacteria can influence immune

regulatory gene expression, immune cell infiltration, and the

release of soluble factors, which may alter the prognostic and

clinicopathological features of BC (98). These findings support

the idea that the intratumoral microbiome can affect the

occurrence and progression as well as prognosis of BC and

shed new light on the treatment of BC.
Genitourinary cancers

Genitourinary tumors include kidney cancer, bladder

cancer, prostate cancer, ovarian cancer, and endometrial

cancer. Genitourinary tumors are a miscellaneous group of
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tumors, and the intratumoral microbiome in such tumors has

been less studied than those of other malignant tumors. Just as

fecal samples are analyzed in the study of CRC, urine must be

considered in the study of the microbiomes associated with

kidney cancer and uroepithelial carcinoma. Although urine was

previously considered sterile, with the development of

sequencing technology, data obtained by sequencing methods

have initially shown that bacteria are also present in the urine of

healthy individuals (99). A few studies have shown that the urine

microbiome of patients with bladder cancer differs from that of

healthy controls, with the main feature being enrichment of

Fusobacterium, Actinomyces and Firmicutes and a decrease in

Streptococcus (100, 101). However, whether there is a causal

relationship between the microbiomes in bladder tissue and

urine and the most common histological type of bladder cancer

(uroepithelial carcinoma) still needs to be elucidated. Notably,

the relationship between schistosomiasis and squamous

carcinoma of the bladder is well established, and preinfection

with the pathogen that causes schistosomiasis is a recognized

cause of squamous carcinoma of the bladder (102). Renal cell

carcinoma tissues have high relative abundances of the

Chloroplast class and the Streptophyta order compared to

adjacent normal tissue (103). However, the effect of the

microbiome in urine and tissues on the prognosis of

uroepithelial carcinoma and renal cancers remains unclear, yet

studies have found that intratumoral bacteria in prostate cancer

are associated with prognosis.

Ma et al. found that in prostate cancer, intratumoral bacteria

such as Listeria monocytogenes can directly slow tumor growth

by recruiting immune cells and are thus negatively correlated

with adverse prognostic features (prostate-specific antigen level,

tumor-node-metastasis stage, androgen receptor expression and

Gleason score) (104). In addition, some intratumoral

microbiomes may influence the therapeutic response of

prostate cancer. For example, Akkermansia muciniphila can

influence the therapeutic response of castrate-resistant prostate

cancer patients by regulating abiraterone acetate-mediated

microbial community reorganization (105).

It is also important to note that the genital tract microbiome

also plays a crucial role in female genital tract malignancies.

Ovarian cancer tissue samples have unique bacterial, fungal,

viral and parasitic characteristics (106). Similarly, Atopobium

vaginae and Porphyromonas sp. were more highly enriched in

endometrial cancer than in healthy tissue (107).
Other cancers

In addition to these aforementioned major human solid

tumors, it is noteworthy that intratumoral bacteria have also

been found in other types of cancer, such as esophageal cancer,

melanoma, ovarian cancer, bone cancer, liver cancer, and

nasopharyngeal carcinoma (8, 20, 108–111). However, the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1051987
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2022.1051987
mechanisms by which the intratumoral microbiomes affect these

tumors are not well understood.

A recent study showed that Fusobacterium nucleatum in

esophageal cancer tissue can promote invasion of tumors by

activating chemokines such as CCL20 (16). Furthermore,

Yamamura et al. found that patients with enrichment of

Fusobacterium nucleatum in esophageal cancer tissues had shorter

survival, suggesting thatFusobacteriumnucleatum could be used as a

prognostic biomarker (16). Similarly, by comparing nasopharyngeal

carcinoma patients with different survival times, researchers found

that patients with a lower relative abundance of Turicibacter had

longer progression-free survival (20). In the liver cancer

microenvironment, the number of Pseudomonadaceae species with

antitumor effects is significantly decreased and linearly correlated

with the prognosis of patients with primary liver cancer (109). In a

study of the microbiotas of normal versus melanoma pig skin,

Trueperella and Fusobacterium genera were found to be enriched

in the melanoma samples (112). Nakatsuji et al. discovered through

cell culture that a skin commensal microbe (Staphylococcus

epidermidis) can produce 6-N-hydroxyaminopurine, a DNA

polymerase inhibitor that blocks the proliferation of tumor cells,

and thus protect against skin cancer (113).

