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Pilot genome-wide
association study of antibody
response to inactivated
SARS-CoV-2 vaccines
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Jia Li3, Sihong Xu2*, Yan Zhang1* and Zhihu Zhao1*

1Department of Protein Engineering, Beijing Institute of Biotechnology, Beijing, China, 2Division II of
In Vitro Diagnostics for Infectious Diseases, Institute for In Vitro Diagnostics Control, National
Institutes for Food and Drug Control, Beijing, China, 3Division of Arboviral Vaccine, National
Institutes for Food and Drug Control, Beijing, China
Vaccines are a key weapon against the COVID-19 pandemic caused by SARS-

CoV-2. However, there are inter-individual differences in immune response to

SARS-CoV-2 vaccines and genetic contributions to these differences have

barely been investigated. Here, we performed genome-wide association study

(GWAS) of antibody levels in 168 inactivated SARS-CoV-2 vaccine recipients. A

total of 177 SNPs, corresponding to 41 independent loci, were identified to be

associated with IgG, total antibodies or neutral antibodies. Specifically, the

rs4543780, the intronic variant of FAM89A gene, was associated with total

antibodies level and was annotated as a potential regulatory variant affecting

gene expression of FAM89A, a biomarker differentiating bacterial from viral

infections in febrile children. These findings might advance our knowledge of

the molecular mechanisms driving immunity to SARS-CoV-2 vaccine.
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Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by Severe Acute

Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). It was first discovered in 2019 (1–3)

and has spread worldwide thereafter, resulting more than 610 million infections and six

million deaths up to September 21, 2022 (https://covid19.who.int/). Therefore, the

development of safe and effective vaccines against SARS-CoV-2 has been urgently needed.

An inactivated vaccine is one that uses a killed pathogen to stimulate the immune

system to protect the body against infection, which has been successfully applied in

preventing diseases such as polio, hepatitis A, influenza, Japanese encephalitis and rabies

(4). Two kinds of inactivated SARS-CoV-2 vaccines, BBIBP-CorV and CoronaVac (5, 6),
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developed by Sinopharm-Bejing Institute of Biological Products

Co. and Sinovac Life Sciences respectively, have shown safety

and efficiency in clinical trials (7–10) and were granted for

emergency use by the World Health Organization. Antibodies

induced by vaccines play a key role in preventing disease, and

researches indicate that neutralizing antibody levels are highly

predictive of immune protection from symptomatic SARS-CoV-

2 infection (11). However, differential antibody response to

SARS-CoV-2 vaccines in healthy subjects is observed (12)

while the related factors remain to be defined.

Human genetic background has been suggested to

contribute to inter-individual difference in antibody response

to many vaccines (13, 14). For example, multiple studies revealed

HLA variants were associated with antibody response to

hepatitis B vaccine (15–18). CD46 and IFI44L genetic variants

were revealed to be associated with neutralizing antibody

response to measles vaccine (19). Common SNPs in IL18R1

and IL18 genes were associated with variations in humoral

immunity to smallpox vaccination in both Caucasians and

African Americans (20). In addition, recent studies suggested

that SNPs in the regulatory region of IGH gene were associated

with antibody levels in response to SARS-CoV-2 vaccine (21).

However, a genome-wide profiling of genetic variants associated

with the antibody levels induced by the SARS-CoV-2 vaccine is

still lacking.

Here, we performed genome-wide association study

(GWAS) of genetic variants associated with antibody levels

induced by inactivated SARS-CoV-2 vaccines. A total of 117

SNPs, corresponding to 41 independent loci, were identified to

be associated with IgG, total antibodies (Ab) or neutral

antibodies (NAbs) (P < 5e-7). Specifically, the rs4543780,

residing in the intron of FAM89A (Family With Sequence

Similarity 89 Member A) gene, which was associated with total

antibodies level (P = 2.86e-7), was annotated as a potential

regulatory variant affecting FAM89A gene expression. These

findings might advance our knowledge of the precise

mechanisms driving immunity to SARS-CoV-2 vaccine.
Materials and methods

Study participants

A total of 176 individuals who received two doses of SARS-

CoV-2 inactivated vaccine was recruited at Beijing, China

between February 24th and June 25th, 2021. The inactivated

vaccine was either BBIBP-CorV (Sinopharm and Bejing Institute

of Biological Products Co., Beijing, China) or CoronaVac

(Sinovac Life Sciences, Beijing, China). After removing close

related individuals and poor genotyped individuals based on

genome-wide genotyping data, 168 individuals were kept for

further analysis. Informed consent was obtained from all

vaccinated volunteers enrolled in studies at the Beijing BGI
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Clinical Laboratories. The Institutional Review Board (IRB) of

