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NetTCR-2.1: Lessons and
guidance on how to develop
models for TCR
specificity predictions

Alessandro Montemurro1, Leon Eyrich Jessen1†

and Morten Nielsen1,2*†

1Department of Health Technology, Section for Bioinformatics, Technical University of Denmark,
DTU, 2800 Kgs., Lyngby, Denmark, 2Instituto de Investigaciones Biotecnológicas, Universidad
Nacional de San Martı́n, Buenos Aires, Argentina
T cell receptors (TCR) define the specificity of T cells and are responsible for

their interaction with peptide antigen targets presented in complex with major

histocompatibility complex (MHC) molecules. Understanding the rules

underlying this interaction hence forms the foundation for our understanding

of basic adaptive immunology. Over the last decade, efforts have been

dedicated to developing assays for high throughput identification of peptide-

specific TCRs. Based on such data, several computational methods have been

proposed for predicting the TCR-pMHC interaction. The general conclusion

from these studies is that the prediction of TCR interactions with MHC-peptide

complexes remains highly challenging. Several reasons form the basis for this

including scarcity and quality of data, and ill-defined modeling objectives

imposed by the high redundancy of the available data. In this work, we

propose a framework for dealing with this redundancy, allowing us to

address essential questions related to the modeling of TCR specificity

including the use of peptide- versus pan-specific models, how to best define

negative data, and the performance impact of integrating of CDR1 and 2 loops.

Further, we illustrate how and why it is strongly recommended to include

simple similarity-based modeling approaches when validating an improved

predictive power of machine learning models, and that such validation should

include a performance evaluation as a function of “distance” to the training

data, to quantify the potential for generalization of the proposed model. The

conclusion of the work is that, given current data, TCR specificity is best

modeled using peptide-specific approaches, integrating information from all

6 CDR loops, and with negative data constructed from a combination of true

and mislabeled negatives. Comparing such machine learning models to

similarity-based approaches demonstrated an increased performance gain of

the former as the “distance” to the training data was increased; thus

demonstrating an improved generalization ability of the machine learning-
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based approaches. We believe these results demonstrate that the outlined

modeling framework and proposed evaluation strategy form a solid basis for

investigating the modeling of TCR specificities and that adhering to such a

framework will allow for faster progress within the field. The final devolved

model, NetTCR-2.1, is available at https://services.healthtech.dtu.dk/service.

php?NetTCR-2.1.
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Introduction

T cells form the cornerstone of the adaptive immune system

orchestrating and executing attacks on pathogens and pathogen-

infected/malfunctioning cells (1, 2). T cell interacts with

pathogen or self-aberrant derived peptides (p) presented on

the cell surface by MHC (Major Histocompatibility Complex)

molecules. This interaction is mediated via the trans-membrane

T cell receptor (TCR). Not all MHC-presented peptides are able

to form an interaction with TCR, and vice versa individual TCRs

form a highly specific interaction only with a limited repertoire

of pMHC complexes. Understanding the rules underlying this

interaction thus holds promise for furthering our understanding

of T cell immunogenicity, T cell tolerization, and T cell

cross-reactivity.

The TCR is a heterodimeric protein, most often formed by

an a- and b-chain. The interaction of TCRs with the cognate

pMHC target is primarily defined by 6 loops, 3 on each chain

denoted CDR1-3 (complementarity determining regions 1-3).

Of these loops, CDR3 interacts primarily with the peptide, and

CDR1 and CDR2 primarily with the a loops of the MHC

complex (1, 2). The diversity of TCRs is focused mainly on the

CDR3s, a region defined by the genomic recombination of the

variable, diversity (for CDR3b only), and joining (VDJ)

TCR genes.

Large efforts have been dedicated over the years to develop

assays for high throughput identification of peptide-specific

TCRs. Most of these techniques and assays have focused on

sequencing the CDR3b segment, applying cell sorting followed

by bulk repertoire sequencing (3, 4). While such approaches are

highly cost-effective, they suffer from a relatively high

proportion of wrongly identified TCR (present due to

carryover in the sorting step). However and more importantly,

they suffer from limited information capture and they only

describe the CDR3b part of the TCR interaction. We and

others have demonstrated the important shortcoming of this

limited view on the TCR-pMHC interaction and demonstrated

how the information on the specificity of the TCR toward its
02
cognate pMHC target is carried by CDR3 of both a- and b-
chains (5, 6). A solution to this is to apply single-cell sequencing

enabling the identification of paired a- and b-chains.
A large plethora of methods has been published within the

field of prediction of TCR-pMHC interactions. Given this

limited amount of paired TCR a- and b data available, the

majority of these have focused on CDR3b information only (7–

9). Recently however, models are benefitting from the growing

volume of paired TCR data allowing for boosting performance

by integrating information from both chains (6, 10, 11).

Data on TCR specificity is available in several public

databases including VDJdb (12), IEDB (13), McPAS-TCR (14),

and TBAdb (15). These databases are highly biased towards data

on positive TCR-pMHC interactions. Furthermore, TCR data

sets are often highly redundant and composed of many highly

similar sequences. Both of these properties pose a challenge

when it comes to developing and performance evaluating

machine learning (ML) models. In terms of negative data,

different approaches have been suggested including mispaired

negatives and/or data from healthy controls (7, 16). Most works

within TCR specificity have paid very limited attention to data

redundancy and sequence similarity, meaning that often the

issue has been accessed by only removing identical data points

(17, 18). This is clearly an oversimplification, and we have earlier

proposed an approach based on the Levenshtein similarities,

Hobohm-based redundancy reduction, and single-linkage

clustering, and have demonstrated how such careful

redundancy considerations can aid the development of models

with improved power for generalization (11).

