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Gasdermins (GSDMs) protein family express in intestinal epithelial cells or

lamina propria immune cells, and play a nonnegligible function during gut

homeostasis. With the gradually in-depth investigation of GSDMs protein

family, the proteases that cleave GSDMA-E have been identified. Intestinal

GSDMs-induced pyroptosis is demonstrated to play a crucial role in the

removal of self-danger molecules and clearance of pathogenic organism

infection by mediating inflammatory reaction and collapsing the protective

niche for pathogens. Simultaneously, excessive pyroptosis leading to the

release of cellular contents including inflammatory mediators into the

extracellular environment, enhancing the mucosal immune response.

GSDMs-driver pyroptosis also participates in a novel inflammatory cell death,

PANoptosis, whichmakes a significant sense to the initiation and progression of

gut diseases. Moreover, GSDMs are expressed in healthy intestinal tissue

without obvious pyroptosis and inflammation, indicating the potential

intrinsic physiological functions of GSDMs that independent of pyroptotic

cell death during maintenance of intestinal homeostasis. This review provides

an overview of the latest advances in the physiological and pathological

properties of GSDMs, including its mediated pyroptosis, related PANoptosis,

and inherent functions independent of pyroptosis, with a focus on their roles

involved in intestinal inflammation and tumorigenesis.

KEYWORDS

Gasdermins, pyroptosis, intestinal inflammation, tumorigenesis, intestinal homeostasis
1 Introduction

The intestine represents one of the largest immune organs of the human body mostly

because of its surface microscopic architecture (1–3). Majority of immunological

processes occur in the mucosa, including the epithelium and the underlying lamina

propria (4). In general, the commensal bacteria resident in gut lumen, intestinal
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epithelium and its secretions (such as mucin and antimicrobial

peptides), as well as immune cells in the lamina propria,

collaboratively maintain intestinal homeostasis (5–7).

Remarkably, there is mounting evidence that the protein

family of Gasdermins (GSDMs) play a nonnegligible function

under such circumstance.

The GSDMs are a recently characterized family of conserved

proteins with diverse functions (8). The nomenclature of

Gasdermins is based on their expression pattern along the

gastrointestinal tract (gas) and skin (dermis) (9). Human

genome encodes six paralogous GSDMs genes: GSDMA,

GSDMB, GSDMC, GSDMD, GSDME (also known as DFNA5)

and DFNB59 (also known as PJVK) (9). All proteins of GSDMs

family except DFNB59, consist of a conserved N-terminal (NT)

and C-terminal (CT) domains that interconnected by a linker

region (10). Proteolytic cleavage of GSDMs liberates the NT

fragment, which assembles in membrane to form pores and

executes lytic cell death, namely pyroptosis (11). However, full-

length GSDMs are normally not able to induce such pyroptotic

cell death due to the presence of the CT domain, which usually

interacts with the NT domain by charge-charge and

hydrophobic interfaces to auto-inhibit pore formation function

(12). Intestinal homeostasis is frequently disrupted due to the

stimulation of endogenous damage-associated molecular

patterns (DAMPs) and microorganism-derived pathogen-

associated molecular patterns (PAMPs), so as to provoke

immune response and lead to tissue damage (13). Intestinal

GSDMs-induced pyroptosis plays an essential role in the

removal of self-danger molecules and clearance of pathogenic

organism infection by mediating inflammatory reaction and

collapsing the protective niche for pathogens (14).

Simultaneously, excessive pyroptosis results in the release of

cellular contents including inflammatory mediators into the

extracellular environment (15), which will enhance the

immune response and further aggravate intestinal injury. In

recent years, the relationship between pyroptosis and cancer has

become increasingly prominent, and pyroptosis plays a complex

role in tumor progression (16). Furthermore, in addition to

GSDMs-NT fragment-induced pyroptosis, emerging evidence

indicates GSDMs possess intrinsic physiological functions that

independent of pyroptotic cell death in gut. This review provides

an overview of the latest advances in the physiological and

pathological properties of GSDMs, with a focus on their roles

involved in intestinal inflammation and tumorigenesis.
2 Expression pattern of Gasdermins
in gut

Although GSDMs display unique tissue expression pattern

in human, it has been found that GSDMA-E exist in the

gastrointestinal tract except DFNB59. GSDMA is expressed in
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epithelial cells within the gastrointestinal tract while frequently

silenced in primary gastric cancers and in gastric cancer cell lines

(17, 18). GSDMB is expressed in the epithelium of the digestive

tract that can be detected in esophagus, stomach, small intestine,

colon and rectum (19). A recent study reveal differential

distribution of GSDMB among colonic epithelial cell subtypes,

predominantly in colonocytes, crypt top colonocytes, and goblet

cells, through the supervised analysis of a large-scale scRNA-seq

dataset from health controls and inflammatory bowel disease

patients (20). GSDMC is prominently expressed in esophagus,

stomach, small intestine, caecum and colon, especially in gut

epithelial tissue including enterocytes and goblet cells (21–23).