BGI-Shenzhen approved the serological and genomic

polymorphism analyses of samples collected by the

aforementioned institution under ethical clearance No. BGI-

IRB 20158.
Antibody level assay

Serum samples were collected between day 12 and day 141

after the second dose of vaccine to measure antibody levels.

IgG, IgA, IgM, total antibodies and neutralizing antibodies

against SARS-CoV-2 were detected using magnetic

chemiluminescence enzyme immunoassay kits (Bioscience),

according to the manufacturer’s instructions. Antibody levels

are presented as the measured chemiluminescence values

divided by the cutoff (absorbance/cutoff, S/CO). The cutoff

value of this test was defined by receiver operating

characteristic curves. An S/CO value higher than 1 was

regarded as positive.
Genotyping, imputation and
quality control

Genomic DNAs were extracted from 200uL of peripheral

whole blood, according to the manufacturer’s instructions

(CWBIO, Magbead Blood DNA Kit). The DNA concentration

was measured using Nanodrop, and the DNA degradation and

contamination were monitored in 1% agarose gels.

Genotyping was performed using the CBT_PMRA Array,

consisted of about 0.8 million SNPs, at CapitalBio Corporation

(Beijing, China). Two of 176 samples had low dish quality

control (DQC < 0.82) and were removed from further genotype

calling. Genotype callings were performed using Axiom

Analysis Suite 3.1.51 based on the default workflow. All the

174 individuals had genotype call rates > 90%. Seven

individuals showed sex discrepancies and were changed of

sex assignments to those imputed from X chromosome

inbreeding coefficients. Six individuals were excluded as they

were related with the other individuals based on pairwise

identity-by-state by “PI_HAT” values in PLINK 1.9 (PI_HAT

> 0.5 and between 0.25 and 0.5 indicates the first- and second-

degree relatives, respectively), leaving 168 individuals for

further analysis.

Imputation on the genotyping data of chromosomes 1-22

was performed using the ChinaMAP Imputation Server (http://

www.mbiobank.com/imputation/) (22), a genotype imputation

server utilizing the ChinaMAP reference panel constructed

from the China Metabolic Analytics Project (ChinaMAP)

WGS dataset. After imputation, the SNPs with R-squares

(R2) below 0.6 or minor allele frequencies (MAF) < 0.01 were

excluded. Further SNP quality controls filtered out SNPs that
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had call rates < 90%, deviated significantly from Hardy–

Weinberg equilibrium (HWE) (P < 1e-6) or MAF < 0.05.

Finally, a total of 5,089,908 SNPs passed quality controls.
Genome-wide association tests

Genetic association analysis was conducted using PLINK 1.9

software (23). As for IgG, Ab or NAbs levels, we carried out

genome-wide association tests in linear regression models. As

for IgA or IgM level, we categorized the antibody level as two

group: S/CO ≥ 1 as positive group and S/CO < 1 as negative

group, and carried out genome-wide association tests in logistic

regression models. Either linear regression or logistic regression

analysis adjusted for covariates including: age, gender, vaccine

type, time from the 2nd dose of immunization to blood draw,

and the top six principal components from PCA to correct for

population stratification. To display the association results,

Manhattan plots were constructed using the R-package qqman

(24). Quantile–quantile (Q-Q) plots of the observed -log10 (P)

against values predicted from the reference distribution under

the null hypothesis were constructed and values of lambda (l)
inflation factor were calculated to assess any inflation in the

levels of significance (25).
Annotation of significant SNPs

The position of significant SNPs relative to genes was

annotated by Ensembl Variant Effect Predictor (VEP) (26).

Regulatory potential of significant SNPs was prioritized using

RegulomeDB (27), a database that annotates SNPs based on

chromatin immunoprecipitation (ChIP)-seq, formaldehyde-

assisted isolation of regulatory elements (FAIRE), and DNase I

hypersensitive site data sets from the Encyclopedia of DNA

Elements (ENCODE) project (28). Regional plot of significant

SNPs were performed by LocusZoom (29).
Statistical analysis

The antibody levels in different vaccine type groups were

compared using Kruskal-Wallis rank sum test. Comparing

antibody levels between males and females was conducted

using Wilcoxon rank sum test with continuity correction.