Another critical aspect of TCR-pMHC interaction prediction

is the choice between peptide- and pan-specific models. Peptide-

specific models are, as the name indicates, models trained

specifically for individual peptides, whereas pan-specific models

are models encompassing all peptides in the given training data

into a single model. Ideally one would seek to develop pan-specific

models since these in principle would allow for ab-initio

predictions for novel peptides not included in the training data

by extrapolation from information and patterns learned across the
frontiersin.org
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different peptides. However such extrapolations might only be

possible when the coverage of the peptide space in the training

data reaches a certain limit. Anecdotally, this is in line with what

was observed for the modeling of HLA-peptide binding. Here,

HLA-specific models were found to outperform the early pan-

specific models and only when the HLA coverage was increased

did the pan-specific models perform the best (19). For TCR

specificity, modeling the coverage of the peptide space is highly

limited, and it hence remains an open question as to whether or

not pan-specific models can demonstrate boosted performance.

TCR specificity is as described above defined by the

combined signal contained within all 6 CDR loops. Most

prediction models have however focused only on the CDR3

loops (and many as stated above only on CDR3b). We have

earlier demonstrated how a simple similarity-based model could

benefit from the incorporation of information from CDR1 and

CDR2 (5), but the overall importance of expanding the CDR

information in the context of ML models remains to be settled.

Finally, the development of ML methods within TCR

specificity prediction is challenged by the lack of a well-

defined baseline model for assessment of ML model

performance increase and justify the application of more

complex model architectures. Given the very short length of

CDRs, usually consisting of 5-25 residues, and the stochastic

nature of the generation of in particular CDR3, commonly used

evolutionary-based alignment methods cannot be applied here.

Here, we set out to investigate these fundamental questions for

the optimal development of TCR specificity prediction models. It

is essential to underline that we are not seeking to benchmark

different published methods, but that we are solely seeking to

address and answer questions related to best practices for

developing and evaluating TCR-pMHC models. This with the

purpose of aiding the field as a whole, by establishing a foundation

and best practice for future work allowing researchers to avoid

repeatedly addressing these fundamental issues, and rather focus

on developing novel ideas enabling faster progress.
Materials and methods

Data preparation

The initial datasets were collected from IEDB, VDJdb,

McPAS and 10X Genomics Single Cell Immune Profiling of

four donors (20). The original dataset consisted of 21,121 unique

paired TCRs relative to 499 peptides and 14 different HLA

molecules. Non-binding peptide-TCR pairs were obtained from

the 10X dataset. In the 10X assay, T cells were exposed to a panel

of 50 peptide-MHC multimers. A negative TCR is defined as a

TCR that does not bind any of the tested peptides and that has a

Unique Molecular Identifier (UMI) count of 0.

Only data points with both CDR3 a- and b-chains and V/J

gene annotations were kept. Further, any cross-reactive TCRs
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were removed, and the data was restricted to TCRs with CDR3a/
b lengths in a range from 6 to 20 amino acids. Finally, only

peptides with at least 100 positive TCRs were considered (11).

After these initial cleaning steps, the dataset contained 4,111

positive peptide-TCR instances, spanning 10 different peptides

and 4 HLA molecules. The negative pool of TCRs counted

40,949 TCRs negative to 6 out of the 10 peptides present in

the positive set. The positive TCRs specific to the four non-

overlapping peptides were discarded.

The set of positive TCRs was redundancy-reduced with the

Hobohm 1 algorithm (21) applied to the CDR3 a- and b-
sequences. The TCRs were first sorted in descending order

according to the sum of the CDR3a and CDR3b sequence

lengths. Briefly, the Hobohm 1 algorithm starts by placing the

first TCR into the non-redundant list. Iteratively, all the TCRs

are similarity scored against the list of non-redundant TCRs: if

the similarity to all the non-redundant TCRs is less than a

specified threshold, then the new TCR is assigned to the non-

redundant list, otherwise it is discarded. The similarity between

sequences was calculated using the kernel similarity measure as

defined in (22) and was calculated as the average of the CDR3a-
and b-similarity scores. For the positive set, a threshold of 0.95

was chosen to ensure that only highly similar entries were

removed. A similar approach was used to reduce the set of

negatives, but with a similarity threshold of 0.9. After running

the Hobohm 1 algorithm, 3,400 positive and 36,366 negative

TCRs were left in the two data sets.

Once the redundancy in the positive set was reduced with

the Hobohm 1 algorithm, the data points were randomly split

into 6 partitions, 5 for cross-validation and one for external

evaluation. For each partition, for each positive peptide-TCR

combination, 5 TCRs were sampled from the pool of negative

TCRs and added to the partition of the peptide-TCR. These

negatives are referred to as true negatives or 10X negatives. Each

partition was further augmented with swapped negatives. Here,

each positive TCR was paired with 5 peptides (different from the

target peptide) and labeled as swapped negative.

