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biomarkers for COVID-19-
related chronic urticaria
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1Department of Dermatology, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth
Hospital), Changsha, China, 2Department of Dermatology, Hunan Provincial People’s Hospital,
Changsha, China, 3Department of Dermatology, Maternal and Child Health Hospital of Hubei
Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
Background: A lot of studies have revealed that chronic urticaria (CU) is closely

linked with COVID-19. However, there is a lack of further study at the gene

level. This research is aimed to investigate the molecular mechanism of

COVID-19-related CU via bioinformatic ways.

Methods: The RNA expression profile datasets of CU (GSE72540) and COVID-

19 (GSE164805) were used for the training data and GSE57178 for the

verification data. After recognizing the shared differently expressed genes

(DEGs) of COVID-19 and CU, genes enrichment, WGCNA, PPI network, and

immune infiltration analyses were performed. In addition, machine learning

LASSO regression was employed to identify key genes from hub genes. Finally,

the networks, gene-TF-miRNA-lncRNA, and drug-gene, of key genes were

constructed, and RNA expression analysis was utilized for verification.

Results: We recognized 322 shared DEGs, and the functional analyses

displayed that they mainly participated in immunomodulation of COVID-19-

related CU. 9 hub genes (CD86, FCGR3A, AIF1, CD163, CCL4, TNF, CYBB,

MMP9, and CCL3) were explored through the WGCNA and PPI network.

Moreover, FCGR3A, TNF, and CCL3 were further identified as key genes via

LASSO regression analysis, and the ROC curves confirmed the dependability of

their diagnostic value. Furthermore, our results showed that the key genes

were significantly associated with the primary infiltration cells of CU and

COVID-19, such as mast cells and macrophages M0. In addition, the key

gene-TF-miRNA-lncRNA network was constructed, which contained 46

regulation axes. And most lncRNAs of the network were proved to be a

significant expression in CU. Finally, the key gene-drug interaction network,

including 84 possible therapeutical medicines, was developed, and their

protein-protein docking might make this prediction more feasible.
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Conclusions: To sum up, FCGR3A, TNF, and CCL3 might be potential

biomarkers for COVID-19-related CU, and the common pathways and

related molecules we explored in this study might provide new ideas for

further mechanistic research.
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Introduction

Chronic urticaria (CU), as one of the most common chronic

pruritus and immunological skin diseases in dermatology, and it is

manifested as wheal or angioedema occurring for more than six

weeks (1). Epidemiological studies reported that the global

prevalence of CU is about 1.4%, which has been rising in the

context of the COVID-19 pandemic (2, 3). Notably, CU exerts a

great impact on the life quality of adults, pediatric patients, and their

families. Recurrent pruritus and rash make CU patients vulnerable

to interruptions in work and daily life activities and sleep

disturbances (4). Furthermore, it has become a burden on the

utilization of health care resources and increased global costs (5).

However, the pathogenesis of CU has not been completely

understood, and there are few objective biomarkers. The

diagnosis of CU is primarily dependent on symptoms and the

history of the illness. Since it can be self-limited, patients’ symptoms

may disappear when they see a doctor. Thus, the disease could not

get an accurate assessment. Therefore, it is of great significance to

further explore the pathogenesis and identify key biomarkers of CU.

The etiology of CU is very complicated and not completely

disclosed. It is currently considered that the central pathogenesis

of CU is the degranulation of the mast cells activated by diverse

causes (6). For example, long-term exogenous physical

stimulation (such as pressure) can induce the occurrence of

urticaria (7). In addition, the endogenous causes of CU may be

more widespread, including chronic autoimmune diseases and

insidious chronic infections (e.g. as hepatitis virus, and human

herpesvirus-6) (8). According to the latest studies found that

COVID-19 could be associated with various immune diseases,

since SARS-CoV-2 causes a violent inflammatory response and

releases large amounts of cytokines (9). Notably, several studies

of COVID-19 hospitalization patients have indicated that

approximately 39.5% of patients present with different allergic

diseases, and the incidence of CU is 10%. Moreover, CU is one of

the skin disorders most severely affected by COVID-19, and it

severely impairs CU patient care (10, 11). Besides, what has

caused much concern is the adverse event in which CU occurs

secondary to the COVID-19 vaccine (12, 13). These suggest that

COVID-19 and CU are closely related, but hardly any further

genetic research exists.
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With the advancement of microarray technology,

bioinformatics, an interdisciplinary method, can enable

researchers to reveal the nosogenesis of the disease more

thoroughly from genetics (14). In the present research, we

applied the integrated bioinformatic approach to investigate

immune cells infiltration, reveal molecular regulatory

networks, and identify the shared key genes involved in the

pathogenesis of CU and COVID-19, which might provide new

perspectives for the biological mechanisms of COVID-19-

related CU.
Material and method

Datasets preparation

The analysis processes of this research are displayed in

Figure 1. GSE72540, GSE164805, and GSE57178 were

downloaded from the GEO website (https://www.ncbi.nlm.nih.