In summary, intratumoral microbiomes are receiving

increasing attention for their key roles in regulating tumor

progression and influencing cancer prognosis (Table 1). In the

future, more in-depth investigation of the mechanisms by which

intratumoral microbiomes influence the biological behaviors of

tumors will improve the precision of cancer diagnosis and aid

the development of more effective cancer therapies.
Intratumoral microbiome and tumor
treatment

At present, the main methods to treat tumors are

chemotherapy and immunotherapy. Chemotherapy is

administered in the form of genotoxic agents that destroy the

DNA of existing tumor cells and prevent new DNA from being

generated during proliferation (117). Immunotherapy is mainly

achieved by immune checkpoint blockade. Programmed cell

death ligand 1 (PD-L1) can reduce the proliferation of T cells

by binding to programmed cell death protein 1 (PD-1) on the

surface of T cells, thereby inhibiting the body’s antitumor

immune response (118). Monoclonal antibodies in

immunotherapy can reactivate CD8+ T cells by blocking the

PD-1 immune checkpoint on the surface of T cells to induce

antitumor responses (119). However, neither of these strategies

can completely inhibit tumor growth. Cancer cells can repair

DNA damaged by chemotherapeutic drugs, leading to resistance

to anticancer therapies (120), while some tumors are not

sensitive to immunotherapy. Notably, it has been shown that

the intratumoral microbiome can influence the efficacy of

chemotherapy by altering the structure of chemotherapeutic
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agents. In addition, the intratumoral microbiome can also

influence the efficacy of immunotherapy by altering the

immune environment of the local tumor tissue (121, 122).

Next, we mainly discuss the effects of the intratumoral

microbiome on chemotherapy and immunotherapy response

and the underlying mechanisms (Figure 3).
Effects of intratumoral bacteria on the
chemotherapy response

(1) Endogenous enzymes of intratumoral bacteria modify

the activity of chemotherapeutic drugs by biotransformation

(122). For example, CDDL from Gammaproteobacteria can

change the structure of the chemotherapy drug gemcitabine,

thus causing it to lose its biological activity. Adding the antibiotic

ciprofloxacin to the therapeutic regimen can eliminate this effect

(19). Similarly, Nemunaitis et al. demonstrated that genetically

attenuated Salmonella expressing cytosine deaminase can

metabolize the antifungal agent 5-fluorocytosine into 5-

fluorouracil to treat cancer. Importantly, this treatment is

more effective than the chemotherapy drug 5-fluorouracil

alone (123) (2). Bacteria can promote chemoresistance by

regulating autophagy. Fusobacterium nucleatum induces LC3-

II expression, autophagosome synthesis and autophagosomal

flux in CRC. Thus, Fusobacterium nucleatum can stimulate the

expression of the autophagy-related proteins ATG7, ULK1 and

pULK1 in CRC to promote CRC chemoresistance (18) (3).

Bacteria can regulate the expression of specific genes by

affecting host signaling pathways. The apoptosis protein

inhibitor BIRC3 can inhibit the caspase cascade reaction to

reduce apoptosis, leading to chemoresistance in malignancies.

Fusobacterium nucleatum can activate the Toll-like receptor 4/

NF-kB pathway and upregulate the expression of many target

genes, such as BIRC3, in CRC cells, thereby promoting the

resistance of CRC to 5-fluorouracil (124).
Effects of intratumoral bacteria on
immunotherapy

In addition to chemotherapy, immunotherapy has showed

promising effects in recent years and provided new ideas for the

clinical treatment of cancer. Anti-PD-1 monoclonal antibodies as

well as other immune checkpoint inhibitors have been shown to

have promising efficacy (125). Despite this unprecedented efficacy,

many patients donot respond, andmoreworryingly, somepatients

who show encouraging responses to immunotherapy also develop

resistance over time (126). Notably, there is increasing evidence

suggesting that intratumoral bacteria can influence the efficacy of

immunotherapy (62, 91, 120, 127). Nejman and his colleague

showed that the abundance of Clostridium in the melanomas of

responders to immune checkpoint inhibition was increased
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compared with that in patients who did not respond. In contrast,

Gardnerella vaginaliswasmore abundant in nonresponder tumors

(8). A recent study indicated that commensal Bifidobacteria can

prime CD8+ T cel ls and accumulate in the tumor

microenvironment by enhancing dendritic cell function, thereby

promoting antitumor immunity and anti-PD-L1 efficacy (128). In

addition, Bifidobacteria can accumulate in the tumor

microenvironment, which may facilitate a response to local anti-

CD47 immunotherapy in tumor tissues. Mechanistically,

Bifidobacteria primarily increase dendritic cell crosstalk through

stimulation of interferon genes and in an interferon-dependent

fashion, ultimately facilitating CD47-based immunotherapy (91).