Pearson correlation test was used to examine correlation of

levels of different antibodies, as well as correlation of

antibody levels with age and the interval from the 2nd dose

of vaccine to blood draw. P < 0.05 was considered as

statistically significant.

The currently accepted P-value threshold to declare a SNP to

be genome-wide significant is < 5e-8. Because our current study
Frontiers in Immunology
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is comprised of limited number of subjects, and because we plan

to identify more candidate SNPs to be further validated and

studied, we have chosen the less stringent, but still conservative

significance threshold of 5e-7 and considered variants with P >

5e-8 but < 5e-7 as suggestive evidence of association to be

highlighted in this report as well. Power analysis by Genetic

Power Calculator (30) indicated that for a variant with a MAF of

0.2 and a heritability of 2% and given type I error rate of 5e-7, the

sample size to achieve 80% power is at least 155.
Results

Demographic characteristics and
antibody levels

A total of 176 individuals who had received two doses of

inactivated SARS-CoV-2 vaccine participated in our study. After

removing close related individuals and poor genotyped

individuals based on genome-wide genotyping data, 168

individuals were kept for further analysis. Of these, 116 were

vaccinated two doses of CoronaVac vaccine, 50 were vaccinated

two doses of BBIBP-CorV vaccine and two were vaccinated one

dose of CoronaVac vaccine and one dose of BBIBP-CorV

vaccine (Figure 1A). Female individuals were slightly more

than male (58% vs. 42%) (Figure 1B). The majority of

individuals were young, with a median age of 31.5 years

(Figure 1C). The time from the second SARS-CoV-2

vaccination to blood draw was between 12 and 141 days, with

nearly half of individuals (41%) being 126 days (Figure 1D).

Consistent with previous reports (12, 31), the serum

antibody response to inactivated SARS-CoV-2 vaccines was

mainly IgG, with the median level of IgG being 6.13 while the

median levels of IgA and IgM being 0.20 and 0.56, respectively

(Figure 1E). In addition, 95% of individuals was positive of IgG

while only 5% and 38% of individuals was positive of IgA and

IgM, respectively (Figure 1F). As expected, the level of Ab was

positively correlated with levels of IgG, IgM and IgA (Figure

S1A). On the other hand, the level of NAbs was positively

correlated with level of IgG, suggesting that it was mainly IgG

contributing to neutralizing effect of antibodies against SARS-

CoV-2 (Figure S1A).

Differences of IgM and Ab levels were observed in different

vaccine type groups (P = 6e-5 and P = 2e-4, respectively), with

a higher level in BBIBP-CorV group than CoronaVac group,

while IgG, IgA and NAbs levels had no significant differences

among different vaccine type groups (P > 0.05) (Figure S1B).

Furthermore, sex and age had no significant effect on antibody

levels (Figures S1C, D). However, the time interval between the

2nd dose of immunization and blood draw was negatively

correlated the levels of IgG, IgM, IgA and Ab, suggesting that

the antibody levels might decline with time (Figure S1D).
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Genetic associations with
antibody responses

To characterize the genetic association with antibody

responses after SARS-CoV-2 inactivated vaccine immunization,

we performed genome-wide association study of IgG, Ab and

NAbs levels in linear regression models adjusting for covariates

including: age, gender and the top five principal components from

PCA. As for IgM and IgA, because their levels were low and a large

proportion of individuals were negative, we categorized the

individuals into positive group and negative group based on the

seropositivity, and carried out genome-wide association tests in

logistic regression models. Q-Q plots of the observed vs. expected

-log10(P) indicated that there was no severe inflation in these

statistical tests (Figure S2).

Analysis of the genome-wide association data identified a

total of 177 SNP associations with variations in antibody
Frontiers in Immunology 04
levels at P < 5e-7, corresponding 41 independent loci.