gov/geo/ ) (Table 1). GSE164805 consisted of 10 COVID-19

patients and 5 controls. We selected ten CU lesional skin tissues

and eight controls from 31 samples’ RNA expression profiling of

GSE72540, as well as six CU lesional skin tissues and seven

controls from 18 samples of GSE57178.
Identifying shared differently expressed
genes between COVID-19 and CU

The GEO2R tool, an online interactive tool to identify DEGs

by comparing two datasets in the GEO series (15), was used to

normalize, preprocess the data, and identify DEGs among the

patient sample and control. P-value <0.05 and |log2 FC| >1 were

considered as the DEGs. The common genes between COVID-

19 and CU were identified as the shared DEGs.
Genes enrichment analysis

Gene ontology (GO) annotation analysis (biological process,

cellular component, and molecular function) and KEGG
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https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2022.1054445
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.1054445
pathway enrichment analysis were executed via R’s cluster

profile package (16), and P-value <0.05 was the cut-off.
Weighted gene co-expression network
analysis analysis

The shared DEGs were performed further analyzed

by R package “WGCNA” to explore the gene modules

significantly related to disease (17). In a word, outlier
Frontiers in Immunology 03
samples were excluded by the hierarchical clustering

analysis at first. Next, the “pickSoftThreshold” in the

WGCNA package was adopted to select the appropriate

soft powers b (soft power = 2). An adjacency matrix was

generated and then converted to a topological overlap

matrix (TOM). Based on the differential TOM measures,

the genes of similar expression patterns were classified into

different modules via average l inkage hierarchical

clustering. Finally, the relevance between the modules and

clinical features was computed.
FIGURE 1

The analysis processes.
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Protein-protein interaction network
analysis

The STRING tool, a database for customizing protein-

protein networks and finding functional characterization of

gene sets (18), was used to explore protein-protein interaction

(PPI) networks of the correlated modules genes of WGCNA, and

it was visualized via the Cytoscape. Furthermore, the module

analysis of the PPI network was performed using MCODE

plug-in.
Identification and enrichment analysis of
hub genes

The hub gene was identified through four algorithms

(maximal clique centrality (MCC), maximum neighborhood

component (MNC), Degree, and edge percolated component)

(EPC)) of the cytoHubba plug-in of Cytoscape (19). Further

genes enrichment analysis of hub genes was accomplished via

ClueGO plug-in.
Recognition of key genes through
machine learning and ROC curve
analyses

In order to further filter candidate genes for CU diagnosis,

we used a machine learning algorithm to perform LASSO

regression. In short, we integrated clinical features and gene

expression data to conduct LASSO regression analysis via the

“glmnet” R package (20). ROC curve was applied to analyze the
Frontiers in Immunology 04
robustness of the diagnosis of the key genes. Besides, the

GSE57178 was used for the validation set.
Immune infiltration analysis

The immune infiltration analysis was performed by using

CIBERSORT tool, a deconvolution algorithm by evaluating the

expression of related genes based on gene expression (21), to

calculate the ratio of twenty-two infiltrating lymphocyte subsets

in CU and COVID-19 samples. The correlations between each

immune cell and among immune cells and hub genes were

calculated using GraphPad Prism (version 8.0.2) (22).
Construction of gene- transcription
factor -miRNA-lncRNA network of the
key genes

In order to understand the molecular mechanism of disease, we

constructed a gene-TF-miRNA-lncRNA network. Firstly, the

TRRUST database, a manually curated database of human and

mouse transcriptional regulatory networks (23), was first used to

predict the TFs interacting with the key genes. Next, the tools (24,

25), online databases of prediction of RNA interactomes, including

PITA, miRmap, microT, miRanda, PicTar, and TargetScan, were

applied to explore the interaction of TF-miRNA. If it was

recognized to be uniform in all the tools, it was considered valid.

Then, the interaction of miRNA-lncRNA was identified via the

databases (miRNet (26), starbase (27), and lncbasev3 (28)), and if it

was recognized uniformity in all the tools, it was considered valid.

The Cytoscape tool, an open source software platform for

visualizing complex networks, was used for data visualization.
TABLE 1 Details of the RNA expression profile datasets.

