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Standard immunosuppressive
treatment reduces regulatory B
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Introduction: Autoimmune hepatitis (AIH) is a chronic liver disease caused by a
perturbed immune system. The scarcity of short- and long-term immune
monitoring of AlH hampered us to comprehend the interaction between
immunosuppressive medication and immune homeostasis.

Methods and patients: We recruited children with AlH at the time of diagnosis
and at the 1st, 3rd, 6th, 12th, 18th, and 24th months of immunosuppression (IS).
We also enrolled children with AIH being on IS for >2 years. Children with drug-
induced liver injury (DILI), and those receiving tacrolimus after liver
transplantation (LT), were enrolled as disease/IS control subjects. Healthy
children (HC) were also recruited. Peripheral blood mononuclear cells
(PBMCs) were isolated from all participants. Healthy liver tissue from adult
donors and from livers without inflammation were obtained from children with
hepatoblastoma. By using flow cytometry, we performed multi-parametric
immune profiling of PBMCs and intrahepatic lymphocytes. Additionally, after IS
with prednisolone, tacrolimus, rapamycin, or 6-mercaptopurine, we carried
out an in vitro cytokine stimulation assay. Finally, a Lifecodes SSO typing kit was
used to type HLA-DRB1 and Luminex was used to analyze the results.

Results: Untreated AIH patients had lower total CD8 T-cell frequencies than
HC, but these cells were more naive. While the percentage of naive regulatory T
cells (Tregs) (CD4"FOXP3'°“CD45RA™) and regulatory B cells (Bregs,
CD20"CD24*CD38%) was similar, AIH patients had fewer activated Tregs
(CD4TFOXP3MI"CD45RA”) compared to HC. Mucosal-associated-invariant-
T-cells (MAIT) were also lower in these patients. Following the initiation of IS,
the immune profiles demonstrated fluctuations. Bregs frequency decreased
substantially at 1 month and did not recover anymore. Additionally, the
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frequency of intrahepatic Bregs in treated AlH patients was lower, compared to
control livers, DILI, and LT patients. Following in vitro IS drugs incubation, only
the frequency of IL-10-producing total B-cells increased with tacrolimus and
6MP. Lastly, 70% of AIH patients possessed HLA-DR11, whereas HLA-DRO3/
DRO7/DR13 was present in only some patients.

Conclusion: HLA-DR11 was prominent in our AIH cohort. Activated Tregs and
MAIT cell frequencies were lower before IS. Importantly, we discovered a
previously unrecognized and long-lasting Bregs scarcity in AIH patients after IS.

Tacrolimus and 6MP increased IL-10+ B-cells in vitro.
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Introduction

Autoimmune hepatitis (ATH) is a fatal immune-mediated liver
disorder if left untreated (1). It is characterized by the presence of
hypergammaglobulinemia, periportal inflammation with interface
hepatitis, and organ (non-)specific autoantibodies. AIH type-1 is
defined by the presence of anti-smooth muscle (SMA) and/or anti-
nuclear antibodies (ANA), whereas type-2 ATH is diagnosed when
liver-specific autoantibodies against Cytochrome P450 enzyme
CYP2D6 (anti-LKM1) and/or formimidoyltransferase
cyclodeaminase (anti-LC1), are detected (2). Autoantibodies
against soluble liver antigens (SLA) can be seen in both types of
ATH (3). AIH patients with evidence of cholangitis on histology are
diagnosed with autoimmune sclerosing cholangitis (AISC). For
more than a half-century, non-selective immunosuppressive drugs
(IS) have been used to treat AIH (4). Standard IS in the induction
phase exists out of steroids for the first two weeks, and then stacked
with azathioprine (AZA) after the second week. Maintenance
therapy, depending on patients’ response, side effects, or
intolerance, is done with AZA + steroids, with additional
ursodeoxycholic acid in patients with AISC (4). Treatment
success is not 100% and is affected by non-adherence, particularly
in adolescents, but the type of HLA allele present is also important,
as no biochemical remission or frequent relapse (5) was linked with
the presence of HLA-DR7 or HLA-DR3 alleles. Furthermore,
paediatric AIH is more severe and less controllable compared to
adult AIH (6). Hitherto, a detailed systemic and hepatic profile of
the activity of innate and adaptive (regulatory) immunity, prior to
the start of any IS, has been elusive. The general concept of the ATH
immunopathophysiology is that loss of self-tolerance of
autoreactive T cells results in T helper (TH) 1, TH2, and TH17
cells, accompanied by regulatory T cell aberrations (2, 7, 8),
stimulating CD8 T cells, B cells and NK cells to ultimately
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damaging hepatocytes via cellular, humoral, and granzyme
mediated auto-aggression, respectively (9). By virtue, the use of IS
is the mainstay of ATH treatment. Although IS improves hepatitis in
the majority of patients, it also suppresses Tregs, the very cells that
constitute immune tolerance. More importantly, Diestelhorst et al.
clearly demonstrated that standard IS treatment reduced
inflammation (CD4/CD8 cell infiltration) by 39% (10). Yet, the
proportion of Tregs (CD4"FOXP3") was disproportionally
diminished by more than 50%, which may explain why weaning
oft IS is not justified given our current and partial comprehension of
AIH pathophysiology at baseline and after IS. T cell biology has
received a lot of attention, but B cells are also very important
because bidirectional B cell-T cell communication is crucial in both
homeostasis and disease. For example, regulatory B cells (Bregs)
interact with Tregs, causing an increase in their numbers (11).
However, little is known about Breg homeostasis in ATH. To that
end, our primary aim was to investigate the immunological
properties of naive (untreated) and treated ATH patients using
deep immune phenotyping of PBMCs and intrahepatic immune
cells. The secondary aim was to understand the B cell dynamics and
effects of IS drugs on B cells and Bregs, as well as whether there is a
difference between type-1 and type-2 AIH. Lastly, we also
investigated the HLA-DRBI allele frequencies in these patients in
order to better understand the pattern of HLA alleles associated
with ATH patients.