GSDME is also mainly expressed in epithelial cells in the

intestine, and relative to normal tissue, GSDME expression in

gastric and colorectal cancer is epigenetically suppressed by

methylation (11, 24–26). Contrast to other members of the

GSDMs family, GSDMD is relatively universally expressed in

gastrointestinal tract, not only in epithelium, but also in lamina

propria immune cells (especially macrophages and dendritic

cells), suggesting that GSDMDmay play an indispensable role in

intestinal homeostasis (15, 27).
3 Molecular mechanisms of
Gasdermins cleavage and activation

With the gradually in-depth investigation of GSDMs protein

family, the proteases that activate GSDMA-E have been

identified. Although the types and cleavage sites of the

proteases vary considerably, they share a common mechanism

to implement such inflammatory cell death. That is, the GSDMs-

NT is unleashed and couples with acidic phospholipids in the

inner leaflet of cell membrane to oligomerize into pores with an

inner diameter of about 18 nm, which leads to water influx, cell

swelling and rapid lytic cell death with the extravasation of

cytoplasmic contents (12, 28).

Concretely, GSDMA is recently discovered to be cleaved at

Gln246 site by cysteine protease streptococcal pyrogenic

exotoxin B (SpeB) virulence factor, releasing the active NT

fragment that triggers pyroptosis (29). GSDMA acts as not

only the sensor and substrate of Streptococcus pyogenes SpeB,

but also the effector to trigger pyroptosis, adding a novel

mechanism for host immune recognition and response to

microbial pathogen infection (29). Cytotoxic T lymphocytes

(CTL) and natural killer (NK) cells-derived granzyme A

(GrzA) cleaves the major Lys244 physiological site of GSDMB

to induce pyroptotic cell death (30). Among numerous

cytokines, IFN-g is the one that exhibits broad effects of up-

regulation for GSDMB expression in multiple cell lines and

promotes GrzA-mediated pyroptosis (30). A previous study has

showed that GSDMC is specifically cleaved at Asp365 site by

active caspase 8 after TNF-mediated death receptor signaling to
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trigger pyroptosis (31). Intriguingly, another recently published

study has demonstrated that the metabolite a-ketoglutarate (a-
KG) induces pyroptosis through active caspase-8-mediated

cleavage of GSDMC, but at different amino acid residue site

(Asp240, mouse Asp233) (32). GSDMD is the best-characterized

GSDMs family protein, and various proteases with capacity

to cleave GSDMD have been discovered. Depending on the

upstream stimulus signals, when the canonical inflammasomes,

including AIM2 sensor by cytosolic double-stranded DNA

(dsDNA) or NLRP3 sensor by cellular disturbances and

plasma membrane integrity disruption, are activated, GSDMD

is cleaved by downstream active caspase-1 at Asp275 site (mouse

Asp276) to initiate pyroptosis, accompanied by IL-1 family

cytokines IL-1b and IL-18 maturation (33, 34). By

comparison, the noncanonical inflammasomes-mediated

caspase-4, 5 (mouse caspase-11) activation, also leads to robust

cleavage of GSDMD at Asp275 site, but without IL-1 family

cytokines production (35). Moreover, in response to pathogenic

Yersinia infection, where the transforming growth factor beta-

activated kinase 1 (TAK1) and IkB kinases are blocked by the

Yersinia effector protein YopJ, a receptor-interacting protein

kinase 1 (RIPK1)-caspase-8 pathway can be activated to cleave

GSDMD at this same amino acid site, which provides host

defense and maintains homeostasis (36, 37). In addition to the

caspases above, granule-associated proteases neutrophil elastase

(ELANE) has been shown to cleave and activate GSDMD at
Frontiers in Immunology 03
Cys268 (mouse Val251) site and cathepsin G cleaves mouse

GSDMD directly at Leu274 to provoke pyroptotic cell death (38,

39). GSDME has been shown to be cleaved by active caspase-3 at

Asp270 (mouse Asp271) site when stimulated with apoptotic

stimuli, which converts apoptosis into a rapid inflammatory

pyroptotic death in GSDME-expressing cells (40). In addition,

the serine protease granzyme B (GrzB) released from cytotoxic

lymphocytes is found to cleave GSDME at the same site to

induce pyroptosis (41). Molecular mechanisms of individual

GSDMs that activated by specific proteases are summarized

in Figure 1.
4 Function of Gasdermins-mediated
pyroptosis in gut homeostasis

When the intestine encounters the attack from self-DAMPs

or microbial PAMPs, the mucosal immune system will be

initiated, which triggers the immune inflammatory response

and destroys the gut homeostasis. Due to the universal

existence of GSDMs protein family in intestine, either in

epithelium or lamina propria immune cells, its mediated

pyroptosis plays a crucial role in the maintenance of abnormal

inflammation and clearance of pathogens, including the

beneficial and detrimental, depending on the pathological

environment at that time. Increasingly emerging evidence
A

B

FIGURE 1

Molecular mechanisms of GSDMs that activated by specific proteases. (A). Main processes of GSDMs membrane pores formation.
(B). Respective proteases and cleavage sites for individual GSDMs. NT, N-terminal; CT, C-terminal; SpeB, streptococcal pyrogenic exotoxin B;
GrzA, granzyme A; GrzB, granzyme B; ELANE, neutrophil elastase.
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indicates that GSDMs-mediated pyroptosis plays an important

role in a variety of intestinal diseases, including inflammatory

bowel diseases (IBD), sepsis‐induced intestinal injury,

enteropathogenic microbial infection, intestinal ischemia/

reperfusion (I/R) injury, radiation-induced enteropathy,

gastrointestinal dysmotility, colorectal cancer (CRC) and so on.
4.1 Gasdermins-mediated pyroptosis in
IBD-associated intestinal inflammation