Dataset Platform PMID Whole samples (selected subjects,
CU or COVID-19/Control)

Sample
type

Gender Age

(female/
male)

(mean ± SD)

GSE72540 GPL16699 28407332 31 (18,10/8) Skin
tissue

19/11 43.5 ± 17.38

Agilent-085982 Arraystar human lncRNA V5
microarray

GSE164805 GPL6244 33679778 15 (15,10/5) PBMCs 2/13 56.4 ± 7.54

Agilent-039494 SurePrint G3 Human GE v2 8x60K
Microarray 039381 (Feature Number version)

GSE57178 GPL26963 26302730 18 (13,6/7) Skin
tissue

11/3 43.5 ± 12.95

[HuGene-1_0-st] Affymetrix Human Gene 1.0 ST
Array [transcript (gene) version]
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Drug–Gene interaction and protein-
protein docking analyses

The DGIdb tool (Drug-Gene Interaction database) (29) was

used to investigate drug-gene interaction so as to identify drugs

associated with the key genes. Besides, the interaction network

was visualized via Cytoscape. Protein-protein docking was

conducted by Cluspro 2.0 (https://cluspro.bu.edu/login.php )

(30), and the visualization of docked complexes was

performed through the PyMOL software which was a cross-

platform molecular graphics tool (31).
Statistic analysis

The data of the two groups was analyzed with the unpaired

Student’s t-test via the GraphPad Prism (version 8.0.2), and P-

value <0.05 was considered to be statistically significant.
Result

Recognition of shared DEGs between
COVID-19 and CU

Figures 2A, B show that the expression profile datasets,

GSE72540 and GSE164805, were normalized, and their

volcano plots are presented in Figures 2C, D. We identified

1033 differently expressed mRNAs (DEmRNAs) in GSE72540

and 6705 DEmRNAs in GSE164805. The heat maps of their top

100 DEmRNAs are shown in Figures 2E, F. We recognized 322

shared DEGs between CU and COVID-19 via integrated

bioinformatics analysis in Figure 2G and Table S1.
Function annotation analyses of the
shared DEGs

The function annotation analyses of shared DEGs were

performed to reveal the common biology functions between

COVID-19 and CU (Table 2). As shown in Figure 3A, in the

biological process, the main shared DEGs were involved into

skin development, epidermal cell differentiation, leukocyte

chemotaxis, mononuclear cell migration, etc. It can be seen

from Figure 3B that in the cellular component, most of the

shared DEGs participated in the cornified envelope, secretory

granule lumen, cytoplasmic vesicle lumen, vesicle lumen, etc. As

shown in Figure 3C, in the molecular function, the majority of

shared DEGs were joined in cytokine activity, receptor-ligand

activity, chemokine activity, immune receptor activity, etc. It can

be observed from Figure 3D that in the pathway enrichment, the

main shared DEGs were involved in Toll-like receptor signaling

pathway, chemokine signaling pathway, IL-17 signaling
Frontiers in Immunology 05
pathway, viral protein interaction with cytokine and cytokine

receptor, etc.
Identification of the disease-related
key module

The WGCNA was utilized to recognize the most correlated

module in CU. There were five gene modules (brown, blue,

turquoise, green and yellow modules) depicted by the dynamic

tree cut algorithm (Figure 4A), and their associations are shown

in Figure 4B. The brown, blue, and turquoise modules seemed to

be positively correlated with CU, and the green and yellow

modules seemed to be negatively correlated with it (Figure 4C).

The association between the color module and gene significance

was discerned via in-depth calculation. The correlation between

green module and gene significance was 0.85 (P-value = 1.7E-3)

(Figure 4D), the blue module was 0.40 (P-value = 2.0E-3)

(Figure 4E), and the yellow module was 0.66 (P-value = 0.03)

(Figure 4F). Therefore, the green, blue and yellow modules were

identified as the key modules (78 module genes in Table S2).
PPI network and hub genes analyses

In general, genes are not isolated, and the proteins they encode

could interact with each other. In order to explore the interaction

relationship of proteins, we built a PPI network of genes of the key

modules identified via WGCNA according to the STRING tool.

There were a total of 54 nodes and 168 edges in the network

(Figure 5A). Moreover, the top 30 genes of the most connexity in

PPI network are displayed in Figure 5B. The top 2 modules were

selected. One had nine nodes and 36 edges (Figure 5C), whereas

another had seven nodes and 13 edges (Figure 5D). We screened

the top 10 hub genes by four algorithms of cytoHubba plug-in.

Through integrated bioinformatics analysis, 9 common hub genes

were identified, containing CD86, FCGR3A, AIF1, CD163, CCL4,

TNF, CYBB, MMP9, and CCL3 (Figures 6A, B and Table 3). And

then, we further explored the roles of the hub genes by the plug-in

of Cytoscape. As shown in Figure 6C, they remained to be involved

in immunomodulation containing regulation of mononuclear cell

migration, regulation of type 2 immune response, and positive

regulation of mononuclear cell migration. Meanwhile, viral protein

interaction with cytokine and cytokine receptor, Toll-like receptor

signaling pathway, and IL-17 signaling pathway still were the main

pathway that they enriched in (Figure 6D).
Identification of the key genes

In order to further screen reliable biomarkers, we performed the

machine learning LASSO regression analysis. The Lambda value was

set as 0.235847686271105, and then 3 genes were identified:
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FCGR3A, CCL3, and TNF. The model formula was as follows:

RiskScore=0.21932308885497*TNF+0.0191859986231764*FCGR3A

+0.0253400198744963*CCL3 (Figures 7A, B). In order to assess the

diagnostic specificity and sensitivity of each gene, we established a

ROC curve. The results in the train set GSE72540 were as follows:

FCGR3A (area under the curve (AUC) 0.9625, P-value =0.0010),
Frontiers in Immunology 06
TNF (AUC 0.9375, P-value =0.0019) and CCL3 (AUC 0.9375, P-

value = 0.0019) (Figures 7C); Additionally, they were in validation set

GSE57178 as FCGR3A (AUC 0.9524, P-value = 0.0066), TNF (AUC

0.7857, P-value =0.0865) and CCL3 (AUC 0.9048, P-value =0.0152)

(Figures 7D). These indicated that FCGR3A, TNF, and CCL3 might

be the key genes of COVID-19-related CU.
B

C D

E F

G

A

FIGURE 2

Recognition of shared DEGs between COVID-19 and CU. (A) Data standardization of GSE72540. (B) Data standardization of GSE164805. (C) The
volcano plot of GSE72540. (D) The volcano map of GSE164805. (E) The heat map of the top 100 DEmRNAs of GSE72540. (F) The heat map of
the top 100 DEmRNAs of GSE164805. (G) The shared DEGs between COVID-19 and CU by overlapping DEmRNAs.
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Immune infiltration analysis

The CIBERSORT algorithm was applied to investigate the

panorama of immune infiltration of CU and COVID-19. The

proportion of 22 immune cells of CU and COVID-19 is

displayed in Figures 8A, B. As shown in Figure 8C, relevance

analysis between each of the immune cells of CU suggested that

mast cells activated were significantly correlated with dendritic cells
Frontiers in Immunology 07
activated, eosinophils, etc. As shown in Figure 8D, the macrophages

M0 were significantly related to T cells CD8, B cells memory, B cells

naive, etc. in COVID-19. As presented in Figure 8E, compared to

the control sample, CU displayed a higher proportion of mast cells

activated but a lower proportion of plasma cells and B cells

memory. Compared to the control sample, COVID-19 had a

lower ratio of T cells CD8 but a higher ratio of mast cells resting,

T cells CD4 memory resting, macrophages M0, and dendritic cells
TABLE 2 The top 10 items of genes enrichment of the shared DEGs.

Category Description Count P value

GO BP GO:0043588 skin development 32 4.08839E-13

GO BP GO:0008544 epidermis development 33 1.79E-12

GO BP GO:0030216 keratinocyte differentiation 25 2.97E-11

GO BP GO:0009913 epidermal cell differentiation 26 2.43E-10

GO BP GO:0031424 keratinization 19 4.35E-09

GO BP GO:0030595 leukocyte chemotaxis 18 4.17E-08

GO BP GO:0032651 regulation of interleukin-1 beta production 12 5.00E-08

GO BP GO:0071674 mononuclear cell migration 12 5.00E-08

GO BP GO:0002573 myeloid leukocyte differentiation 17 5.38E-08

GO BP GO:0002548 monocyte chemotaxis 10 1.09E-07

GO CC GO:0001533 cornified envelope 8 4.60E-07

GO CC GO:0034774 secretory granule lumen 19 9.79E-07

GO CC GO:0060205 cytoplasmic vesicle lumen 19 1.18E-06

GO CC GO:0031983 vesicle lumen 19 1.29E-06

GO CC GO:0045095 keratin filament 9 1.95E-05

GO CC GO:0009897 external side of plasma membrane 18 0.000123568

GO CC GO:0101002 ficolin-1-rich granule 9 0.000158105

GO CC GO:1904813 ficolin-1-rich granule lumen 9 0.000158105

GO CC GO:0005882 intermediate filament 12 0.000167914

GO CC GO:0045111 intermediate filament cytoskeleton 13 0.000190355

GO MF GO:0005125 cytokine activity 17 3.81E-07

GO MF GO:0048018 receptor ligand activity 23 6.37E-06

GO MF GO:0030546 signaling receptor activator activity 23 7.52E-06

GO MF GO:0008009 chemokine activity 7 1.45E-05

GO MF GO:0002020 protease binding 11 1.68E-05

GO MF GO:0140375 immune receptor activity 10 8.07E-05

GO MF GO:0048020 CCR chemokine receptor binding 6 0.00011503

GO MF GO:0042379 chemokine receptor binding 7 0.00015055

GO MF GO:0004875 complement receptor activity 3 0.000869415

GO MF GO:0016810 hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds 8 0.000884219

KEGG pathway hsa04061 Viral protein interaction with cytokine and cytokine receptor 12 3.30E-07