The last step in the data curation was to reconstruct the

full TCR sequences and annotate gene usage in the CDR

loops. First, the full TCR sequences were constructed from

V/J genes + CDR3: the CDR3 sequence was merged on the

C-terminus of the V gene by looking for a cysteine (C) in the

last six residues of the V gene sequence and on the N-terminus

by matching a phenylalanine (F) or a tryptophan (W) followed

by a glycine (G) within the first 11 amino acids of the J gene

sequence. Lastly, Lyra (23) was used to annotate the CDR1 and

2 loops. A total of 473 positive TCR sequences were removed

in this step, due to a failure in the TCR reconstruction or

CDR annotation.

The final dataset consists of 2,541 unique positive peptide-

TCR pairs, 12,848 negatives from 10X and 12,705 swapped

negatives. A summary of the peptides included in the training

set is shown in Table 1.
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Baseline model

A baseline model was used to benchmark the performance of

the NetTCR model. The baseline used here was inspired by (9)

and is solely based on TCR similarities. As for TCRmatch, the

kernel similarity (22) measure was used. Briefly, this measure

assigns a similarity score between two sequences by comparing

all the k-mers, with k ranging from 1 to the length of the shortest

sequence. For a fixed value of k, the BLOSUM62 score of all the

k-mers from the first sequence against the k-mers from the

second sequence is computed. The similarity score is then given

by the self-similarity normalized sum of all the BLOSUM scores,

for all the values of k.

For each peptide, a database of positive TCRs to the peptide

from the training set was constructed and a query with positive

and negative (both 10X and swapped negatives) TCRs from the

evaluation set. Each TCR in the query is scored against the

database using the kernel similarity score. The prediction for a

given TCR in the test set is then given by the similarity score to

the nearest neighbor in the training set. For the CDR3 model, the

similarity score is calculated as the average of the similarities of

a- and b-chains. When adding CDR1 and 2 to the model, the

overall similarity is calculated as a weighted average of the

similarities of each of the 6 CDR loops (3 for the a- and 3 for

the b-chain) using weights [1,1,4] and [1,1,4] as suggested earlier
(5). It should be noted that the baseline model is inherently

peptide-specific as databases and queries are constructed for

each peptide separately. TCRbase-1.0, a web server version of the

baseline model, is available at https://services.healthtech.dtu.dk/

service.php?TCRbase.
NetTCR model

NetTCR is a sequence-based 1D-convolutional neural

network, similar to the one we have earlier proposed in (11).

The inputs to the network are the amino acid sequences of the

six CDR loops; for the pan-specific model, also the peptide

sequence is used as input to the network. The inputs are zero-

padded to the left, to ensure the same lengths across input: 10 for

CDR 1 and 2, 20 for CDR3, and 13 for the peptides. The

sequences are encoded using the BLOSUM50 (24) encoding
Frontiers in Immunology 04
scheme, mapping each amino acid into a vector with 20 entries.

The encoded sequences are processed independently by different

convolutional blocks. Each block applies 1D convolutions with

16 filters and kernel sizes {1, 3, 5, 7, 9} (80 filters for each

sequence in total). The outputs of the convolutional layers are

max-pooled across the sequence length dimension and

concatenated. The final part of the network consists of a

hidden layer with 32 neurons and an output layer with a

single neuron, giving the binding score of the input peptide

and TCR. The sigmoid activation function was used in all the

layers of the network.
Model training

All models were trained using nested 5-fold cross-validation

for 200 epochs with early stopping, monitoring the validation

loss. Adam optimizer was used, with a learning rate of 0.001. The

code was developed in Python 3.7; the neural networks were

designed using Pytorch 1.11 and the models were trained on an

NVIDIA® GeForce GTX TITAN X GPU.
Performance evaluation

The predictive power of the models was measured using the

area under the receiver operating characteristic curve (AUC) and

AUC 0.1, defined as the normalized area under the ROC curve

with a maximum false positive rate of 0.1. The performance was

assessed also with Positive Predictive Value (PPV), defined as

the proportion of positive labeled TCRs within the top n

predictions, where n is the number of positive data points in

the set.

Each proposed model was trained using nested 5-fold cross-

validation resulting in 20 individual networks. The performance

was assessed on the left-out evaluation set. Here, the ensemble of

the 20 trained models was used and the evaluation predictions

were calculated by the average of the predictions from each of

the 20 models.

The performance of the models was evaluated in a per-peptide

manner (i.e from the subset of TCRs with target values towards a

given peptide). For each model, an overall performance was also
TABLE 1 Description of the peptides included in the training set.

Peptide Sequence Organism HLA # positive TCRs

GILGFVFTL Influenza A virus HLA-A*02:01 969

RAKFKQLL Epstein Barr virus HLA-B*08:01 659

ELAGIGILTV Melanoma HLA-A*02:01 316

IVTDFSVIK Epstein Barr virus HLA-A*11:01 275

GLCTLVAML Epstein Barr virus HLA-A*02:01 173

NLVPMVATV Human CMV HLA-A*02:01 149
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given by the average AUCs across peptides. We reported the

average AUCs both as a mean value of the AUCs from each

peptide and as a weighted average of the peptide AUCs, weighted

by the number of positive TCRs for that specific peptide in the

evaluation set. Each model’s performance was reported by

analyzing two tasks: i) positives versus 10X negatives prediction;

ii) positives versus swapped negatives prediction.