IBD, including Crohn’s disease (CD) and ulcerative colitis

(UC), represents a chronic and complex intestinal disorder

characterized by uncontrolled and excessive mucosal

pathogenic inflammation (42). It is wide recognized that

DAMPs released from stressed or dead cells are important

pathogenic stimuli for inducing and maintaining abnormal

mucosal inflammation during IBD (43). Our recent studies

demonstrated that nuclear DAMPs, spliceosome-associated

protein 130 (SAP130), released from gut mucosa could induce

GSDMD-mediated pyroptosis in lamina propria macrophages

through sensing by macrophage-inducible C-type lectin/spleen

tyrosine kinase (Mincle/Syk) signaling, which exacerbated

mucosal inflammation and provoked intestinal tissue injury

during CD (44, 45). We also uncovered that adaptor protein

stimulator of interferon genes (STING) regulated intestinal

inflammation dependent on GSDMD-related pyroptosis in

acute dextran sulfate sodium (DSS)-induced colitis, while

STING deficiency alleviated intestinal damage that associated

with decreased expression of cleaved form of pyroptosis

executive protein GSDMD (46).

A recent study demonstrated that the protein phosphatase,

pleckstrin homology domain leucine-rich repeat protein

phosphatase 2 (PHLPP2), was downregulated in UC and

regulated GSDMD-induced intestinal epithelial cells (IECs)

pyroptosis by modulating the NF-kB signaling, and PHLPP2

depletion increased the susceptibility to colitis by inducing

dramatic activation of caspase-1/GSDMD in IECs (47). Wang

et al. (48) observed that the expression of monocarboxylate

transporter 4 (MCT4) was markedly increased in intestinal

mucosal tissue of IBD, and overexpression of MCT4 triggered

caspase-1/GSDMD-mediated canonical pyroptosis in IECs to

aggravate intestinal inflammation through the ERK1/2-NF-kB

pathway. CD147, a highly glycosylated transmembrane protein,

was recently proved to induce pyroptosis in IECs by enhancing

of phosphorylation of NF-kB, which was attributed to activation

of caspase-1/GSDMD as well as GSDME, leading to aggravation

of IBD (49). It is found that GSDMD in IECs, but not infiltrating

immune cells, was activated by dysregulated commensal and in

turn modulated microbiota-driven colitis by promoting IL-18

release form pyroptotic cell death (50). Caspase-8 and its adapter
Frontiers in Immunology 04
Fas associated with death domain (FADD) act on epithelial cells

to maintain intestinal immune homeostasis, and FADD prevents

intestinal inflammation by inhibiting caspase-8/GSDMD-

dependent pyroptosis of IECs (51). In addition, Tan et al. (26)

demonstrated that GSDME-mediated IECs pyroptosis induced

intestinal inflammation through the release of proinflammatory

intracellular contents and participated in the pathogenesis of

CD. They also found that GSDME converted TNF-a-induced
IECs shedding into a pyroptotic cell death process, and GSDME

depletion mice presented an alleviative intestinal barrier

dysfunction (52).

Apart from the pyroptosis of IECs, pyroptosis in mucosal

immune cells especially macrophages can also regulate intestinal

inflammation strikingly. A recent study identified a dominant

gain-of-function missense variant of NLRP3, encoded by

rs772009059, promoted NLRP3 inflammasome activation and

GSDMD-mediated pyroptosis in macrophages, thereby

contributing to very-early onset IBD development (53). Cai

et al. (54) observed that human umbilical cord mesenchymal

stem cell (hucMSC)-derived exosomes carrying miR-378a-5p

inhibited NLRP3/caspase-1/GSDMD pathway and abrogated

macrophage pyroptosis to protect against DSS-induced colitis.

Roseburia intestinalis, a butyrate−producing bacterium, -derived

flagellin was demonstrated to inhibit the activation of NLRP3/

caspase-1/GSDMD signaling-triggered pyroptosis in

macrophages by targeting miR−223−3p and ameliorate colitis

(55). In contrast, Ma et al. (56) showed that GSDMD and its

mediated pyroptosis in macrophages protected against colitis by

negatively regulating cyclic GMP-AMP synthase (cGAS)-

dependent inflammation, while GSDMD deficiency in

macrophages exacerbated experimental colitis.