CTLA-4 is amajor negative regulator of T-cell activation and exerts

inhibitory effects on tumor immunity. Ipilimumab is amonoclonal

antibody targeting CTLA-4, and studies have found that

Bacteroides fragilis can boost the effects of ipilimumab by

promoting Th1 immune responses, which in turn promotes the

efficacy of immunotherapy with CTLA-4 blockade (129). Despite

numerous studies demonstrating the association of intratumoral
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bacteria with chemotherapy and immunotherapy efficacy, the

mechanisms are still incompletely understood. Therefore, a

reassessment of the relationship between chemotherapy and

immunotherapy efficacy and intratumoral bacteria will improve

the efficacy of cancer treatment. In addition, the combination of

genetic engineering and traditional therapies may improve

antitumor efficacy and provide new ideas for cancer treatment.
Conclusion and perspectives

Intratumoral bacteria, as an important component of tumor

microecology, are receiving increasing attention. The intratumoral

microbiome in solid tumors at different sites in humans plays a

similar role to the local tumormicroenvironment. Both factors can

influence tumor initiation, progression, and response to therapy. In

general, the intratumoral microbiome can promote tumorigenesis

by directly causingmutations or engaging host signaling pathways.

In addition, the intratumoral microbiome can cause inflammation
TABLE 1 Microbiotas in different cancer tissues and their effects on corresponding cancer tissues and mechanisms of action.

Tumor type Associated intratumoral microbiome
organism(s)

Proposed mechanism

Lung cancer Streptococcus and Veillonella (42, 63, 64, 114) Upregulates patient ERK and PI3K signaling pathways to promote lung cancer cell
proliferation and tissue invasion (42)

Prevotella and Rothia (42) N/A

Acidovorax (70) Induces tumorigenesis via mutations in the tumor suppressor TP53 (70)

Thermus and Legionella (60) N/A

Acinetobacter (64, 115) N/A

Granulicatella adiacens (64) N/A

Brevundimonas, Propionibacterium, and Enterobacter
(115)

N/A

Megasphaera (63) N/A

Capnocytophaga (65) N/A

Pancreatic cancer Malassezia spp (80). Activates the host complement cascade by binding MBL, thereby promoting PDAC (80)

Gammaproteobacteria (19) Induces PDAC chemoresistance by converting the chemotherapeutic agent gemcitabine
into its inactive form (19)

Pseudoxanthomonas, Streptomyces-Saccharopolyspora
and Bacillus clausii (11)

Promotes antitumor immune response by recruiting and activating CD8+ T cells (11)

Colorectal cancer
(CRC)

Fusobacterium nucleatum (12, 18, 48, 84, 85, 87, 116) Recruits tumor-infiltrating immune cells to create a proinflammatory microenvironment
conducive to CRC progression (48)

Promotes CRC by participating in the regulation of E-cadherin/b-catenin signaling (12)

Enterotoxigenic Bacteroides fragilis (ETBF) (40, 89) Stimulates the transcription and translation of the proto-oncogene c-myc, thereby
triggering persistent cellular proliferation (40)

Promotes IL-17-mediated inflammation by enriching other bacteria and immune cells in
local tumor tissue (89)

Escherichia coli (83, 89, 90) Promotes CRC by directly damaging the DNA of colonic epithelial cells (90)

Breast cancer (BC) Fusobacterium nucleatum
(13)

Accelerates BC progression and metastasis by inhibiting T-cell aggregation in the tumor
microenvironment (13)

Esophageal cancer Fusobacterium nucleatum
(16)

Promotes the invasion of tumors by activating chemokines such as CCL20 (16)

Nasopharyngeal
carcinoma

Turicibacter (20) N/A
N/A, Not applicable.
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and alter the local immune environment of tumors, thereby

promoting tumor cell growth (4, 5, 21, 22, 43).