Patients and methods
Study population

The study protocol was approved by Ko¢ University (IRB:
2019.255.IRB2.077 and 2019.262.IRB2.084) and complied with
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the Declaration of Helsinki’s ethical principles from 1975.
Written informed consent was obtained from all parents and/
or patients. Between 2019 and 2022, we recruited children for the
different study groups. Group-1 consisted of naive AIH patients
with sequential follow-up samples after the standard IS regimen,
consisting of Pred and Aza as per the guidelines (4, 12); Group-2
ATH patients are cross-sectional ones under treatment, and
Group-3 AISC patients are also cross-sectional ones being
treated. Group-4 children are recruited as age-matched healthy
controls (with only functional constipation), Group-5 are
patients with drug-induced liver injury (DILI), and Group-6
have had a liver transplant >6 months ago, have a protocol liver
biopsy, and are treated with tacrolimus. Group-7 includes
patients who underwent a partial hepatectomy due to
hepatoblastoma, and Group-8 includes donors that had
undergone surgery as living-related liver donors for their
relatives/next of kin (2019.020.IRB2.019). Table 1 lists the
demographics for each group, and Supplementary Figure 1
shows a schematic overview of each group. We collected the
following data: gender, age, autoantibodies anti-nuclear
antibody (ANA), anti-smooth muscle antibody (ASMA), anti-
soluble liver antibody (SLA), anti-mitochondrial antibody
(AMA), liver kidney microsomal type-1 antibody (anti-
LKM1), and liver cytosol antibody type 1 antibody (anti-LCl1),
perinuclear-anti neutrophil cytoplasmic antibodies (pANCA),
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), gamma-glutamyl transferase (GGT), immunoglobulin
G (IgG) (Table 1) from patient charts and electronic patient
records. The diagnosis of ATH was made according to EASL ATH
guidelines (12).

Liver biopsy and fine needle aspiration

Children that underwent a liver biopsy, either for diagnostic
or routine histological assessment, conform to the guidelines
(13). The biopsy and fine needle aspiration (FNA) procedures
were both ultrasound guided under general and local anesthesia.
As we recently published, FNA was used to obtain intrahepatic
lymphocytes (IHL) (14). The aspirate was then filtered through a
40um filter and collected in cold phosphate-buffered saline
(PBS) containing 2% FBS (Biowest) (14).

Peripheral blood mononuclear
cells isolation, cell staining, and
gating strategy

To isolate peripheral blood mononuclear cells (PBMC),
whole blood was diluted with PBS and layered onto
Lymphoprep (GE), followed by density gradient centrifugation
(15). Following a PBS wash, cells were resuspended in PBS,
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stained with viability dye EF780 (BD-eBioscience,
ThermoFisher) before being incubated with cell surface
antibodies specific for (regulatory) T-cells, mucosal-associated-
invariant-T-cells (MAIT), (regulatory) B cells, and NK/NKT
cells as previously described (7, 14-16). These antibodies are;
CD3 (clone HIT3a), CD161 (clone HP-3G10), CD20 (clone
2H7), CD24 (clone ML5), CD25 (clone M-A251), CD38 (clone
HIT2), CD4 (clone A161A1), CD45RA (clone HI100), CD56
(clone 5.1H11), CD8 (clone HIT8a), HLA-DR (clone L243), and
TCR Valpha7.2 (clone 3C10) (Figure 1), and gating strategy is
shown in Supplementary Figure 2. FOXP3 was determined by
intranuclear staining with anti-FOXP3 (clone PCHI101,
eBioscience) and intracellular CTLA-4 was detected with anti-
CTLA-4 (clone BNI3, Biolegend) after FOXP3 cellular fixation/
permeabilization buffer (eBioscience) was used, followed by
addition of intracellular permeabilization buffer (eBioscience).
After washing with PBS, the cell pellet was resuspended in 300uL
of PBS and passed through a multicolor flow cytometer (Attune-
NxT, ThermoFisher). Analysis was performed using Flowjo
(Treestar Inc, USA).