KEGG pathway hsa05205 Proteoglycans in cancer 15 6.71E-06

KEGG pathway hsa04060 Cytokine-cytokine receptor interaction 16 0.00013151

KEGG pathway hsa05132 Salmonella infection 14 0.000243067

KEGG pathway hsa04620 Toll-like receptor signaling pathway 8 0.000741709

KEGG pathway hsa04657 IL-17 signaling pathway 7 0.001918461

KEGG pathway hsa05150 Staphylococcus aureus infection 7 0.002165232

KEGG pathway hsa04621 NOD-like receptor signaling pathway 10 0.002451624

KEGG pathway hsa04062 Chemokine signaling pathway 10 0.003336712

KEGG pathway hsa05202 Transcriptional misregulation in cancer 10 0.003463257
fro
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resting (Figure 8F). In addition, Pearson’s correlation coefficient

was applied to reveal the relation between the abundance of the

immune cells and key genes. As shown in Figure 9A, in CU, CCL3

was statistically positively related to mast cells activated, monocytes

and eosinophils but negatively to macrophages M0. And TNF was

statistically positively related to mast cells activated and monocytes

but negatively to plasma cells. Besides, FCGR3A was statistically

positively related to monocytes but negatively to macrophages M0

and plasma cells. As shown in Figure 9B, in COVID-19, CCL3 was

statistically positively associated with T cells CD8 but negatively

with mast cells resting and macrophages M0. TNF was statistically

positively related to macrophages M0 but negatively to T cells CD8

and NK cells activated. FCGR3A was statistically positively

associated with T cells CD4 memory resting and macrophages

M0 but negatively with T cells CD8 and NK cells activated.
Construction of gene-TF- miRNA-
lncRNA network of the key genes

The TRRUST tool was applied to predict the TFs interacting

with the 3 key genes, and TFs-genes regulatory network was

visualized via Cytoscape and displayed in Figure 10A, which

contained 22 TFs, 24 nodes, and 25 edges. Subsequently, 6

databases were used to predict the interaction of miRNAs and
Frontiers in Immunology 08
the 22 TFs. Then 3 databases were used to predict the interaction

of lncRNAs and miRNAs targeting the TFs. We explored a TFs-

miRNA-lncRNA ceRNA network, containing 39 nodes and 55

edges (Figure 10B). Based on integrated bioinformatics analysis,

we finally get a key gene-TF- miRNA-lncRNA network

including 46 molecular regulation axes such as CCL3/E2F1/

hsa-miR-106a-5p/H19, CCL3/E2F1/hsa-miR-106a-5p/H19,

CCL3/E2F1/hsa-miR-205-5p/MALAT1, etc (Figure 10C). In

order to verify the reliability of the network, the expressions of

lncRNAs of network in CU (GSE72540) are shown

in Figure 10D.
INFLIXIMAB might be the potential
treatment drug for COVID-19-related CU

In order to provide a specific therapeutic drug for COVID-

19-related CU, we developed a drug-gene interaction network of

the key genes via the DGIdb tool. As presented in Figure 11A

and Table S3, 87 different possible drugs were identified, and

only INFLIXIMAB can target all key genes simultaneously.

Then, we predicted their molecular binding site, and the

binding mode of CCL3 with INFLIXIMAB is displayed in

Figure 11B, TNF with INFLIXIMAB in Figure 11C, and

FCGR3A with INFLIXIMAB in Figure 11D.
B

C D

A

FIGURE 3

Function annotation analyses of the shared DEGs. (A) The top 10 items of GO biological process. (B) The top 10 items of GO cellular
component. (C) The top 10 items of GO molecular function. (D) The top 10 signal pathways of KEGG.
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Discussion

Since December 2019, COVID-19, which is caused by

SARS-CoV-2, has been spreading worldwide, posing a

burden to the global medical system and almost affecting

people all over the world (32). In addition to common

respiratory symptoms and fever, many COVID-19 patients

also behave various rashes (33). Wheal accounts for about 10%

of the COVID-19-related skin lesions, and it could develop CU

if the course of the disease lasts for more than six weeks (11).

And epidemiological studies do report incidence of CU is

higher than before the pandemic (2, 34). In addition, CU

could be one of the cutaneous adverse reactions following

COVID-19 vaccinations (35). The molecular biological

mechanisms underlying these, however, remain unknown.

Consequently, our research is aimed to describe the possible

genetic relation of the two illnesses to further reveal the

pathogeny of COVID-19-related CU.
Frontiers in Immunology 09
In this study, we identified 1033 DEmRNAs of CU and 6705

DEmRNAs of COVID-19. And then, based on cross analysis, 322

shared DEGs between COVID-19 and CU were identified and

executed to function annotation. Our results suggested that the

shared DEGs were mainly enriched in skin development (e.g.

epidermal cell differentiation and keratinocyte differentiation) and

immune cell regulation, especially innate immune cells regulation

(such as leukocyte chemotaxis, andmonocyte chemotaxis, etc.). In

addition, the shared DEGs were mostly enriched in immune-

related signaling pathways according to KEGG, such as Toll-like

receptor signaling pathway, cytokine receptor, IL-17 signaling

pathway, and viral protein interaction with cytokine. Most of

the above results were commonly accepted compositional

elements of the development of CU and COVID-19 (36, 37).