Among these associations, 12 SNPs, corresponding eight

independent loc i were as soc ia t ed wi th IgG leve l

(Figure 2A); 99 SNPs, corresponding 15 independent loci

were associated with total antibodies level (Figure 2B); 66

SNPs, corresponding 18 independent loci were associated

with neutralizing antibodies level (Figure 2C). The lead

independent SNPs were listed in Tables 1–3. No SNPs

were significantly associated with the seropositivity of IgM

or IgA (Figure S3).
Annotation of significant associated SNPs

Annotation of significant associated SNPs using Ensembl

Variant Effect Predictor (VEP) (26) revealed that the majority of

SNPs (86.49%) resided in the intron of genes and intergenic
B

C D

E F

A

FIGURE 1

Demographic characteristics and antibody levels of the 168 study subjects. (A) Vaccine type distribution; (B) Sex ratio; (C) Age distribution;
(D) Distribution of days between the 2nd dose and blood draw; (E) Level of IgG, IgM, IgA, total antibodies (Ab) and neutralizing antibodies (NAbs)
S/CO: sample/cutoff. (F) Percentage of positive individuals for IgG, IgM, IgA, Ab and NAbs.
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region, and none of SNPs resided in the exon of genes (Figure

S4), suggesting that these SNPs might function as regulatory

variants affecting gene expression. Thus, we prioritized the

regulatory potential of significant SNPs using RegulomeDB

(27), a database that annotates SNPs based on chromatin

immunoprecipitation (ChIP)-seq, formaldehyde-assisted
Frontiers in Immunology 05
isolation of regulatory elements (FAIRE), and DNase I

hypersensitive site data sets from the Encyclopedia of DNA

Elements (ENCODE) project (28).

Interestingly, rs4543780, an intronic SNP associated with

total antibodies level (P = 2.86e-7, Figure 3A and Table 2), was

ranked as 1f (Figure S5), which meant it was an eQTL and
TABLE 1 Lead independent SNPs associated with IgG level.

SNP Position Alleles(Ref/Alt) Gene Location Beta SE P

rs671398 2:219706616 A/G – intergenic 14.44 2.441 2.04E-08

rs12489684 3:67503800 C/T SUCLG2 intron 14.35 2.465 3.23E-08

rs77592003 11:121406910 G/A – intergenic 16.82 2.894 3.39E-08

rs4799419 18:36510951 A/T FHOD3 intron 13.94 2.539 1.59E-07

rs5994195 22:17197777 G/A ADA2 intron 14.7 2.679 1.62E-07

rs10906319 10:13178143 T/G MCM10 intron 10.58 1.956 2.37E-07

rs17072962 6:143713654 G/A PHACTR2 intron 11.61 2.184 3.64E-07

rs80147812 11:58956910 G/A GLYATL1 downstream 12.61 2.403 5.00E-07
frontie
B

C
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FIGURE 2

Manhattan plot summaries of GWAS results for antibody response. (A) Results for IgG level; (B) Results for Ab level; (C) Results for NAbs level.
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overlapped with transcription factor binding site or DNase

peak. Indeed, it resided in DNase peak (Figure 3B) and GTEx

data (32) showed that T allele of this variant was associated

with lower expression of FAM89A gene in brain and muscle

(Table 4), suggesting this variant might contribute to antibody

response through regulating FAM89A gene expression. In

addition, though the function of FAM89A gene has barely

been investigated, this gene has been found to be upregulated

in pathogen infections (33–35), indicating that it might be

involved in immune response.
Frontiers in Immunology 06
Discussion

In this study, we identified 177 SNPs, corresponding to 41

independent loci, that were associated with IgG, total antibodies

or neutral antibodies. Specifically, the intronic variant of

FAM89A gene, rs4543780, which was associated with total

antibodies level, was annotated as a potential regulatory

variant affecting FAM89A gene expression.

To the best of our knowledge, this is the first genome-wide

association study of antibody response to SARS-CoV-2 vaccine.
TABLE 3 Lead independent SNPs associated with NAbs level.