Cell stimulation and in vitro
immunosuppression with drugs

The PBMCs were first resuspended in complete cell medium
(RPMI-1640 with L-glutamine and 0.5% penicillin/streptomycin
(GIBCO), 0.5% amphotericin (Sigma-Aldrich), and 10% heat-
inactivated fetal bovine serum) (GIBCO). These cells were then
seeded onto a 96-well round-bottom plate at a density of 200,000
cells/200uL/well. The in vitro effects of IS drugs were explored by
adding prednisolone, the active metabolite of azathioprine (6-
MP), rapamycin, or tacrolimus (Sigma-Aldrich), at a final
concentration of 10 nM, according to the published protocol
(17). After 2 hours of incubation with IS drugs (18), cells with
and without IS were stimulated for 6 hours at 37°C in the
incubator with a cell activation cocktail (Biolegend) and
recombinant human IL-2 (Biolegend) (100U/ml) (2). For
intracellular cytokine staining, PBMCs were stained with cell
surface antibodies staining B cells (CD20) and Bregs
(CD20CD24CD38). Cells were fixated for 20 mins, washed
with FBS, and the cell pellet was resuspended with
intracellular permeabilization buffer (eBioscience), followed by
anti-IL-10 (clone JES3-19F1) antibody incubation for 30 mins at
4°C. Thereafter, cells were washed with PBS and resuspended in
300uL of PBS, prior to flow cytometry.

HLA determination

The routine tissue typing lab at Ko¢ University Hospital used
the Lifecodes HLA-DR eRES SSO typing kit (ref:628925) to
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TABLE 1 Demographics and clinical parameters.

GROUPS GENDER ALT<41lU AST<52IlU GGT<18IU IgG5-15 g/ Presence of
Number (n) F/M (IQR) (([0]39) (([0]39) L (IQR) Autoantibodies

103 180 64 49 15.8 Anti-ANA/SMA: 28.5%
(50-221) (61-1119) (26-697) (25-116) (10-17) (2)
Anti-LKM1/LC1:
57% (4)
Seronegative:
14.3% (1)
192 34 38 22 13.7 Anti-ANA/SMA: 89.9%
(142.5-212) (32-50) (34-51) (13-29) (10.8-14.9) (8)
Anti-LKM1/LC1:
0% (0)
Seronegative:
11.1% (1)
204 1/2 34 34.5 51 10.8 Anti-ANA/SMA: 66%
(177-213) (15-63) (18-51) (28-88) (7.7-14) (2)
PANCA:
100% (3)
91 2/5 14 25 15 9.56 na
(57-108) (13-15) (na) (na) (7.8-10.6)
144 1/2 386 97 179 8.8 0%
(52-204) (15-1457) (15-122) (14-413) (7.6-9.6)
72 5/4 41 46 25 12.9 na
(24-102) (25-77) (37-67) (13-68) (8.1-15.4)
55 2/1 32 50 24 7.3 na
(26-174) (27-409 (50-290) (20-62) (4.9-13.9)
412 5/3 13 17 16 na na
(262-444) (11-23) (14-22) (13-24)
DILI, drug-induced liver injury; HBL, hepatoblastoma; PBMC, peripheral blood mononuclear cells; LT, liver transplanted patients; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, gamma glutamyl transpepdidase; IQR, interquartile range; IgG, immunoglobulin G; anti-ANA, anti-nuclear antibodies; anti-SMA, anti-smooth muscle
antibody; anti-LKMI, anti liver kidney microsomal antibodies; anti-LC1, anti liver cytosol antibody; pANCA, perinuclear antineutrophil cytoplasmic antibodies; AIH, autoimmune
hepatitis; AISC, autoimmune sclerosing cholangitis; na, not applicable.

genotype HLA DRB antigens. Data were collected on a Luminex Results
platform, and allele allocation was performed by a trained lab

technician using MATCH IT! DNA software. Perlpheral blood CD8 T CellS’ actlvated

Tregs, and MAIT cells were lower in
treatment-naive autoimmune hepatitis

Statistics patients, compared to healthy controls
Statistical analysis was performed using GraphPad 5. As depicted in Figure 1 and Supplementary Figure 2, we have
Normality was assessed with Kolmogorov-Smirnov Test. investigated 17 cells (and subsets) in the peripheral blood of ATH
Comparisons between two groups were performed by student’s patients. The frequency of CD3+ T cells, CD20+ B cells, CD4+ T
t-test or Mann-Whitney U test. Multiple comparisons were cells, and naive CD4 T cells was unaltered compared to PBMCs
analyzed by one-way analysis of variance or by Kruskal-Wallis, of HCs (Figures 2A, B). Total CD8+ T cells (21.1%) were
depending on the normality. For parametric variables, the significantly lower compared to HCs (35%), whereas these
standard error of the mean ( + SEM) was provided, whereas, cells were more naive compared to their counterparts (74.9%
for non-parametric variables, we used the interquartile range versus 46%) (Figures 2A, C). CD24+CD38- memory B cells were
(IQR). A p-value of <0.05 was considered significant. unaltered (Figure 2D). In terms of Treg homeostasis in
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blood and livers. The following CD markers were applied to define total T cells: CD3+CD20-, T helper cells: CD4+CD8-, cytotoxic T cells: CD8+CD4-,
naive T helper cells: CD4+CD45RA+, naive cytotoxic T cells: CD8+CD45RA+, naive regulatory T (Tregs) cells: CD4+CD45RA+FOXP3low, activated
Tregs: CD4+CD45RA-FOXP3high, CTLA-4 positive Tregs: CD4+CD45RA-FOXP3highCTLA-4+, total B cells: CD3-CD20+, memory B cells:

CD20 +CD24+CD38-, regulatory B (Bregs) cells: CD20+CD24highCD38high, CTLA-4 positive Bregs: CD20+CD24highCD38high, NK cells: CD3-
CD56+, NKT cells: CD3+CD56+, and mucosal-associated invariant T cells: CD3+CD161+TCRVa7.2+.

peripheral blood, we found fewer activated Tregs
(CD4"FOXP3"€"CD45RA") in treatment-naive AIH patients
than in HCs (0.56% versus 1.18%) (Figures 2E, F). Albeit, the
proportions of naive (CD4"FOXP3'°"CD45RA™) and total
(activated + naive) Tregs were comparable between AIH and
HCs. Furthermore, the ratio of total Tregs to effector T cells
(Teffs: CD4*FOXP3'°“CD45RA") were similar between AIH
patients (Supplementary Figure 3A) and HCs. Additionally,
activated Tregs from treatment-naive AIH patients expressing
CTLA-4 were similar compared to HCs (24.1% versus
12.5%) (Figure 2G).

We also explored the proportions of innate immune cells
such as MAITs (CD3+CD161+Va7.2+), NK (CD3-CD56+), and
NKT (CD3+CD56+) cells. Even though NK/NKT cell
frequencies were indifferent between treatment-naive ATH and
HCs, MAIT cell frequencies in treatment-naive AITH were much
lower (0.54%) compared to HCs (2.7%) (Figures 2H-]).

Furthermore, treatment-naive AIH patients had similar
proportions of Bregs (CD20"CD24"8"CD3ghsh) in
comparison to HCs (8% versus 6.3%) (Figures 2K-M). A

Frontiers in Immunology

05

significant proportion of Bregs expresses CTLA-4 (19). CTLA-4
+ Bregs from treatment-naive AIH (18.6%) were equally
abundant as HC Bregs expressing CTLA-4 (19.1%)
(Figures 2L, M).

Immunophenotypic monitoring following
IS treatments in the prospective group

The peripheral immune composition in the prospective
treatment group was assessed after 1, 3, 6, 12, 18, and 24
months of standard IS therapy. We observed that the total T
cells (CD3+), total B cells (CD20+) as well as CD4 T - and CD8
T cell frequencies, remained stable over the course of 24 months
(Figure 3A). Regarding the activation status (CD45RA
expression), the proportion of naive CD4 T and CD8 T cells
remained stable as well (Figures 3B, C). Nonetheless, memory B
cells (CD20"CD24"CD38") significantly increased from 11.6% at
diagnosis to 18.7% at 1 month and 22.9% at 12 months,
remaining somewhat high thereafter (Figure 3D).
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Analysis of the distribution of lymphocytes and their subsets in blood, in healthy controls and naive autoimmune hepatitis patients. (A) Is a bar
chart of the frequency of peripheral blood immune cells such as CD3, CD4, and CD8 T cells, and total CD20 B cells. (B, C) Show naive CD4 and
CD8 T cells. (D) Shows memory B cells. (E) Demonstrates the proportion of total, naive, and activated Tregs. (F) Is a depiction of gating for
Tregs. (G) Provides frequencies for CTLA-4+ Tregs. (H) Is a depiction of NK/NKT cell proportion. (I) Shows MAIT cells and (J) is showing the
gating for MAIT cells. (K) Is a bar chart of Bregs and (L) shows CTLA-4 positive sub-group. (M) Depicts gating for memory B cells and Bregs. Five
naive AlH patients and seven healthy controls were included for this part of the study.

Activated Tregs increased in long-term
follow-up patients whereas Bregs
remained low

The cross-sectional cohort who were >2 years on IS broadly
followed the immune phenotypical trends observed in the
prospective cohort (Figures 3A-D).

Next, we also investigated whether short/long-term IS
affected Treg homeostasis. We demonstrated that the
proportion of total Tregs fluctuated non-significantly for
several months after IS. Nonetheless, the percentage of total
Tregs fell at months 18, 24, and thereafter when compared to
earlier time points. This was also observed in the naive Tregs
population, which was significantly less than 1.5% in the last
three time points, compared to the first cohort’s month 6 (3.7%)
of IS treatment (Figure 3E). On the contrary, activated Tregs
were significantly higher (1.17%) in the long-term IS group
compared to month 3 of IS (Figure 3E). However, the proportion
of activated Tregs that expresses CTLA-4 showed a significant
reduction in the long-term group (Figure 3F). Furthermore, the
ratio of Teffs to total Tregs in AIH patients was significantly
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higher than in HCs (Supplementary Figure 3A), indicating an
unresolved immune dysregulation.