The research reported that monocytes and their subsets are the

key sensors of and responders to Toll-like receptor-mediated

inflammation, especially after viral infection. Apart from that,

classical monocytes may play a central role in severe COVID-19
B

C D

E F
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FIGURE 4

WGCNA analysis. (A) Gene clustering dendrogram. (B) Heatmap of the association among modules. (C) Module-trait relationships heatmap. (D)
Correlation chart between gene members of the green module and gene significance. (E) Correlation chart between gene members of the blue
module and gene significance. (F) Correlation chart between gene members of the yellow module and gene significance.
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(38). In addition, the researchers found that in CU, Toll-like

receptors agonists could induce the expression of TFs of

monocytes, and the TFs increased vascular permeability in a

histamine-independent way, leading to the formation of a wheal

(39). In some way, these results may hint that the shared DEGs

could play a role in the immunoregulation of CU and COVID-19.

Through WGCNA analysis, we recognized three disease-

related key modules (green, blue, and yellow). Further,

based on PPI analysis, 9 hub genes were identified from

the key module genes, including CD86, CD163, FCGR3A, AIF1,

TNF, CYBB, MMP9, CCL4, and CCL3. They are the familiar

immunoregulatory cytokines, but it has not been reported that

most of them could link CU with COVID-19. Thus, this might be a

new finding. The result of another genes enrichment analysis

indicated that the hub genes still were involved in immune cell

regulation, containing positive regulation of mononuclear cell

migration, regulation of type 2 immune response, etc. Moreover,

the primary signaling pathway they enriched in still were viral

protein interaction with cytokine and Toll-like receptor signaling

pathway. That is to say, the hub genes we identified can be
Frontiers in Immunology 10
representative of the shared DEGs. In order to improve and

simplify the efficacy of prediction and diagnosis of CU, especially

COVID-19-related CU, we identified three key genes (FCGR3A,

CCL3, and TNF) from hub genes by the machine learning LASSO

regression analysis. The reliability of their diagnostic value was

verified by ROC curve analysis, suggesting that they could be

potential diagnostic biomarkers for COVID-19-related CU.

In order to further understand the immune dysregulation of

COVID-19-related CU, we performed the immune infiltration.

Many researchers emphasized that mast cell degranulation

played a crucial part in the development of CU (40). And it

draws increasing attention that monocytes and monocyte-

derived cells (macrophages and dendritic cells) are involved in

the immunopathology of COVID-19 and may play essential

roles in determining disease severity (41). These were further

confirmed in our study. We found that compared with the

healthy control sample, CU had a higher proportion of mast cells

activated, as well as COVID-19 had a higher ratio of

macrophages M0, dendritic cells resting, and mast cells resting.

Furthermore, mast cells activated were significantly correlated
B

C D

A

FIGURE 5

PPI network analysis. (A) The PPI network of genes of the key modules identified via WGCNA, and the bigger sizes of edges mean the higher
degree. (B) The top 30 genes of the most connexity in the PPI network. (C) The first module of the PPI network. (D) The second module of the
PPI network.
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with dendritic cells activated in the CU. Therefore, it could be

observed that the high proportion of central immune cells (like

mast cells), and the statistical correlation among them, might be

a novel perspective for the cellular basis of the development of

COVID-19-related CU. Our research further displayed that all

the key genes (CCL3, TNF, and FCGR3A) were statistically

related to central infiltration cells (e.g. mast cells and

macrophages M0) in CU and COVID-19. TNF and CCL3 are

famous cytokines and broadly take part in regulating many
Frontiers in Immunology 11
immune cells and developing inflammatory and allergic diseases.

According to the research, TNF and CCL3 could mediate the

inhibition of human intestinal mast cell activation by resveratrol

(42). Additionally, CCL3 and TNF were found to increase in

critically ill patients with COVID-19 and related to increased

morbidity and mortality (43). Moreover, the researchers found

that FCGR3A is mainly expressed on immune cells (like NK

cells) and also correlated with the severity of COVID-19 (44).

Therefore, summing up the above, it would be concluded that
B

C D

A

FIGURE 6

Hub genes analyses. (A, B) 9 common hub genes were identified by four algorithms of cytoHubba plug-in. (C) The biological process of hub
genes via the ClueGO. (D) The KEGG of hub genes via the ClueGO.
TABLE 3 The hub genes.