Taken together, almost all the above studies support that

GSDMD or GSDME-mediated pyroptosis in IECs or

macrophages provoked intestinal inflammation and

exacerbated the disease progression in IBD (Figure 2). This

has stimulated the search for some drug interventions with the

anti-pyroptosis effects to ameliorate intestinal inflammation. It is

recently found that 10-hydroxy-2-decenoic acid (10-HDA), the

most abundant fatty acid and major lipid component in royal

jelly, alleviated DSS-induced colitis and enhancing colonic

barrier function by regulating the NLRP3/caspase-1/GSDMD-

mediated pyroptotic pathway (57). Schisandrin B, a type of

natural products, was confirmed to suppress NLRP3/caspase-

1/GSDMD-related pyroptosis in IECs of experimental colitis

through the activation of AMP-activated protein kinase/Nuclear

factor erythroid 2-related factor 2 (AMPK/Nrf2)-dependent

reactive oxygen species (ROS)-induced mitochondrial damage

(58). Furthermore, apple polyphenols extract (APE) has been

reported to significantly ameliorate DSS-induced acute colitis

through inhibiting caspase-1/caspase-11-GSDMD-dependent

pyroptosis pathway in IECs (59).
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4.2 Gasdermins are associated with
endotoxemia- and sepsis‐related
intestinal injury

Sepsis is defined as life-threatening organ dysfunction

caused by a dysregulated host response to infection (60). The

gut has long been considered to be the “motor” of sepsis, playing

an essential role in the initiation and transmission of critical

illness (61). A growing number of studies have confirmed

GSDMs-mediated pyroptosis are involved in organ

dysfunction of endotoxemia and sepsis, including in lung,

kidney, liver and heart-related damage, but its role and specific

mechanism in endotoxemia- or sepsis‐associated intestinal

injury remains largely unknown.

Mandal et al. (62) investigated that neither caspase-11 nor

pro-apoptotic caspase-8 was individually sufficient for endotoxic

shock. They identified both caspase-11-GSDMD pyroptosis axis

and caspase-8 apoptosis signaling collaborated to drive IECs

shedding and amplify inflammatory signals associated with

intestinal tissue damage during endotoxic shock (62).

Intriguingly, another study indicated that both GSDMD-

mediated pyroptosis and RIPK3-mediated necroptosis pathway
Frontiers in Immunology 05
contributed to inflammatory intestinal injury induced by

bacterial sepsis (63). Sheng et al. (64) showed that intestinal

colonization with commensal fungi inhibited GSDMD-mediated

pyroptosis in response to lipopolysaccharide (LPS) challenge,

while antifungal therapy aggravated endotoxin sepsis through

promoting GSDMD cleavage in the distal small intestine.

Moreover, CD4-positive T lymphocytes and IECs could secrete

GSDMD-NT in high-fat diet (HFD)-induced systemic

endotoxemia, and GSDMD-NT killed the Proteobacteria

phylum via directly interacting with cardiolipin, thereby

restraining gut barrier impairment and intestinal inflammation

(65). Bromodomain-containing protein 4 (BRD4) was recently

found to play a critical role in endotoxemia colon by regulating

NLRP3/caspase-1/GSDMD-mediated pyroptosis, and BRD4

inhibition could prevent endotoxemia-induced colon damage

through blocking inflammation-related pyroptosis (66).

Therefore, GSDMs-dependent pyroptosis is indeed involved

in the progression of sepsis-related intestinal injury. Moderate

pyroptosis in endotoxemia or sepsis can control pathogen

infection, but excessive pyroptosis may lead to a dysregulated

host immune response and even organ dysfunction. More

studies are needed to elucidate the precise mechanism of
A B

FIGURE 2

GSDMs-mediated pyroptosis in IBD-associated intestinal inflammation. (A) GSDMD- and GSDME-dependent pyroptosis in IECs. GSDMD is
cleaved by active caspase-1/8/11 when NF-kB being activated by MCT4-ERK1/2 or CD147, promoting the release of IL-1b and IL-18. PHLPP2
and FADD inhibit GSDMD-dependent pyroptosis by suppressing NF-kB and caspase-8, respectively. GSDME is cleaved by active caspase-3 after
caspase-8 activation in response to TNF-a stimulation, promoting the release of proinflammatory mediators IL-1b, TNF-a, IL-6 and HMGB1.
(B) GSDMD-dependent pyroptosis in macrophages. GSDMD is cleaved by NLRP3/caspase-1 when Mincle/Syk pathway being activated in
response to SAP130, and STING provokes GSDMD cleavage as well. In turn, GSDMD-mediated pyroptosis inhibits cGAS/STING signal. hucMSC-
ex carrying miR-378a-5p and flagellin targeting miR−223−3p restrain NLRP3/caspase-1/GSDMD signaling-triggered pyroptosis. MCT4,
monocarboxylate transporter 4; PHLPP2, pleckstrin homology domain leucine-rich repeat protein phosphatase 2; FADD, Fas associated with
death domain; SAP130, spliceosome-associated protein 130; Mincle, macrophage-inducible C-type lectin; Syk, spleen tyrosine kinase; hucMSC-
ex, human umbilical cord mesenchymal stem cell-derived exosomes; cGAS, cyclic GMP-AMP synthase; STING, stimulator of interferon genes.
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activation and regulation of pyroptosis in intestinal injury

associated with endotoxemia and sepsis.
4.3 Gasdermins-mediated lytic cell death
in enteropathogenic microbial infections