We also investigated the frequencies of NK/NKT cells and
MAIT cells (Figures 3G, H). NK cells exhibited significant
fluctuations during the different time points. NKT cell
proportion was higher in the long-term cohort compared to
baseline levels, and MAIT cell frequencies remained unaltered.
Although the frequency of Bregs was 8.1% prior to treatment,
following IS therapy, we observed a substantial reduction in
Bregs to 0.75% at 6 months (Figures 31, J). In the long-term
cohort, Bregs remained significantly low (<2.5%) compared to
treatment-naive patients (Figures 3I, J). The expression of
CTLA-4 on the few remaining Bregs could not be assessed due
to the low number of events (data not shown).

In terms of comparisons between AIH-1 and AIH-2, we only
found that at 3 months of IS, the frequency of NK cells was
higher in AIH-2 (2.9%) than in ATH-1 (1.7, p=0.05). All other
cell populations were similar (data not shown). The difference
was unrelated to IS because all ATH-1 and AIH-2 patients
received Aza+Pred at that time. Furthermore, AIH patients on
long-term IS were compared to AISC patients and there were no
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differences observed between the two groups (Supplementary
Figures 4A-I).

More B cells, and fewer Tregs and Bregs
in autoimmune hepatitis patients’ liver

Following the immune profiling of PBMCs, we also aimed at
elucidating the intrahepatic immune microenvironment.
Intrahepatic lymphocytes were isolated from FNAs, during
liver biopsies for the diagnosis of AIH (n=1) or the follow-up
of ATH (n=3) or AISC (n=2). In contrast to CD3 T cells, we
found that CD20 B cells were significantly enriched in the livers
of AIH patients (9.0%) compared to HCs (2%) (Figure 4A).
Other cell populations such as CD4 and CD8 T cells, and their
CD45RA expressing subsets, as well as memory B cells, were
similar (Figures 4A-D).

In terms of the intrahepatic Treg (sub)population, we found
that naive Tregs were more prevalent in AIH than HC. When
compared to HCs (2%) and HT's (2.3%), the frequency of activated
Tregs was significantly lower (1.0%) (Figure 4E). Furthermore, the
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Teffs/Tregs ratio in ATH livers was comparable between the groups
(Supplementary Figure 5A). Additionally, the proportion of
activated Tregs expressing CTLA-4 was significantly lower when
compared to HC (Figure 4F). Moreover, the proportions of NK
and NKT cells were unaffected, whereas the frequency of MAITSs
cells was significantly lower in ATH livers (2.9%), compared to HCs
(8.5%) and HTs (10.3%) (Figures 4G, H). Complementary to what
we saw in peripheral blood, the proportion of intrahepatic Bregs in
AIH livers (2.9%) was significantly lower than in HCs (10%) and
HTs (22.3%) (Figures 41, J).

To determine whether the paucity of liver Bregs is caused by
disease or treatment, we compared the intrahepatic proportion
of ATH Bregs to the intrahepatic proportion of DILI (disease
control) and transplanted children on tacrolimus. We found that
both DILI and post-transplant patients on tacrolimus had
significantly more intrahepatic Bregs, 12.9% and 13.6%
respectively, than AIH patients (Figure 5A). Similarly, we
wondered if the low proportion of intrahepatic Tregs was
unique to AIH, or a result of treatment and on comparison,
found out that intrahepatic activated Tregs were in fact similar in
AIH and DILI (Figure 5B).
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and (J) shows gating for Bregs

Effect of immunosuppressive drugs on
regulatory B cells

Finally, we wanted to know which IS drug in particular
affected the frequency of Bregs. However, because we were short
of PBMCs from naive AIH patients, we used blood from HCs.
We measured the frequency of total B cells, IL-10+ B cells, Bregs,
and IL-10+ Bregs in PBMCs after incubating them with various
IS drugs followed by a cytokine stimulation cocktail. In these in
vitro conditions, the normalized ratios of total B cells and Bregs
frequencies did not differ from baseline (no IS) levels
(Figures 6A, B). Furthermore, when 6MP and Tac were used,
the normalized ratio of IL-10 producing Bregs tended to be
higher than at baseline (Figure 6C). Nonetheless, we found that
6MP and Tac significantly increased the normalized ratios of IL-
10+ total B cells (Figure 6D and Supplementary Figure 6C).

HLA-DR11 allele was prominent in
AlH patients

Lastly, we also explored the frequency of HLA-DRBI alleles
in AIH patients. We found that HLA-DR11 was the most
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frequent allele in ATH-1 (70%) and AIH-2 (66%) patients
(Supplementary Figures 7A, B). Alleles known to be associated
with ATH in Caucasian AIH patients (DR3, DR4, DR7, DR13)
had lower frequencies (Supplementary Figures 7A, B). We were
also able to investigate the presence of the HLA-DRBI allele in
two AISC patients. One was DR3 homozygous, while the other
was DR15 homozygous. We also compared ALT, AST, GGT
levels, and immune profiles in DR11+/- patients but found no
differences (data not shown). Due to the small sample size, it was
not possible to assess patients’ responses to IS (early remission,
good response, or frequent relapse) according to their HLA-
DRBI allele.