To overcome the problem of having peptide-specific

prediction biases, we performed calibration by transforming

the raw prediction scores into percentile rank scores. The rank

scores were estimated using a set of 13,847 COVID-specific

TCRs (25), not sharing any overlap with the training set.

Percentile rank scores for a query TCR was next estimated as

the proportion of COVID TCRs that scored higher than the

considered TCR, in terms of raw prediction score.

To assess whether the differences in performance were

significant, a bootstrap test was performed on the AUC values.

Given two prediction vectors from two different models to

compare, these were sampled n times with replacement, with

the same size as the original vectors. Given the null hypothesis

that the two models performed equally, a p-value was calculated

as the number of times the AUC of the first model, calculated on

the resampled vector, was smaller than the one from the second

model, normalized by n.
Results

Here, we set out to investigate three essential questions

related to the modeling of TCR specificity namely i) the use of

peptide- versus pan-specific models, ii) how to best define

negative data, and iii) the impact of model-integration of
Frontiers in Immunology 05
CDR1 and 2 loops. The three questions were addressed by

developing and comparing the performance of simple ML

models inspired by the earlier NetTCR architecture trained

and tested using cross-validation of data extracted from the

public domain.
Baseline model

As a baseline model to compare the performance of the more

complex ML models, we designed a simple similarity-based

model for predicting TCR specificity, TCRbase-1.0, under the

assumption that the TCRs that bind the same epitope share a

high degree of sequence similarity. Here, for each peptide, a

prediction for both positive and negative TCRs from the

evaluation set was obtained by comparing these TCRs to all

the positive TCRs for that specific peptide in the training set. The

similarity score of two TCRs was given by the weighted sum of

the similarities of the single CDR loops (see methods). We

experimented with different sets of weights for the CDRs, as

shown in Figure 1 and Supplementary Figure 1. These results

suggest that including CDR1 and CDR2 results in an improved

predictive power of the baseline model (p-value<0.001 for all the

peptides except IVT and NLV, based on a bootstrap test on the

AUC values, with 1000 repetitions). Note that the low

performance of the unweighted TCRbase model on NLV is

likely due to the higher diversity of the CDR1 and 2 sequences

for this particular peptide, compared to the other peptides in the

dataset. The 149 positive TCRs cover a set of 43 V genes for

the a-chain and 46 for the b-chain. In contrast, these values for

the GIL peptide are 60 and 52 for the set of 969 positive TCR.

This increased V gene diversity dilutes the information
FIGURE 1

Baseline model performance for weighted and unweighted CDRs. Performance is reported as the AUC for each individual peptide, as well as the
average and weighted (by number of positive TCRs) average AUC over the 6 peptides. The performances of three version of the baseline are
shown: weighted, where the similarity is given by the weighted sum of the similarities of the three CDRs using the weights [1, 1, 4]; unweighted
where all the CDRs are given equal weights; CDR3 only baseline, where CDR1 and 2 are given a weight of 0.
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contained in the CDR1 and CDR2 for this data set, hence

compromises the predictive power of the TCRbase model

when including these in the scoring. Given the overall

improved prediction of the model with CDR3s weighted four

times higher than CDR1 and 2, we set these weights to be the

default configuration of the baseline model.
Peptide- vs pan-specific model

Next, we wanted to investigate whether peptide or pan-

specific models would yield better performance. Ideally, one

would like to train pan-specific models pooling all peptide-TCRs

in the training data. Thereby, potentially allowing the model to

leverage and transfer information between different TCR-pMHC

combinations. Such data leverage is however only expected to be

beneficial in situations where binding mode information is

shared between peptides.

To compare the predictive power of peptide versus pan-

specific models, two sets of models were trained using cross-

validation and next evaluated using the left-out evaluation data

set (for details see methods). Peptide-specific models were

trained for each of the 6 peptides in the training data. The

pan-specific model was trained on all data combined. All models

were trained using an identical architecture, including the

CDR3a and b sequence information from the TCRs, and the

peptide sequence as inputs (the peptide information was fully

conserved for the peptide-specific models). The result of this

experiment is shown in Figure 2 and demonstrated both for the

individual peptides and the combined average performance

values that for the data included in this study, the peptide-

specific models in the majority of cases achieved superior

performance. Particularly for the positives vs swapped
Frontiers in Immunology 06
negatives prediction task, all the differences are significant,

except for the GIL peptide (p-value<=0.01, bootstrap with

1000 repetitions). Supplementary Figure 2 provides AUC01

and PPV values for the same experiment. Given this, the

subsequent work focused only on peptide-specific models.
On the different sources of negatives

We aimed to investigate the impact of the different sources

of negative data points on model performance: 10X negatives

and swapped negatives. Briefly, the former set of negatives was

derived from the 10X dataset and it is formed by TCRs that

were found to not bind any of the 50 tested pMHC multimers.

The swapped negatives are artificially generated by pairing

TCR sequences with peptides aside from the one to which

they were originally annotated to bind.