SNP Position Alleles(Ref/Alt) Gene Location Beta SE P

rs80339225 18:59276950 T/C RAX upstream 10.64 1.619 7.19E-10

rs13094466 3:59957291 G/T FHIT intron 8.506 1.303 9.02E-10

rs1921111 5:30870751 G/A – intergenic 10.64 1.719 5.12E-09

rs2178487 5:30843681 T/A – intergenic 8.025 1.301 5.78E-09

rs755295 16:27794997 C/T GSG1L intron 9.44 1.599 2.17E-08

rs12548840 8:99885580 C/T COX6C intron 6.115 1.051 3.31E-08

rs115391410 7:55046103 T/C EGFR intron 9.572 1.668 4.86E-08

rs4630823 20:56534912 A/G FAM209B intron 7.386 1.318 9.36E-08

rs13104003 4:32053616 C/T LINC02506 intron 7.726 1.405 1.54E-07

rs117761967 9:27576974 G/A C9orf72 upstream 8.651 1.582 1.77E-07

rs7146742 14:65566216 G/A FUT8 intron 5.177 0.9498 1.94E-07

rs3779197 7:98341212 C/T BAIAP2L1 intron 9.422 1.731 2.02E-07

rs76017198 5:84708147 C/T – intergenic 7.867 1.457 2.45E-07

rs4457720 11:106621114 G/A – intergenic 6.239 1.157 2.56E-07

rs75953002 17:33615673 G/A ASIC2 intron 8.387 1.585 4.08E-07

rs74609604 7:98178332 G/A LMTK2 intron 8.979 1.7 4.29E-07

rs10977830 9:9515044 T/C PTPRD intron 9.693 1.842 4.69E-07
frontie
TABLE 2 Lead independent SNPs associated with Ab level.

SNP Position Alleles(Ref/Alt) Gene Location Beta SE P

rs117838393 16:82339985 G/A – intergenic 12.35 1.91 1.20E-09

rs72737661 9:84688251 G/C NTRK2 intron 12.44 1.914 1.03E-09

rs146253416 19:1449555 G/A APC2 upstream 12.3 1.935 2.16E-09

rs149813122 19:17557558 C/T NIBAN3 downstream 12.17 1.943 3.48E-09

rs117838393 16:82339985 G/A – intergenic 11.04 1.818 9.22E-09

rs117118809 3:99677789 T/C COL8A1 intron 10.71 1.814 2.13E-08

rs718784 19:18047613 G/T RPS18P13 promoter 9.677 1.719 8.21E-08

rs180977908 12:116414208 T/G – intergenic 10.85 1.933 8.86E-08

rs12492145 3:191266812 G/C UTS2B downstream 10.58 1.905 1.19E-07

rs35463043 2:217021378 G/A IGFBP-AS1 intron 11.22 2.026 1.27E-07

rs72715264 9:28773701 A/T LINGO2 intron 11.05 2.019 1.71E-07

rs200076663 13:60294764 G/C – intergenic 9.647 1.778 2.16E-07

rs4543780 1:231038685 C/T FAM89A intron 9.113 1.698 2.86E-07

rs7269650 20:63071766 T/G LINC01749 intron 9.332 1.756 3.64E-07

rs10798156 1:188009513 C/A – intergenic 9.123 1.717 3.65E-07

rs117744190 20:34517105 C/G DYNLRB1 intron 11.35 2.151 4.35E-07
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B

A

FIGURE 3

Annotation of the significant association SNP rs4543780. (A) LocusZoom plot showed the P value of the SNPs centering the lead SNP
rs4543780, linkage disequilibrium degree, the recombination rate (top panel), SNP hits in GWAS catalogue (middle panel) and the genes in the
region (bottom panel). 1:231038685_C/T indicated rs4543780 residing in chr1: 231038685 with reference allele of C and alternative allele of T;
(B) DNase-seq peaks in the region of rs4543780 annotated by RegulomeDB. The yellow vertical line indicated the position of rs4543780.
TABLE 4 Association between rs4543780 and FAM89A gene expression revealed by GTEx (V8) eQTL data.

Tissue Gene Name SNP Effective allele Beta SE P value

Brain_Caudate_basal_ganglia FAM89A rs4543780 T -0.5751 0.0660 4.3255E-15

Brain_Nucleus_accumbens_basal_ganglia FAM89A rs4543780 T -0.6206 0.0718 5.0347E-15

Brain_Cortex FAM89A rs4543780 T -0.4653 0.0570 8.109E-14

Brain_Frontal_Cortex_BA9 FAM89A rs4543780 T -0.4634 0.0568 2.1099E-13

Brain_Anterior_cingulate_cortex_BA24 FAM89A rs4543780 T -0.4793 0.0617 2.7744E-12