Discussion

The aetiopathology of AIH is only partially understood. It is
characterized primarily by the activation of adaptive immunity
and an aberration in immunoregulatory mechanisms. While T-
cells play a central role in the pathogenesis by producing pro-
inflammatory cytokines coinciding with Tregs alterations, data
concerning the role of B-cells is elusive. However, their potential
role could be important as B cells also contain a variety of
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immunoregulatory B cell subtypes such as CD24CD38 double-
positive Bregs producing anti-inflammatory cytokines IL-10 and
IL-35. Therefore, in this study, we reported on the findings of
immune phenotyping of T, NK, NKT, and MAIT cells as well as
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whereas naive CD8 T cells were more abundant compared to
HCs. Regarding the immunoregulatory immune cell
compartment, total Tregs and naive Tregs were equally
distributed in ATH and HCs. Yet, activated Tregs were lower
in ATH compared to HCs. Importantly, the proportion of Bregs
and CTLA-4+ Bregs was unaltered. After beginning IS
medications, there were fluctuations, but only the frequency of
memory B cells changed significantly from the starting point.
Following the start of IS, there were marginally higher Treg
frequencies (total and naive), which subsequently started to
decline after 18 months of IS in comparison to earlier time
points. However, one cell population did not recover from IS
treatment; the proportion of Bregs dropped sharply after IS and
remained low throughout the entire investigation. Due to non-
adherence, Bregs only returned in one patient (6.9%), which
accounts for the significant variation at the 24-month mark.
Regarding the hepatic immune microenvironment, naive CD8 T
cells and total B cells were higher in ATH. Furthermore, not total
nor naive but activated Tregs in ATH were lower than HCs. In
ATH livers, MAIT cells were also less frequent. Yet again, Bregs
were lower in AIH livers.

Few studies have been conducted to date, mostly on adults,
to better understand how IS medications affect systemic and/or
intrahepatic lymphocytes in patients with AIH (3, 10, 20-22).
Most notably, by means of immunohistochemistry (IHC),
Diestelhorst et al. noted a sharp decline (>50%) in intrahepatic
Tregs proportions, following IS in children with ATH. However,
it is unclear how this decline will affect long-term treatment
outcomes in these children. The same group also investigated
hepatic Treg homeostasis in adult ATH (20). There, they found
that following IS, hepatic Tregs were reduced, especially in
patients with incomplete remission (IR). Importantly, the
baseline (treatment naive) hepatic Treg proportions in these
IR patients were not lower compared to patients that would
become biochemical responders (BR) after IS. This demonstrates
that IR is not necessarily the consequence of any initial Treg
numerical impairment, at least when compared to the BR
patients. However, as they used IHC, further delineation of
Tregs subtypes was not possible. Our flow cytometric analysis
of intrahepatic Tregs demonstrated that the frequency of total
Tregs was indifferent compared to HCs and age-matched HTs.
Contrarily, naive (Sakaguchi type I Tregs (16)) Tregs were
higher in ATH livers only when compared to adult livers. Yet,
Sakaguchi type IT Tregs (16) (activated Tregs) were lower in ATH
compared to both HC/HT livers and expressed less CTLA-4.
This supports the notion that a detailed Tregs subgroup analysis
and selecting appropriate control groups are incumbent for a
valid comparison. Additionally, this is the first report of CTLA-4
expression on intrahepatic Tregs. Nonetheless, one recent paper
did report the intrahepatic CTLA-4 expression on total CD4 T
and CD8 T cells within the liver. The proportion of CTLA-4 was
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similar between normal livers and adult ATH livers, whether they
were under treatment or not (22).

Multiparametric flow cytometry also permitted us to
investigate unconventional T cells, such as MAIT cells. In
blood, the proportion of MAIT cells was lower at baseline and
did not recover after IS treatment in pediatric ATH. Hepatic
MAIT cell frequency was also low compared to HC. Similar
results were noted recently, by two unrelated investigations in
adult ATH patients (3, 23). Moreover, they found that these
MAIT cells expressed similar or higher levels of granzyme-B, but
similar proportions of IFN-y and TNF-o. were detected in
another study. In this study, CTLA-4 positivity was also higher
in MAIT cells. Combined, it was proposed that MAIT cells were
exhausted in AIH (24).

B cells, including memory and plasma cells, are involved in
ATH humoral immunity (9). In our study, systemic total B cell
frequency was similar at baseline and remained as such
following IS. In the liver, B cell proportions were higher in
AIH patients compared to controls. However, these samples
were from cross-sectionally assessed patients. It was not possible
to explore the role of IS on hepatic B cells. Nonetheless, several
groups clearly demonstrated that, by IHC, intrahepatic B cell
numbers and or proportions decline sharply following IS (10, 20,
22), which was even bigger compared to the CD4 and CDS8 cell
number reductions. This may cause to question of whether or
not B cells are incumbent as a “driver” in the pathogenesis of
AIH (25).