To investigate the performance impact of the different types

of negative data, three models were trained. The first model was

trained on the full data, i.e., positives, 10X and swapped

negatives. Two more models were trained including either the

10X or swapped negatives. All models were trained using 5 fold

cross-validation and evaluated on the 6th independent data set.

The results of this experiment are shown in Figure 3 and

Supplementary Figure 3, and demonstrated that the models

trained on the complete set of negative data overall performed

superior compared to the other models. That is, the model

trained on the mixed type of negatives outperformed the model

trained only on swapped negatives when asked to differentiate

between positive and 10X negatives (upper panel). Likewise, it

outperformed the model trained on 10X negatives when asked to

differentiate between positive and swapped negative (lower

panel). Further, the model trained on mixed negatives only
FIGURE 2

The predictive performance for each peptide measured in terms of AUC of the NetTCR architecture based models trained on a- and b-chains
and stratified on negative usage and peptide- versus pan-specific approach. Average and w_aveage denotes the average and weighted (by the
number of positive TCRs) average AUC over the 6 peptides.
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suffered a limited decrease in performance when evaluated on

the type of negative used to train the two other models. Given

these results, we focused on the model trained using mixed

negative data moving forward.
Adding CDR1 and CDR2

We next expanded the NetTCR architecture to also include

CDR1 and -2 sequences as input, hereby representing the TCR

as 6 sequences, the three CDRs from the a chain and the three

from the b. Figure 4 shows the AUCs on the evaluation set of the

model with all the CDR and the model with only CDR3s.

Figure 4 demonstrates an overall improved performance when
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adding the CDR1 and 2. This gain is larger when looking at the

AUC calculated on the positive vs swapped negative prediction

task (Figure 4, lower panel) compared to positives versus true

negatives (Figure 4, upper panel). Except for the GLC peptides,

the model trained on all the CDRs significantly outperforms the

one trained on CDR3 only (p-value<0.001, based on a bootstrap

test with 1000 resampling with replacement) across all the

peptides, when looking at the positives versus swapped

negatives prediction. AUC01 and PPV comparisons are shown

in Supplementary Figure 4.

Lastly, we compared NetTCR to the baseline model

(TCRbase) with weighted CDRs contributions, as shown in

Figure 5 and Supplementary Figure 5. The two models

achieved comparable performance with a minor advantage of
FIGURE 3

The predictive performance of the three models trained using negatives either from the 10X dataset, the swapped or both combined. The
performance is evaluated in terms of AUC on two evaluation sets, each sharing positive observations, but with negatives defined by either true
negatives from the 10X dataset or swapped negatives. Average and w_aveage denotes the average and weighted (by number of positive TCRs)
average AUC over the 6 peptides.
FIGURE 4

Performance comparison in terms of AUC for the NetTCR model using all CDR loops versus using only CDR3 loops from both a- and b chains.
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NetTCR when tested on the task of predicting the positive vs

10X negatives (Figure 5, upper panel). However, NetTCR

significantly outperformed the baseline (p-value <0.001,

bootstrap test with 1000 repetitions) for all evaluations when

separating between positives and swapped negatives (Figure 5,

bottom panel).
Predicting peptide targets

So far, the performance evaluations performed have focused

on evaluating to what degree models can differentiate between

TCRs being positive or negative towards a given peptide. Equally

interesting is whether a model is capable of identifying the true

target peptide from a pool of possible peptides. To evaluate this,

we compiled a data set where all the positive TCRs were paired to

all the six peptides in the training set. Next, we used the peptide-

specific models to get predictions for these peptide-TCR

combinations and the scores were sorted in descending order.

Ideally, the TCR paired to its target peptide should get a rank of 1,

meaning that the prediction score for this true positive

combination was the highest among all possible combinations

resulting in 0 false positive predictions. The results of this

experiment are shown in Figure 6. Here, the rank distribution

for the positive TCRs for each peptide is shown. Most of the TCRs

are observed to get a rank of 1, meaning that they were assigned

to the correct peptide and thus received the highest score by the

model corresponding to the correct target peptide. In all cases, the

rank distributions are improved compared to the uniform

distribution of a random model. However, the proportion of

top-ranked predictions varied between the different peptides with

values above 80% for the three most covered peptides and a drop

to around 55% for the three least covered. The number of top 1

positive TCRs for each peptide are GIL 114/136, RAK 77/96, ELA

45/53, IVT 22/38, GLC 16/27, NLV 10/19.
Frontiers in Immunology 08
To further investigate the source of these performance

variations, Figure 7 shows box-plots of the prediction scores

for different subsets of TCRs. Here the “top_TP” and

“second_TN” refer to scores of the top and second scoring

peptide for a given TCR, in the situation where the true peptide

is ranked top-one. The other two distributions refer to the case

where the model was not able to top-rank the correct peptide

for the TCR. Here “top_FP” displays the distribution of the

prediction scores for the wrongly predicted top-one peptides,

and “FN” is the score distribution for the correct peptide.