The gastrointestinal tract not only has the functions of

digestion and nutrient absorption, but also provides a physical

barrier against amounts of commensal or pathogenic microbes

in the gut lumen (67). The intestine employs multiple innate

immune mechanisms to prevent and clear enteropathogenic

microbial infections. Recent research upon GSDMs-dependent

pyroptosis provided vital insights into host defense

against pathogen.

Salmonella, a gram-negative facultative intracellular

bacterium, is spread through polluted food or water and cause

gastrointestinal disease that characterized by nausea, vomiting,

abdominal pain and diarrhea after infection (68). Salmonella

plasmid virulence C (SpvC) suppressed GSDMD-mediated

pyroptosis in macrophages through negative modulation of

both canonical and non-canonical inflammasome pathways,

which related to the inhibition of intestinal inflammation

while promotion of systemic bacterial dissemination (69).

Ventayol et al. (70) demonstrated that Salmonella infection

triggered NAIP/NLRC4/caspase-1/GSDMD-dependent focal

epithelial contractions that preceded and uncoupled from IECs

death and expulsion, thereby preventing subsequent tissue

disintegration. Intestinal macrophages could also suffer

NLRC4/caspase-1/GSDMD-dependent pyroptosis, which

promoted inflammatory response and aggravated Salmonella-

induced intestinal injury (71). Moreover, Salmonella was

recently shown to induce pyroptosis of enteroendocrine L cells

viaNLRP3/caspase-1/GSDMD axis, which reduced the secretion

of glucagon-like peptide 1, a significant intestinal hormone for

regulating glucose homeostasis, and eventually resulted in

hyperglycemia (72).

Cronobacter sakazakii, a gram-negative bacterial pathogen,

was shown to upregulate NF-kB via TLR4/MyD88 to promote

activation of the NLRP3 inflammasome and GSDMD-mediated

pyroptosis, leading to the intestinal damage and development of

necrotizing enterocolitis (73, 74). The translocated intimin

receptor of enteropathogenic Escherichia coli triggered rapid

Ca2+ influx in IECs, which induced LPS internalisation,

resulting in the activation of caspase-4/GSDMD-driven

pyroptosis of IECs (75). Melhem et al. (76) found that

epithelial G protein-coupled receptor 35 protected against

Citrobacter rodentium infection through guarding goblet cells

from dysregulated caspase-11/GSDMD-mediated pyroptosis

and maintaining mucosal barrier integrity. The canonical

NLRP3/caspase-1/GSDMD pathway-dependent pyroptosis in

macrophages contributed to the immunopathology and innate

inflammatory responses upon gastrointestinal norovirus
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infection (77). Remarkably, Hansen et al. (78) recently

elucidated that GSDMB, as a central executioner of

intracellular bacterial killing, functioned lytic microbiocidal

activity through recognition of phospholipids on gram-

negative bacterial membranes. They also identified Shigella

flexneri counteracted this host defense mechanism via

ubiquitinated proteasome destruction pathway of GSDMB (78).

Intestinal parasite is another enteropathogenic microorganism

that causes severe gastrointestinal inflammation and systemic

infection. Enterocyte-intrinsic NLRP6/caspase-1/GSDMD-

mediated pyroptosis played a critical role in enabling early

control of Cryptosporidium replication by the local release of the

proinflammatory cytokine IL-18 (79). Interestingly, Entamoeba

histolytica-triggered caspase-1/4 activation in the cleavage of

GSDMD to induce pore formation and sustain bioactive IL-1b
secretion in the absence of pyroptotic cell death in macrophages

(80). Type 2 cytokines, IL-4 or IL-13, triggered by worm infection,

drastically up-regulated the expression of GSDMC in the gut,

thereby enhancing the release of antiparasitic factors from

enterocytes by GSDMC-mediated pyroptosis and facilitating the

clearance of worms (81). Moreover, it was reported that epithelial

O-linked N-Acetylglucosamine protein modification was initiated

upon helminth infection, boosting GSDMC-mediated membrane

pore formation and the unconventional secretion of IL-33, which

contributed greatly to anti-helminth immunity and induced

intestinal inflammation (23).
4.4 Gasdermins-regulated pyroptotic cell
death during colorectal cancer

4.4.1 Anti‐tumorigenesis effect of Gasdermins
Accumulating evidence suggested that GSDMs-mediated

pyroptosis might impact all stages of tumorigenesis and played

a complex role in cancer biology depending on the different

cellular context and genetic backgrounds (Figure 3). Obviously,

as a type of cell death, pyroptosis inhibits the occurrence and

progression of tumors. Our recent study clarified that STING-

mediated Syk signaling attenuated the tumorigenesis of colitis-

associated colorectal cancer (CAC) by enhancing GSDMD-driven

pyroptosis of tumor cells (46). Thioredoxin reductase 3 (Txnrd3)

as selenoprotein was recently proved to cause intracellular calcium

outflow and increase oxidative stress in colonic epithelial cell line,

thereby activating the canonical GSDMD-dependent pyroptosis

to inhibit the growth and proliferation of colon cancer cells (82).