Notably, it has been shown that intratumoral bacteria can

affect the tumor response to therapy through various

mechanisms, which provides new insights into the treatment

of tumors (18, 91, 119–122, 124). Although we have gained an

increasing understanding of the role of the intratumoral

microbiome in cancer initiation, progression, and treatment,

the intricate relationships between intratumoral bacteria, the

tumor, and the tumor microenvironment still require further

study. Revealing these relationships may provide more valuable

insights into cancer prevention, diagnosis and treatment.

Over the past decades, chemotherapy and immunotherapy

have been mainstays of cancer treatment. However, tumors

gradually develop resistance to chemotherapeutic drugs, and

some patients with encouraging responses to immunotherapy

also gradually develop resistance over time. Fortunately, with the

development of gene editing technology, new methods for tumor

treatment are possible, including genetic engineering. Compared

with traditional therapeutic methods, genetic engineering has

obvious advantages as tumor therapy. Genetically engineered

bacteria are targeted in such a way that they can uniquely target

tumors and accumulate in the tumor microenvironment. For

example, Clostridium (obligate anaerobes) cannot survive in

oxygen, and those that enter the body can only colonize

anoxic areas (130). Completely deoxygenated tissues do not

exist in the vast majority of organs in the body and are unique

to tumors. Therefore, obligate anaerobes can very effectively

target the tumor area and accumulate to exert their effects (131).
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Moreover, the effectiveness of genetically engineered bacteria is

not affected by genetics, and bacteria can directly access the deep

layers of the tumor and thereby kill cancer cells (132).

Furthermore, the combination of genetically engineered

bacteria with chemotherapy significantly improves treatment

efficacy and reduces toxicity compared to chemotherapy alone

(133). Chen et al. found that the combination of triptolide and

Salmonella VNP20009 significantly increased treatment efficacy

in mouse melanoma. Triptolide reduced neutrophil infiltration

in melanoma by inhibiting intratumor angiogenesis, which

increased the accumulation of Salmonella VNP20009 and

ultimately created a more hypoxic tumor microenvironment

(134). Genetically engineered bacteria can also be combined with

immunotherapy to improve efficacy. The bacteria can modify

the local immune microenvironment of the tumor by

modulating innate and adaptive immune responses, ultimately

enhancing the host’s antitumor immune response (135). Despite

the promising performance of genetically engineered bacteria in

the treatment of cancer, many questions remain. For example,

how can bacterial virulence be minimized so that safety is

improved? How can the ability of bacteria to accumulate in

tumor tissue be enhanced? How can the genetic instability of

genetically engineered bacteria be addressed? With the

advancement of medical and synthetic biology research, the

above problems will be solved, and genetically engineered

bacteria will be a novel approach for cancer treatment in

the future.

With increas ing in-depth s tudy of the tumor

microenvironment, evidence indicates that there are bacteria
FIGURE 3

Effects of intratumoral bacteria on tumor chemotherapy and immunotherapy response. Intratumoral bacteria can directly or indirectly influence
the efficacy of chemotherapy and immunotherapy through multiple mechanisms. Bacteria accumulating within tumors can directly alter the
bioactivity of chemotherapeutic drugs and can promote chemoresistance by regulating autophagy. They can also regulate the expression of
specific genes by affecting host signaling pathways. Intratumoral bacteria can promote the production of tumor necrosis factor and thus inhibit
tumor angiogenesis. Furthermore, intratumoral bacteria can promote the accumulation of immune cells, thereby enhancing antitumor immune
responses and the efficacy of immunotherapy.
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hidden within the tumor and that these intratumoral bacteria are

unique and impact tumor initiation, progression, recurrence,

metastasis, and prognosis. Moreover, intratumoral bacteria have

targeting capabilities and good adaptability, properties that are

improve their promise as a new strategy for treating tumors.

However, there are still many issues that urgently need to be

addressed. For example, do the intratumoral microbiomes of

different types of cancer operate via different mechanisms of

action? Does the intratumoral microbiome originate from the

primary site of the tumor or is it derived from other parts of the

body? Does tumor progression further promote the

accumulation of intratumoral microbes? Overall, microbiome

research in oncology is an emerging area worth exploring.

Multidisciplinary study of intratumoral bacteria is essential.

These challenges will be overcome, and a new era of tumor

diagnosis and treatment will emerge.
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