Genes Description Degree MCC MNC EPC LogFC (CU)

CD86 CD86 molecule 15 41482 15 19.949 -3.72980534

TNF tumor necrosis factor 26 37 24 21.332 1.26641463

FCGR3A Fc fragment of IgG, low affinity IIIa, receptor (CD16a) 16 41476 14 19.768 1.17112479

AIF1 allograft inflammatory factor 1 15 41408 15 19.973 1.02984314

CD163 CD163 molecule 15 41367 14 19.833 1.59973902

CCL4 chemokine (C-C motif) ligand 4 13 41282 13 19.664 2.27644849

CYBB cytochrome b-245, beta polypeptide 12 41089 11 18.393 1.35127257

MMP9 matrix metallopeptidase 9 20 40978 20 20.892 1.00235674

CCL3 chemokine (C-C motif) ligand 3 12 40704 12 19.863 3.18748669
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1054445
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.1054445
the key genes (FCGR3A, CCL3 and TNF) we identified could be

potential immunomodulation pivots for COVID-19-related CU.

Furthermore, to more systematically understand the

modulatory interaction of molecules of COVID-19-related CU,

we constructed a key gene-TF-miRNA-lncRNA network. There

were 46 regulation axes in the network like CCL3/E2F1/hsa-

miR-106a-5p/H19, CCL3/E2F1/hsa-miR-205-5p/MALAT1,

CCL3/E2F1/hsa-miR-106a-5p/H19, etc. Studies indicated that

although the non-coding RNA could not encode proteins, it was

found to participate in regulating the pathogenesis of many skin

diseases containing CU (45). Most lncRNAs of the network were

proved to be a significant expression in CU, making the network

more reliable. Hence, our result may be helpful to understand

the molecular mechanism of COVID-19-related CU. Finally, we
Frontiers in Immunology 12
further identified 87 potential therapeutic drugs for key genes,

and there was only one drug, INFLIXIMAB, that could target all

key genes. INFLIXIMAB is a drug of great research value. It has

been verified to apply for the treatment of immune diseases like

ulcerative colitis by several international drug agencies, and the

phase II clinical study that patients with severe COVID-19 were

treated with INFLIXIMAB was also in progress (46, 47).

Therefore, INFLIXIMAB could also be a potential treatment

strategy for COVID-19-related CU, and protein-protein docking

displayed the exact binding mode, making it more realizable.

However, there was a limitation in our study, which the

identified biomarkers were only verified at a theoretical level. But

the following experiments in vivo and in vitro will be the focus of

our study in the future.
B
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FIGURE 7

Identification of the key genes. (A, B) Further screening of hub genes by machine learning LASSO regression, CCL3, TNF, and FCGR3A, were
identified as key genes. (C) ROC curves of CCL3, TNF, and FCGR3A in the training set (GSE72540). (D) ROC curves of CCL3, TNF, and FCGR3A
in the verification set (GSE57178).
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FIGURE 8

Immune infiltration analysis. (A) The ratio of 22 immune cells in CU samples. (B) The ratio of 22 immune cells in COVID-19 samples. (C) The
association among immune cells of CU. (D) The association among immune cells of COVID-19. (E) The proportion of immune cells in CU and
control. (F) The proportion of immune cells in COVID-19 and control. *p < 0.05; **p < 0.01; ***p < 0.001.
B

A

FIGURE 9

The association between key genes and immune cells. (A) CCL3, TNF, and FCGR3A were significantly associated with the primary infiltration
cells of CU. (B) CCL3, TNF, and FCGR3A were significantly associated with the main infiltration cells of COVID-19.
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FIGURE 10

Construction of gene-TF- miRNA-lncRNA network of the key genes. (A) The key genes-TFs interaction network. (B) The TF-miRNA-lncRNA
ceRNA network. (C) The key gene-TF-miRNA-lncRNA network. (D) The expression of the lncRNAs of the network in CU (GSE57178). *p < 0.05;
**p < 0.01; ***p < 0.001.
B C D

A

FIGURE 11

Construction of drug-gene interaction network. (A) The interaction between key genes and 87 potential drugs. (B) Protein-protein docking of
CCL3 and INFLIXIMAB. (C) Protein-protein docking of TNF and INFLIXIMAB. (D) Protein-protein docking of FCGR3A and INFLIXIMAB.
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Conclusion

Through bioinformatic means, FCGR3A, TNF, and CCL3

were identified as the key genes. In COVID-19-related CU, they

are mainly involved in the immunomodulation function,

significantly associated with the central infiltration cells, and

have statistical diagnostic value, indicating that they might be

potential biomarkers for COVID-19-related CU. Overall, our

research might provide new ideas for further mechanistic studies.
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40. Giménez-Arnau AM, DeMontojoye L, Asero R, Cugno M, Kulthanan K,
Yanase Y, et al. The pathogenesis of chronic spontaneous urticaria: The role of
infiltrating cells. J Allergy Clin Immunol In practice. (2021) 9(6):2195–208.
doi: 10.1016/j.jaip.2021.03.033