Interestingly, it was reported that conjugated linolenic acid

produced by the probiotic bacterium Lactobacillus exerted the

anti-cancer effect through inducing GSDMD-mediated pyroptosis

of colon cancer cells (83).

Previous studies indicated that GSDME gene methylation

might play a vital role in the development of CRC, and GSDME

as well as its methylation could be a promising molecular

biomarker in CRC (84, 85). GSDME, rather than GSDMD,
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was demonstrated to be cleaved in lobaplatin-induced

pyroptosis in colon cancer cells due to caspase-3 activation,

which clarified the mechanism of lobaplatin eradicating

neoplastic cells (86). It was reported that apoptin triggered

caspase-9/caspase-3/GSDME-dependent pyroptosis of colon

cancer cells through mitochondrial related ROS pathway and

significantly inhibited tumor growth in vivo (87). Tan et al. (88)

observed that radiation could induce caspase-3/GSDME-

mediated pyroptosis in colon cancer cells, which recruited NK

cells to provoke antitumor immunity and facilitated the

radiosensitivity. The combination of oxaliplatin and farnesoid

X receptor agonist GW4064 triggered caspase-3/GSDME-driven

pyroptosis and slowed tumor growth, thereby enhancing the

chemosensitivity of CRC (89). A recent study identified that

small molecule inhibitors BI 2536 and (S)-(+)-camptothecin via

organoid-based drug screen were able to induce GSDME-

mediated pyroptosis concurrent with caspase-3-dependent

apoptosis, which suppressed CRC tumor growth and enhanced

the efficacy of immunotherapy (90). In contrast, Croes et al. (91)

showed that there was no major differences for tumor features

between GSDME-/- and wild-type mice in both chemically

induced and genetic intestinal cancer models, in spite of less

severe inflammation observed in GSDME deficiency mice.
4.4.2 The pro-tumor effect of Gasdermins
Beyond the anti-tumor function, the inflammatory

microenvironment caused by pyroptosis may be suitable for
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tumor cell growth, which is closely related to the tumorigenesis.

Recent evidence implicated that GSDMs also acted as oncogenes

that participated in the initiation and progression of cancer.

GSDMB was found to exert pro-tumor function by promoting

proliferation, migration and invasion of tumor cells in both

breast neoplasias and bladder cancer (92, 93). GSDMD could

enhance tumor proliferation in non−small cell lung cancer and

promote the invasion capacity of adenoid cystic carcinoma

(94, 95).

For the colorectal cancer, Miguchi et al. (96) showed that

GSDMC promoted tumor cell proliferation in colorectal

carcinogenesis, and GSDMC facilitated xenograft tumor growth

in vivo. In addition, GSDME-mediated pyroptosis promoted the

development of CAC by releasing high-mobility group box

protein 1 (HMGB1), which boosted tumor cell proliferation

through the ERK1/2 pathway (97). Nevertheless, potential

molecular mechanisms of pro-tumor effect of GSDMs in CRC

remains largely unknown, further studies are warranted to unveil

the relationship between GSDMs and tumor microenvironment.
4.5 Gasdermins-involved pyroptosis in
other gut disorders

Intestinal I/R injury induced intestinal inflammation

through activation of the NLRP3/caspase-1/GSDMD-driven

pyroptosis, and metformin and dexmedetomidine were

demonstrated to protect against intestine I/R injury by
FIGURE 3

The contradictory role of GSDMs in colorectal cancer. CLNAs from probiotic bacterium and intracellular calcium outflow-caused ROS activate
caspase-1/4/5 to cleave GSDMD. STING-mediated Syk signaling induces GSDMD-driven pyroptosis. Apoptin/ROS/caspase-9 axis, radiation and
chemotherapy activate caspase-3 to cleave GSDME. The cleavage of GSDMD or GSDME inhibits the occurrence and progression of tumors by
inducing pyroptosis. GSDMC and GSDME-related HMGB1 release promote tumor cell proliferation. CLNA, conjugated linolenic acid; Txnrd3,
thioredoxin reductase 3; ROS, reactive oxygen species.
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reducing expression of pyroptosis-related proteins (98, 99).

Pyroptosis was recently observed to play an essential role in

radiation-induced enteropathy, one of the most common and

fatal complications of abdominal radiotherapy, and micheliolide

significantly ameliorated radiation-induced intestinal tissue

damage by lessening NLRP3/caspase-1/GSDMD pyroptosis

pathway (100). Ye et al. (101) showed that Western diet

induced increased myenteric neuronal pyroptosis via caspase-

11/GSDMD pathway, leading to the myenteric nitrergic

neuronal degeneration and colonic dysmotility. Caspase-11/

GSDMD-triggered pyroptosis also contributed to acute graft-

versus-host disease-related intestinal injury in allogeneic

hematopoietic stem cell transplantation, while deletion of

caspase-11 or GSDMD relieved intestinal inflammation (102).