Brain_Amygdala FAM89A rs4543780 T -0.5346 0.0738 8.0559E-11

Brain_Putamen_basal_ganglia FAM89A rs4543780 T -0.5169 0.0756 2.8562E-10

Brain_Hippocampus FAM89A rs4543780 T -0.4899 0.0814 1.8018E-8

Brain_Substantia_nigra FAM89A rs4543780 T -0.3855 0.0628 2.2684E-8

Brain_Hypothalamus FAM89A rs4543780 T -0.3122 0.0570 2.1706E-7

Brain_Cerebellar_Hemisphere FAM89A rs4543780 T -0.2178 0.0490 1.8106E-5

Muscle_Skeletal FAM89A rs4543780 T -0.1630 0.0401 5.3924E-5
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Previously there were two candidate gene studies. Ragone et al.

found HLA did not impact on short-medium-term antibody

response to Pfizer-BioNTech BNT162b2 vaccine, which was a

SARS-CoV-2 mRNA vaccine (36), though HLA variants have

been shown to be associated with antibody response to several

other pathogen vaccines (15–18, 37–39). Consistent of this

research, we did not found associations between HLA variants

and antibody response either. Another study by Colucci et al.

found associations between allelic variants of the human IgH 3’

regulatory region 1 and the immune response to BNT162b2

mRNA vaccine (21). However, these variants did not pass the

statistical threshold in our analysis, probably due to different

kinds of vaccines, as we only had inactivated COVID-19 vaccine

recipients available. On the other hand, our genome-wide

analysis newly identified 177 SNPs, corresponding to 41

independent loci, that were associated with IgG, total

antibodies or neutral antibodies.

Annotation of these significant associated SNPs revealed

that none of SNPs resided in the exon of genes, with the

majority of SNPs (86.49%) residing in the intron of genes and

intergenic region, suggesting that these SNPs might function as

regulatory SNPs of gene expression. Further annotation by

RegulomeDB (27) prioritized the intronic SNP of FAM89A

gene, rs4543780, as a potential regulatory SNP. This variant

was significantly associated with total antibodies level.

Moreover, ENCODE (28) data showed it resided in the open

chromatin region and GTEx (32) data showed it was associated

with FAM89A gene expression, suggesting that it might affect

antibody response by regulating FAM89A gene expression.

Though the function of FAM89A gene is not well studied,

researches indicated that FAM89A gene, together with IFI44L

gene, was capable of differentiating between bacterial and viral

infections with high sensibility and specificity (33–35),

suggesting that FAM89A gene might be involved in immune

response. However, FAM89A had elevated expression in the

blood of febrile children with bacterial infection rather than

viral infection, which seemed to conflict with FAM89A gene

being associated with antibody response to virus vaccines. One

possible reason for this discrepancy might be tissue-specific

gene expression regulation, as GTEx data showed rs4543780

was associated with FAM89A gene expression in brain and

muscle instead of blood.

In addition to FAM89A gene, a number of genes

implicated in COVID-19 and immune process were

identified to harbor polymorphisms associated with antibody

response to COVID-19 vaccines, such as ADA2 (Adenosine

Deaminase 2), COX6C (Cytochrome C Oxidase Subunit 6C),

FUT8 (Fucosyltransferase 8) and ASIC2 (Acid Sensing Ion

Channel Subunit 2).

ADA2 gene encodes a member of a subfamily of the

adenosine deaminase protein family that contributes to the

degradation of extracellular adenosine, a signaling molecule

that controls a variety of cellular responses. Serum increases of
Frontiers in Immunology 08
ADA2 activity has been described in patients with bacterial and

viral diseases (40, 41), including individuals with SARS-CoV-2

infection and who recovered from infection (42). The deficiency

of adenosine deaminase 2 (DADA2) is an autosomal recessively

inherited disease that undergoes immune dysregulation

including hypogammaglobulinemia, absent to low class-

switched memory B cells, and inadequate response to

vaccination (43). In our study, rs5994195 in the intron of

ADA2 was identified to be associated with IgG level of

COVID-19 vaccine immunization.

COX6C gene encodes component of the cytochrome c

oxidase, the last enzyme in the mitochondrial electron

transport chain which drives oxidative phosphorylation.