Comparing the first two box-plots thus informs about the gap

in the scores between top one and two in the situation of a

correct prediction, and the last two plots about both the overall

score distribution for TCRs with wrong predictions and the

score of the best peptide in these situations. Several important

conclusions can be drawn from these plots. First and foremost

are the score distributions for “top_TP” and “second_TN” in all

cases very well separated, suggesting that in these cases, the
FIGURE 5

Predictive performance measured in terms of AUC for the peptide-specific NetTCR CDR123 model and the baseline.
FIGURE 6

Peptide ranking analysis. Each positive TCR in the evaluation set
was paired with all 6 peptides and predictions were obtained using
the peptide-specific models. For each TCR, the six prediction
scores were sorted in descending order and a rank was obtained.
A rank of 1 means that the model correctly predicted the true
TCR-peptide pair, assigning the highest score. The bars in the plot
show the proportion of TCRs for each rank value.
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model has high certainty in predicting the correct peptide target.

Secondly, variations in score distribution for the “top_TP”

between the different peptides - the median score values

decrease as one moves from the highest covered (GIL) towards

the least covered (NLV) peptides, suggest that a score calibration

would potentially benefit the peptide ranking evaluation. Lastly,

the scores for the FN TCR are in all cases very low and

distinctively different from the “top_TP” score distributions.

This strongly suggests that these FN TCRs at least in part are

TCRs, which have been incorrectly annotated. We can pursue

this further by investigating the source of the TCRs in the two

classes “top_TP” and “FN”. Doing this, we find that one

publication (26) in particular is enriched in “FN” TCR. This

publication contributes ~19% of the TCRs in the FN category

while only contributing ~10% to the overall positive data set and

~5% to the top_TP category. The underlying source of this FN

enrichment is unclear.

As illustrated in Figure 7, the prediction scores for the top1

TCRs have very different median values, depending on the

peptide. In general, this happens for all the positive TCRs, as

shown in Figure 8A. This represents a limitation when

comparing predictions from different models, thereby

indicating that a score calibration is needed. To address this,

we applied a percentile rank transformation to the raw

prediction scores to avoid these peptide-specific scoring biases,

as described in Materials and Methods. Here, a set of 13,847

COVID-specific TCRs (25) were used to estimate the

background distributions of the peptide-specific models. The

percentile rank score for a peptide-TCR pair in the evaluation set
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was then estimated as the proportion of the background COVID

TCRs with a higher prediction score than the pair in

consideration. Figure 8B shows the percentile rank scores for

the positive TCRs. Except for the NLV peptide, the median

values of the percentile rank scores are now comparable across

peptides. This suggests that using the percentile rank scores is

more appropriate than using the raw prediction scores, making

the different models more directly comparable.
Performance as a function of distance to
training data

Next, we wanted to investigate how the similarity between

the training and evaluation set drove the performance of both

NetTCR and the baseline models. In these experiments, we

exclude positive TCRs with a percentile rank score above 0.3

(to exclude potential noise imposed by the FN TCRs described

above). For each TCR, we defined its similarity to the training set

as the kernel similarity score to its nearest neighbor TCR, either

positive or negative, in the training set. Next, we excluded TCRs

with a similarity to train above a given threshold and calculated

the AUC value based on the predictions of the remaining data

points. Figure 9 shows the results of this experiment, using

different similarity threshold values between 0.89 and 0.98

(results shown for the three most frequent peptides). These

results show that when the TCRs in the evaluation set are

allowed to share a similarity to the training set up to 0.98, the

baseline and NetTCR models perform similarly. However as the

maximum similarity between the train and evaluation set is

reduced, the gap in performance between the two models

increases (in particular for the GIL and RAK peptides), with a

substantial drop in baseline AUC for the baseline model, while

NetTCR to a high degree maintains performance.
The NetTCR-2.1 method

The presented model is available as a web-server

implementation at https://services.healthtech.dtu.dk/service.

php?NetTCR-2.1. The server allows users to make TCR-

binding predictions to one or more peptides, using the

peptide-specific models. It is possible to use either the models

trained on CDR3a- and b-sequences or trained using all the six

CDR loops.

The output of NetTCR-2.1 is a list of CDR-peptide pairs

along with the binding prediction. For each prediction, the

method outputs also the percentile rank score, estimated from

a background set of 13,847 COVID-specific TCRs. The

percentile rank is a normalized score across the different

peptide-specific models, ranging from 0 to 1, where 0 is the

best possible percentile rank. The rank score should serve as a

guideline to select a peptide invariant threshold on the binding
FIGURE 7

Box-plots of the prediction scores from the peptide ranking
analysis. “top_TP” refers to the predictions for the positive
peptide-TCRs that obtained the highest prediction score with
the model trained on that specific peptide; “second_TN” shows
the predictions for the second highest scoring TCR. “top_FP”
and “FN” refer to a scenario where a TCRs gets the highest
prediction score when paired to a peptide that is different from
its target. “top_false_FN” shows the score distribution of these
wrong combinations of peptide and TCR; “FN” represents the
prediction score of the correct peptide-TCR pairs that did not
score top 1.
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probability prediction. For each peptide, the threshold could be

defined as the 75th percentile of the background prediction score

distributions (boxplots shown in Figure 8B).
Discussion

Here, we present NetTCR-2.1, which is an extension of our

earlier NetTCR-2.0 method for prediction of pMHC-TCR

interactions. The main augmentation is an extended peptide

coverage and the ability to include all CDRs in the

binding prediction.