One of the novel findings of this study is the alteration in
Bregs in the periphery and the liver in ATH/AISC. They are
indispensable in the maintenance of tolerance and immune
homeostasis, despite representing fewer than 10% of total B
cells in the circulation in healthy individuals (26-29). Even
more, numerical and/or functional impairments in CD24
+CD38+ or CD24+CD27+ Bregs were also implicated in
autoimmunity (rheumatoid arthritis, psoriasis, systemic
sclerosis), viral infection (hepatitis B virus), and allergy
(allergic rhinitis) (30). The involvement of Bregs in AIH is
currently unknown (25). Nonetheless, in primary biliary
cholangitis (PBC), it was demonstrated that the frequency of
peripheral Bregs was significantly elevated in PBC patients
compared to HCs, advocating against a numerical impairment
(31). These Bregs expressed less T cell immunoglobulin mucin
domain-1 (Tim-1), which has immunoregulatory properties.
Previously, it was shown that a variant of it, Tim-3, was also
downregulated in T cells in AIH (32). In our study, the
proportion of peripheral Bregs at diagnosis demonstrated no
difference compared to HCs. The CTLA-4+ proportion within
Bregs was also unaltered. However, following the initiation of IS
treatment, Bregs’ proportion decreased sharply in the
prospective cohort and remained low in the longitudinal
cohort. Hence, Breg homeostasis is deranged. Peripheral
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paucity was also reflected in the liver. The frequency of hepatic
Bregs was lower compared to HC, HTs, and disease/treatment
controls. Actually, this is not the first report of peripheral Bregs
scarcity caused by IS treatment in AIH patients. Our group had
the unique opportunity to monitor a child with recent onset of
ATH who also developed COVID-19 disease (33). As we were
screening the immune system for potential changes owing to this
infection, we found that starting IS severely reduced Bregs in the
blood, which did not recover during the observation period. The
current investigation allowed us to confirm this phenomenon.
Another study found that recipients of allografts with plasma cell
hepatitis who received multiple IS also had significantly fewer
Bregs and IL-10+ B cells in their blood than HCs (29).
Furthermore, we also wondered whether a particular IS drug
was to blame for the Bregs decline. In our Tac treated
transplanted cohort, Bregs frequency was not much affected
compared to our healthy controls and disease control (DILI).
Our in vitro results did not particularly show a decline of Bregs
frequencies after IS incubation of healthy PBMCs. Actually, the
results from our in vitro data are in contradiction with our data
where treatment with IS clearly caused a drop in Breg
frequencies in all patients and at all time points. Bregs
(transitional B cells) continue their maturation process in the
secondary lymphoid organs such as the spleen and lymph nodes
(26, 27, 29, 30). Furthermore, the homing of B cells between
secondary lymphoid organs and (inflamed) tissues is regulated
by chemokine receptors such as CXCR5, CCR7, CXCR3, CCRI,
and CCRS5 (34). Similarly, another study about Bregs in plasma
cell hepatitis patients found that these cells express integrins
(CD11a, CD11b, a1, o4, and 1) (29). It is possible that the
expression of all these markers and thereby the homing capacity
of Bregs are affected by IS, potentially explaining why Bregs in
the blood almost disappeared. A recent study demonstrated that
BCR signaling was affected following 4 hours of in vitro
incubation with methylprednisolone (35). However, whether
this also affected homing markers on B cells/Bregs requires
further investigation. Additionally, we found that Tac and
6MP increased the frequency of IL-10+ B cells. Similar trends
were also noted in IL-10+ Bregs. Yet, the aforementioned study
also found that methylprednisolone stimulated the expression of
IL-10 mRNA in B cells (35). It seems that IS drugs have an effect
on B cell/Breg homeostasis and on their IL-10 production.
Lastly, we also found that not HLA-DR3, DR4, DR7, nor
DR13, but HLA-DRI11 is the most frequent allele in AIH
patients. These results are not compatible with earlier studies
in Caucasian AIH patients. However, this is not entirely
surprising as the ancestry of the current Turkish population
has roots mainly in central Asia. Yet, two Turkish studies
investigated the HLA-DRBI allele frequency in children or
adult ATH patients (36, 37). In adults, they found that 58% of
patients had DR4 with the DR3 frequency being similar to our
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population 29%. However, the study in children did find that
HLA-DR11 was one of the most common alleles. However,
mechanistically, it is still unknown why DR11 may be linked to
AIH in Turkish patients. One intriguing avenue of investigation
is computational modeling, which could shed light on HLA-
DR11 characteristics such as autoantigen binding capacity and
stability mediated by HLA-DM (38). For example, peptide
binding is regulated by the charge and the three-dimensional
structures of amino acids (AA) constituting the antigen-binding
pockets in the peptide binding groove. One such pocket is
formed by HLA-DRP chain AAs between positions 67 and 72.
These AA encode LLEQKR (DR3) and LLEQRR (DR4) motifs
(5, 39, 40). Indeed, we found that HLA-DRI11 expresses
FLEDRR, which is 100% similar to DR3/DR4 based on the
charge of the AAs. Additionally, the AA at position 71, lysine (K)
or arginine (R), is paramount in conferring susceptibility to ATH
as HLA-DRI15 (protective against AIH) differs at AA position 71
encoding alanine (uncharged) (41). HLA-DRI11 has also arginine
at position 71, potentially explaining why HLA-DRI1 is
prevalent in our ATH cohort.