COX6C is differentially expressed in multiple myeloma (MM)

and is associated with MM prognosis (44). Multiple myeloma

(MM) is a malignant proliferation of plasma cells, with the

coexistence of a monoclonal component (M-component) plus

impairment of normal immunoglobulin production, which are

associated with increased risk of viral and bacterial infections

(45). MM patients with COVID-19 show a longer duration to

clinical improvement (46) and a higher risk of inpatient

mortality (47). Moreover, COX6C is downregulated in patients

with mild COVID-19 infection compared with controls but is

upregulated in patients with severe COVID-19 compared with

patients with mild illness (44). In our study, rs12548840 in the

intron of COX6C was identified to be associated with NAbs level

of COVID-19 vaccine immunization.

FUT8 gene encodes an enzyme belonging to the family

of fucosyltransferases. Core fucosylation of IgG B cell receptor

by FUT8 is required for antigen recognition and antibody

production (48, 49). In addition, genome-wide association

s tudy revea led mul t ip le SNPs in FUT8 gene had

strong influences on the IgG glycosylation patterns (50, 51).

In our study, rs7146742 in the intron of FUT8 was identified

to be as soc i a t ed wi th NAbs l eve l o f COVID-19

vaccine immunization.

ASIC2 gene, also known as ACCN1 (Amiloride-Sensitive

Cation Channel Neuronal 1), encodes the cation channel with

high affinity for sodium, which is gated by extracellular

protons and inhibited by the diuretic amiloride. The SNP

rs28936 located in the 3’ UTR of ASIC2 gene is significantly

associated with Multiple Sclerosis (MS) (52), an autoimmune

disease that your immune system mistakenly attacks cells in

the myelin and interrupts nerve signals from your brain to

other parts of your body. In addition, an increase of ASIC2

mRNA was observed in the human autoptic brain tissue of MS

patients and knockout of Asic2 resulted in a significant

reduction in the clinical score in experimental autoimmune

encephalomyelitis (EAE) mice model (53), highlighting

the involvement of ASIC2 in the immune progress.

In our study, rs75953002 in the intron of ASIC2 was

identified to be associated with NAbs level of COVID-19

vaccine immunization.
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The primary limitation of this study is the relatively small

sample size, which might result in limited statistical power and

excess false positive results. Besides, population stratification,

vaccine types and the time from immunization to antibody

detection could potentially bias the results. As conditions like

smoking, hypertension and type 2 diabetes are associated with

COVID-19 outcomes (54–56), and diseases such as

schizophrenia and Alzheimer’s disease tend to be post-COVID-

19 sequelae (57, 58), they may also be confounding factors for an

immune reaction to SARS-CoV-2 vaccination. Therefore, further

validation of our findings in a larger cohort will be needed.

In summary, we have identified a list of associated

genetic variants contributing to inter-individual variation in

antibody response after SARS-CoV-2 vaccination, which might

inspire further genetic association researches and contribute

to biological insights into vaccine response and better

vaccine development.
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SUPPLEMENTARY FIGURE 1

Correlation between demographic characteristics and antibody levels. (A)
Correlation between levels of different antibodies; (B) Antibody levels

among different vaccine types; (C) Antibody levels between males and
females. B: BBIBP-CorV, C: CoronaVac, BC: CoronaVac/BBIBP-CorV; (D)
Correlation of antibody levels with age and interval from the 2nd dose to

blood draw. * indicated P<0.05, ** ind icated P<0.01, ***
indicated P<0.001

SUPPLEMENTARY FIGURE 2

Q-Q plot plots of the expected (x-axis) and observed (y-axis) -log10 (P) in
SARS-CoC-2 vaccine response GWAS. (A) Results for IgG level; (B) Results
for Ab level; (C) Results for NAbs level; (D) Results for IgA positivity; (E)
Results for IgM positivity

SUPPLEMENTARY FIGURE 3

Manhattan plot summaries of GWAS results for IgA and IgM. (A) Results for
IgA positivity using logistic regression approach; (B) Results for IgM
positivity using logistic regression approach.

SUPPLEMENTARY FIGURE 4

Distribution of the relative position of significant SNPs to genes.

SUPPLEMENTARY FIGURE 5

Distribution of the ranks of significant SNPs obtained from RegulomeDB.
Red, green and blue indicated significant SNPs associated with Ab, IgG

and NAbs level, respectively. The detail meaning of the rank represent

could be found in the help page of RegulomeDB (https://regulome.
stanford.edu/regulome-help/)
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