In our work, we investigated several important aspects of

model development when aiming at predicting TCR specificity

and have presented our results of this, aiming at supplying the

TCR-specificity prediction field with a set of suggested best

practices. These include recommendations on strategies for

data partitioning and redundancy reduction, the use of peptide

versus pan-specific modeling, the source of negatives, inclusion

of CDR1 and CDR2 information, the importance of benchmark

comparison of simple sequence similarity-based baseline
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models, and model performance comparison in the context of

distance to training data. In the following, we will briefly

summarize our findings and associated conclusions on each of

these topics.
Strategies for data partitioning and
redundancy reduction

Traditionally, TCR-pMHC specificity data has been focused

on CDR3b for reasons previously described. However, the

advent of high throughput single cell technologies has resulted

in a substantial increase in publicly available data on paired TCR

a- and b-chain to cognate pMHC-target data. However, it is

evident that these data reflect ongoing research into model

organisms or diseases like Influenza A virus, Epstein Barr

virus, Melanoma and Human CMV. Furthermore, often only

positive observations of TCR-pMHC interaction are reported,

biasing the databases. As a reflection of this, the TCR sequences

currently available share a high degree of redundancy. Therefore,

in order to achieve, to the degree possible, non-biased training
BA

FIGURE 8

Motivation for using percentile ranks. Box-plots of the prediction scores (A) and percentile rank values (B) for the set of positive TCRs in the test CV sets.
FIGURE 9

AUC values as a function of the similarity between training and evaluation set. Percentile rank transformation was applied to the TCRs and only
positive TCRs with a rank score less than 0.3 were kept in this analysis. For each TCR in the evaluation set, we calculated the similarity to the
training set using the kernel similarity score. We then removed the TCRs with a similarity above a threshold and calculated the AUC. The curves in
the plots show the AUC varies when different similarity thresholds were used to filter the evaluation set; 10 similarity values between 0.89 and 0.98
were chosen. The dashed line shows the number of positive TCRs left in the evaluation set at each step of filtering by similarity to the training set.
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and evaluation of the developed models, it is important to

address redundancy. This is true particularly for modern

modeling frameworks, where parameter space is very large and

they are prone to overfitting.

Due to the genetic mechanisms underlying TCR generation,

classical alignment-based similarity approaches using for

instance Blosum matrices and affine gap penalties are

nonsensical. Therefore, we propose using alignment-free

methods such as the kernel method described by Shen et al.

(22) to estimate sequence similarity and then subsequently

perform redundancy reduction using e.g. the Hobohm1

algorithm. Lastly, we recommend performing pre-clustering

prior to partitioning the data using e.g. single linkage to

ensure the least possible overlap between partitions.
Peptide versus pan-specific modeling

We trained two versions of the NetTCR model; a pan- and a

peptide-specific, both trained only including the CDR3 for

simplicity. Ideally, a pan-specific approach should be more

generalizable and rely less on the individual peptides in the

training set, aiming at capturing the global signal. The clear

advantage is that such a model would be able to make

predictions for TCRs specific to any peptide, even for those

peptides that are represented by only a small sample in the

training data or even absent. Given the data currently available,

the peptide-specific models were however found to outperform

the pan-specific ones. Using the experiences gained from

modeling pMHC-interaction where the early pan-specific model

also performed at par or slightly worse than allele-specific (27),

this is likely due to the limited volume and coverage of the data

volume currently available. We observe that TCRs specific to

different peptides do not share many features, rendering cross-

learning across peptides not achievable at the moment. As more

data becomes available, we expect that it will be possible to train

pan-specific models.
The source of negatives

A critical point when developing an ML model for binary

classification is the definition of negative data. Insufficient

consideration of this can lead to biases in the obtained

conclusions (28). The publicly available datasets of TCR-

pMHC sequences almost exclusively contain examples of

positive binding pairs. Only the recently published 10X

Genomics dataset contains both positive and negative data

points. Another common approach for generating artificial

negatives is to mispair positive peptide-TCR pairs. Here, we

have compiled a training data set with both 10X negatives and

internal mispairing of peptides and TCRs, referred to as swapped

negatives. We investigated the impact of both sources of
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negatives by training the same neural network models on

different datasets, including either both sources or negatives or

only one of the two. In all these experiments, the NetTCR CDR3

peptide-specific model was adopted. To better understand how

the two negative sets affected the performance, the AUC values

were calculated for the positive vs swapped negatives and for the

positives vs 10X negatives prediction tasks. The model trained

with only swapped negatives showed a high predictive power

when evaluating the positives vs swapped negatives, as that was

specifically the task the model was trained for. However,

evaluating how this model could distinguish between positives

and 10X negatives, the performance was observed to drop. Vice

versa, the model trained on 10X negatives was demonstrated to

obtain high performance for the positives vs 10X negatives task

but suffered a major drop in performance when making

predictions on the swapped negatives. In contrast, the model

trained on the entire dataset, i.e. positive TCRs, 10X and

swapped negatives, showed high performance on both tasks of

predicting 10X and swapped negatives. These results suggest that

both types of negatives contribute to the model performance.