Circulating plasma exosomes derived from intestinal Behçet’s

syndrome patients were proved to induce pyroptosis of intestinal

epithelial cells via the activation of NLRP3/caspase-1/GSDMD

pathway (103). Kerr et al. (104) revealed that GSDMD-mediated

pyroptosis of intestinal macrophages resulted in increased gut

permeability after thrombotic stroke, which provided a novel

possible mechanism underlying gut complications after stroke.

Further investigation was needed to clarify the pathogenic

mechanism by which GSDMs facilitates gut homeostasis.
5 Pyroptosis-related PANoptosis
in gut

It is widely known that GSDMs-dependent pyroptosis is a

kind of inflammatory programmed cell death in response to

pathogens or sterile insults. Emerging evidence states that

multiple cell death pathways apart from pyroptosis, such as

apoptosis and necroptosis, are induced during inflammation and

immune response. Mechanistically, apoptosis is activated by the

executioner caspase-3, caspase-6 or caspase-7, downstream of

the initiator caspase-8, caspase-9 and caspase-10 (105).

Necroptosis is initiated by phosphorylation of mixed lineage

kinase domain-like pseudokinase (MLKL) downstream of the

RIPK1 and RIPK3 signaling axis (105). Indeed, under such

condition of homeostasis disbalance, a significant crosstalk

among these three cell death pathways was observed,

conceptualizing as a novel and united modality of death,

namely PANoptosis (Pyroptosis-Apoptosis-Necroptosis) (106).

PANoptosis is modulated by the multi-protein PANoptosome

complex, which provides a molecular scaffold for simultaneous

engagement of key molecules from pyroptosis, apoptosis and

necroptosis (107). According to the biological functions,

compositions of the PANoptosome consist of sensors, adaptors

and catalytic effectors in general, such as Z-DNA binding protein

1 (ZBP1), FADD and caspase-1, respectively (108). Since

PANoptosis has been triggered during various pathogenic
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infections, autoinflammatory diseases and cancer (107),

indicating that it has significant pathophysiological relevance.

Recent studies suggested that interventions targeting

PANoptosis-related molecules made a significant sense to the

initiation and progression of gut diseases. Kanneganti’s group

identified interferon regulatory factor 1 (IRF1) in both the

myeloid and epithelial compartments could act as a master

regulator of PANoptosis in the colon to induce cancer cell

death, thus protecting against tumorigenesis in CAC (109).

They confirmed synergism of cytokines TNF-a and IFN-g was
capable of inducing PANoptosis of colon cancer cells through

activation of GSDMD, GSDME, caspase-8, caspase-3, caspase-7

and MLKL, thereby suppressing tumor growth (110). Their

group also demonstrated that combining interferons and

nuclear export inhibitors activated ZBP1-dependent

PANoptosis and thus dramatically regressed colon tumor in

vivo (111). By contrast, adenosine deaminase acting on RNA 1

(ADAR1), a RNA editor that critical for development and

survival, interacted with ZBP1 and suppressed ZBP1-mediated

PANoptosis, promoting tumorigenesis (111). Lin et al. (112)

observed that cysteine desulfurase (NFS1), a rate-limiting

enzyme in iron-sulfur cluster biogenesis, weakened oxaliplatin-

based chemosensitivity of CRC by reducing the level of ROS to

prevent PANoptosis.

Therefore, the existing research results unanimously

suggested induction of PANoptosis in cancer cells would be a

promising strategy for inhibiting tumorigenesis of CRC

(Figure 4). Further studies may be warranted to develop novel

agonists that can drive cancer cell PANoptosis. In addition, more

studies are urgently needed to understand the specific functions

and mechanisms of PANoptosis in other gut disorders.
6 Intrinsic functions of Gasdermins
in intestine independent
of pyroptosis

The GSDMs have been primarily known for their role as pore-

forming effector proteins upon cleavage, oligomerization, and

translocation of the N-terminal domain to the plasma

membrane to cause pyroptosis. Nonetheless, GSDMs are also

expressed in many healthy tissues without obvious pyroptosis and

inflammation especially the gastrointestinal tract, suggesting

potential physiological functions associated with GSDMs that

independent of pyroptosis may be modulated in the steady

state. Recently, emerging studies have confirmed the

nonpyroptotic role of GSDMs during maintenance of intestinal

homeostasis (Figure 5).

Rana et al. (20) reported GSDMB was increased in inflamed

colonocytes and crypt top colonocytes of IBD patients, and

GSDMB enhanced IECs proliferation and migration by

regulation of focal adhesion kinase (FAK) phosphorylation
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rather than its driven pyroptosis, thus promoting restoration of

epithelial barrier function and the resolution of inflammation.