There are also limitations in our study. The sample size of the
prospective ATH Group-1 is small owing to the fact that ATH is a
very rare disease. The serial assessment of AIH livers before and
during IS was not always possible because the initial diagnosis and
commencement of IS may have already started by the time
patients were referred to our tertiary center. Furthermore,
children donate a limited amount of blood. By virtue, functional
assays such as the baseline and/or in vitro IL-10 production in
Bregs and total B cells following IS could not be performed in
these patients alongside deep peripheral immune phenotyping.
Instead, we used age-matched HCs. Lastly, there are several Breg
populations such as CD20+CD24™CD27+ memory B cells and
CD20°"CD38+CD27"" plasmablasts among others (26). Their
individual susceptibility to IS is unknown, which is a matter for
further investigation. In adults, they found that 58% of
patientshad DR4 with the DR3 frequency being similar to our
population 29%. However, the study in children did find that
HLA-DRI11 was one of the most common alleles.

In conclusion, major findings in the peripheral blood of
naive AIH patients were: fewer activated Tregs and MAIT cells
with preserved Breg frequencies. Following IS, most cell
frequencies fluctuated, with total and naive Tregs decreasing
over time. Even more, the proportion of Bregs dropped sharply.
The paucity of Bregs was also observed in the livers. However, in
vitro IS did not affect the proportion of Bregs but increased IL-10
+ total B cells, instead. Importantly, the current findings of Bregs
scarcity need to be investigated to comprehend what the
potential clinical implications (good response to IS, survival,
and liver transplantation) are. Further research into the role of
DRII in AIH is also warranted in larger AIH cohorts that
include local health subjects.
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SUPPLEMENTARY FIGURE 1

Schematic overview of the different groups, time points, and tissues
assessed in this study (A) Shows the assessment time points for the
prospective cohort of naive AIH patients. (B) Shows the different groups
used as disease control, treatment control, or healthy control.

SUPPLEMENTARY FIGURE 2

Gating strategy for all immune cells and their subsets. This figure sets out
in detail all parent gates and used CD markers defining the mentioned
cells and their subsets, starting from FSC and SSC lymphocyte gating.
Specifically, we show gating for total B cells, total T cells, CD4 and CD8 T
cells, memory B cells and Bregs. Within the Bregs, we also gate for CTLA-
4. Furthermore, naive CD4 and CD8 T cells are shown. Both naive and
activated Tregs are gated as well with CTLA-4 gating for activated Tregs.
Activated Tregs are also gated for their CD25 expression. Lastly, the gating
strategy for NK and NKT cells as well as MAIT cells, are provided.

SUPPLEMENTARY FIGURE 3

Analysis of ratios of effector T cells to total Tregs. (A) Is a bar chart of the
ratio of effector T cells to total Tregs in healthy control and AlH patients
before or following treatment.

SUPPLEMENTARY FIGURE 4

Comparisons between autoimmune sclerosing cholangitis and patients
with autoimmune hepatitis (A) Is a bar chart of the frequency of peripheral
blood immune cells such as total T cells, total B cells, CD4 T cells, CD8 T
cells, naive (CD45RA+) CD4 and CD8 T cells, and memory B cells. (B)
Demonstrates the proportion of total, naive, and activated (with or
without CTLA-4) Tregs. (C) Provides frequencies of NK/NKT cells and
MAIT cells. (D) Is a bar chart of Bregs.

SUPPLEMENTARY FIGURE 5
Analysis of ratios of effector T cells to total Tregs in healthy livers, healthy
liver tissue, autoimmune sclerosing cholangitis, and patients with
autoimmune hepatitis. (A) Is a bar chart of the ratio of effector T cells to
total Tregs in the livers.

SUPPLEMENTARY FIGURE 6

Flow cytometry dot plots of total B cells and Bregs producing IL-10. (A, B)
demonstrates gating for total B cells and Bregs. (C, D) shows gating for B
cells and Bregs producing IL-10 in healthy controls under various in vitro
(immunosuppressive) conditions. (E, F) are FMOs for total B cells and
Bregs, respectively.

SUPPLEMENTARY FIGURE 7

Analysis of HLA-DRBL1 allele distribution. (A) Demonstrates the HLA-DRB1
allele frequency in AIH-1. (B) Demonstrates the HLA-DRB1 allele
frequency in AIH-2.
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