41. Jafarzadeh A, Chauhan P, Saha B, Jafarzadeh S, Nemati M. Contribution of
monocytes and macrophages to the local tissue inflammation and cytokine storm
in COVID-19: Lessons from SARS and MERS, and potential therapeutic
interventions. Life Sci (2020) 257:118102. doi: 10.1016/j.lfs.2020.118102

42. Bilotta S, Paruchuru LB, Feilhauer K, Köninger J, Lorentz A. Resveratrol is a
natural inhibitor of human intestinal mast cell activation and phosphorylation of
mitochondrial ERK1/2 and STAT3. Int J Mol Sci (2021) 22(14):7640. doi: 10.3390/
ijms22147640

43. Tufa A, Gebremariam TH, Manyazewal T, Getinet T, Webb DL, Hellström
PM, et al. Inflammatory mediators profile in patients hospitalized with COVID-19:
A comparative study. Front Immunol (2022) 13:964179. doi: 10.3389/
fimmu.2022.964179

44. Chakraborty S, Gonzalez J, Edwards K, Mallajosyula V, Buzzanco AS,
Sherwood R, et al. Proinflammatory IgG fc structures in patients with severe
COVID-19. Nat Immunol (2021) 22(1):67–73. doi: 10.1038/s41590-020-00828-7

45. Ghafouri-Fard S, Shoorei H, Taheri M, Sanak M. Emerging role of non-
coding RNAs in allergic disorders. Biomedicine pharmacotherapy = Biomedecine
pharmacotherapie. (2020) 130:110615. doi: 10.1016/j.biopha.2020.110615

46. Coldewey SM, Neu C, Bloos F, Baumbach P, Schumacher U, Bauer M, et al.
Infliximab in the treatment of patients with severe COVID-19 (INFLIXCOVID):
protocol for a randomised, controlled, multicentre, open-label phase II clinical
study. Trials. (2022) 23(1):737. doi: 10.1186/s13063-022-06566-5

47. Rubin DT, Ananthakrishnan AN, Siegel CA, Sauer BG, Long MD. ACG
clinical guideline: Ulcerative colitis in adults. Am J gastroenterology. (2019) 114
(3):384–413. doi: 10.14309/ajg.0000000000000152
frontiersin.org

https://doi.org/10.3389/fgene.2019.01330
https://doi.org/10.4081/ejh.2021.3295
https://doi.org/10.1093/nar/gkaa467
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1093/nar/gkz1036
https://doi.org/10.1093/nar/gkaa1084
https://doi.org/10.1093/nar/gkaa1084
https://doi.org/10.1002/prot.24403
https://doi.org/10.1002/prot.24403
https://doi.org/10.1007/s10822-010-9352-6
https://doi.org/10.1016/j.ajem.2020.06.011
https://doi.org/10.3389/fimmu.2021.722406
https://doi.org/10.3389/fimmu.2021.722406
https://doi.org/10.1111/bjd.20495
https://doi.org/10.1016/j.jaip.2018.04.013
https://doi.org/10.1016/j.jaip.2018.04.013
https://doi.org/10.1038/s41577-020-0311-8
https://doi.org/10.1038/s41577-020-0331-4
https://doi.org/10.3389/fimmu.2022.879754
https://doi.org/10.1016/j.jaip.2021.03.033
https://doi.org/10.1016/j.lfs.2020.118102
https://doi.org/10.3390/ijms22147640
https://doi.org/10.3390/ijms22147640
https://doi.org/10.3389/fimmu.2022.964179
https://doi.org/10.3389/fimmu.2022.964179
https://doi.org/10.1038/s41590-020-00828-7
https://doi.org/10.1016/j.biopha.2020.110615
https://doi.org/10.1186/s13063-022-06566-5
https://doi.org/10.14309/ajg.0000000000000152
https://doi.org/10.3389/fimmu.2022.1054445
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Integrated bioinformatics to identify potential key biomarkers for COVID-19-related chronic urticaria
	Introduction
	Material and method
	Datasets preparation
	Identifying shared differently expressed genes between COVID-19 and CU
	Genes enrichment analysis
	Weighted gene co-expression network analysis analysis
	Protein-protein interaction network analysis
	Identification and enrichment analysis of hub genes
	Recognition of key genes through machine learning and ROC curve analyses
	Immune infiltration analysis
	Construction of gene- transcription factor -miRNA-lncRNA network of the key genes
	Drug–Gene interaction and protein-protein docking analyses
	Statistic analysis

	Result
	Recognition of shared DEGs between COVID-19 and CU
	Function annotation analyses of the shared DEGs
	Identification of the disease-related key module
	PPI network and hub genes analyses
	Identification of the key genes
	Immune infiltration analysis
	Construction of gene-TF- miRNA-lncRNA network of the key genes
	INFLIXIMAB might be the potential treatment drug for COVID-19-related CU

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