GSDMD was recently found to recruit the E3 ligase NEDD4 to

mediate the release of polyubiquitinated IL-1b via a caspase-8-

dependent, nonpyroptotic pathway in IECs, which was crucial

for the development of intestinal inflammation (113). Moreover,

a recent study showed that GSDMD drove mucin secretion

through calcium ion-dependent scinderin-mediated cortical F-

actin disassembly, a key step in granule exocytosis, highlighting

the distinctive function of GSDMD in intestinal goblet cell

mucin secretion and mucus layer formation that uncoupled

from pyroptotic cell death (114). Interestingly, a previous

study showed that there were no gross histological

abnormalities in the small intestinal or the colonic epithelium

of GSDMD-/- mice, and GSDMD-/- mice appeared to exhibit

comparable numbers of the differentiated cell lineages with wild-

type mice such as goblet cells, Paneth cells and enteroendocrine

cells, indicating an inessential role of GSDMD for intestinal

epithelium development (115). These inconsistent results for

GSDMD in gut homeostasis may attract researchers to further
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investigate the inherent functions of GSDMs. In addition, full-

length GSDME was demonstrated to markedly decrease the cell

growth and colony-forming ability of colon cancer cells by

negative regulation of AKT pathway, whereas knockdown of

GSDME enhanced cancer cell cycle progression and cell growth,

implicating a potential tumor suppressor role for GSDME in

CRC (116). However, the precise mechanism by which GSDMs

exert the intrinsic functions independent of pyroptosis in

intestinal homeostasis remains largely unknown and needs to

be further elucidated.
7 Conclusions and perspectives

GSDMs are widely expressed in the intestine, while GSDMA,

GSDMB, GSDMC and GSDME tend to appear prominently in

intestinal epithelium, and GSDMD presents in both IECs and

lamina propria immune cells. There is no doubt that GSDMs play

a vital role in the intestinal mucosal immunity and homeostasis,

due to its mediated pyroptosis, related PANoptosis, and inherent
FIGURE 4

Pyroptosis-related PANoptosis in intestine. IFN-g combined with TNF-a or KPT-330, and chemotherapy-induced ROS activate PANoptosome to
trigger GSDMs-mediated pyroptosis, caspase-3/7-mediated apoptosis and MLKL-mediated necroptosis, conceptualizing as PANoptosis. ADAR1
and decreased ROS by NFS1 suppress PANoptosis through intervention of PANoptosome. KPT-330, a nuclear export inhibitor; NFS1, cysteine
desulfurase; ADAR1, adenosine deaminase acting on RNA 1; ZBP1, Z-DNA binding protein 1; RIPK, receptor-interacting protein kinase; MLKL,
mixed lineage kinase domain-like pseudokinase.
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functions independent of pyroptotic cell death. The promotion or

resistance effects of GSDMs on intestinal inflammation and

tumorigenesis may depend on the biological context, in

particular the interaction of GSDMs-expressing cells with the

immune or tumor microenvironment. In these sense, the

development of both agonists and blockers of GSDMs might be

useful to govern therapy response and disease progression.

In fact, current research on GSDMs is just the tip of the

iceberg, there are still multiple hurdles to resolve to fully unveil the

role of GSDMs in gut homeostasis. Firstly, active GSDMs are

important during cell death and inflammation, and GSDMs have

been found to be cleaved and activated by caspases, SpeB virulence

factor, neutrophil elastase, cathepsin G or granzymes. Whether

GSDMs can be cleaved and activated by additional cellular

proteases as well as pathogen-encoded proteases in gut remains

to be explored. Secondly, as the key perpetrators of inflammation,

the specific mechanisms of GSDMs being initiated and activated

by which stimulating factors in intestinal homeostasis need to be

further determined. Thirdly, it is notable that GSDMs are

aberrantly expressed in CRC and are observed to be either

promoters or suppressers of cancer. However, how GSDMs

function to shape CRC cells or the tumor microenvironment in

pyroptosis-dependent or -independent manners are largely

unclear. Fourthly, several mutations of GSDMs have been

demonstrated to increase the incidence risk of certain gut

diseases, but whether it is caused by pyroptotic cell death or

inherent function of GSDMs needs future investigation. In any

case further insights into the roles of GSDMs in gut will not only
Frontiers in Immunology 10
strengthen our understanding of the daedal mechanisms

underlying intestinal inflammation and tumorigenesis but will

also help to exploit novel therapeutic strategies for gut

homeostasis imbalance.
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FIGURE 5

Intrinsic functions of GSDMs in gut independent of pyroptosis. Full-length GSDMB promotes cell proliferation and migration by regulation of
FAK, whereas full-length GSDME suppresses cell growth by negative regulation of AKT pathway. GSDMD drives mucin secretion through
calcium ion influx-dependent scinderin-mediated cortical F-actin disassembly, and recruits NEDD4 to mediate the release of polyubiquitinated
IL-1b in the form of Evs via a caspase-8-dependent manner. FAK, focal adhesion kinase; NEDD4, an E3 ligase; Evs, extracellular vesicles.
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