Furthermore, given the large drop in performance on the

swapped data of the network trained on the 10X negatives the

swapped negatives play an essential role in learning how to

differentiate between positive and negative TCRs for a given

peptide. This aspect could suggest that the positive and 10X

negative TCRs form two disjoint sets. Hence, the network might

capture a signal to distinguish positives and negatives that are

different in sequences, but not learn the rules that make a TCR

positive to one peptide and negative towards others.
Inclusion of CDR1 and CDR2 information

Most of the available models to predict peptide-TCR

interaction are focused on CDR3b or paired CDR3ab
sequences, and only a few recently published works have

added V/J genes information in the model as one-hot encoded

features (6, 10). Here, we have developed a neural network that

takes as input the full set of the 6 CDR sequences. The full-length

TCR was reconstructed from the V/J genes and CDR3 sequence,

and the CDRs were annotated using Lyra (see Material and

Methods for details). We compared the model trained on the full

set of CDRs to the one trained on CDR3ab data. On average, the

model trained on the 6 CDR sequences showed higher AUC

values compared to the CDR3ab model, across the peptide set.

For some of the peptides, the inclusion of CDR1 and 2 resulted

in a substantial increase in AUC. This is the case, for instance,

for the ELAGIGILTV peptide. However, this gain in

performance might be driven by a bias in the V gene data. In

our data set, 85% of the positive ELA CDR1a and 2a are

encoded by the TRAV12-2*01 gene; this gene is present only

in a minor proportion (5%) in the negative set. It is not clear if

this bias is due to the data collection or if it is a biological signal.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1055151
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Montemurro et al. 10.3389/fimmu.2022.1055151
Benchmark comparison of simple
sequence similarity-based baseline
models and models comparison in the
context of distance to training data

Together with NetTCR-2.1, we have here proposed TCRbase,

a similarity-based approach to predict TCR-peptide interaction,

under the assumption that TCRs with similar sequences

recognize the same epitope. We showed that this model

achieved comparable performance to the one of NetTCR, while

being very simple. These results align with previous findings (17,

26, 29, 30). A closer analysis of our results revealed that TCRbase

performed at par with NetTCR when separating positive versus

10X negative TCRs; however, the gap in performance between the

two models was enlarged on the positives versus swapped

negatives prediction task, where NetTCR significantly

outperformed TCRbase. This behavior suggests that the 10X

negatives are very different from the positive TCRs, and this

dissimilarity makes it trivial for a similarity-based model to

distinguish between positives and negatives. This is not the case

for the swapped negatives, as they are positive to some other

peptide. Here, TCRbase to a higher degree fails in separating the

positive and negative set, while NetTCR maintains performance,

indicating that the neural network has learned some features

beyond sequence similarity. The generalizability of NetTCR is

furtherly confirmed when comparing the model’s performances

in the context of distance to training data. When the evaluation

set is allowed to be highly similar to the training data, NetTCR

and TCRbase have comparable performance in terms of AUC. As

the TCRs similar to the training data are removed, TCRbase

suffers a drop in performance for two out of the three peptides

analyzed, whereas NetTCR is able to maintain the predictive

power. We believe both of these results are essential as a

validation of the greater potential for generalization of the

NetTCR machine learning-based method over the more simple

similarity-based approach, and strongly suggest that such

similarity-based models and performance evaluations as a

function of distance to training data are included as baselines

in future works developing TCR specificity prediction models.
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SUPPLEMENTARY FIGURE 1

Baselinemodel performance comparison in terms of AUC01 and PPV. The
baseline model was used i) with weights [1, 1, 4] on the CDRs; ii) with equal

weights on the CDrs; iii) using only CDR3s. The values are given for each
peptide, and on the positives vs 10X negatives and positives vs swapped

negatives prediction tasks. average and w_average refer to the average

and weighted average of the AUC01 (and PPV) across the six peptides.

SUPPLEMENTARY FIGURE 2

AUC01 and PPV values comparison of the NetTCR model trained in a

peptide-specific or a pan-specific manner. Performance reported for
each peptide, and for positives vs. 10X negatives and positives vs

swapped negatives task. Average and weighted average (weighted by

the number of positive TCRs for each peptide) performances are
also reported.

SUPPLEMENTARY FIGURE 3

Analysis of the different sources of negatives. AUC01 and PPV values for
the NetTCR-CDR3 model trained on i) the full dataset, including positives,

10x negative and swapped negatives; ii) positives and 10x negatives only,
iii) positives and swapped negatives only. AUC01 and PPV are reported in a

peptide-specific manner; the values are also differentiated based on

positives versus 10X/swapped negatives predictions. “average” refers to
the mean values of AUC01 (and PPV) from each peptide; “w_average” is a

weighted average (weighted by the number of positive TCRs) of
the values.
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SUPPLEMENTARY FIGURE 4

Peptide-specific AUC01 and PPV values comparison of the NetTCR
models trained using the set of all CDRs or CDR3 only. The predictive

power is evaluated for each peptide (average and w_average refer to an
average and weighted average, respectively, of the peptide-specific

scores). The performance is also differentiated based on the positives
vs. 10X/swap negatives predictions.
Frontiers in Immunology 13
SUPPLEMENTARY FIGURE 5

NetTCR versus TCRbase. Performance comparison in terms of AUC01 and
PPV. The values are reported for each peptide, and differentiated according

to the two prediction tasks, positives vs 10x negatives and positives vs
swapped negatives. “average” is calculated as an average of the AUC01 (and

PPV) of the peptide-specific scores; “w_average” is a weighted average
(weighted by the number of positive TCRs) of the peptide-specific scores.
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