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Identification and validation of a
muscle failure index to predict
prognosis and immunotherapy in
lung adenocarcinoma through
integrated analysis of bulk and
single-cell RNA sequencing data

Xuyu Gu1†, Lubing Cai2†, Zhiwen Luo3†, Luze Shi2, Zhen Peng2,
Yaying Sun3* and Jiwu Chen2*

1School of Medicine, Southeast University, Nanjing, China, 2Department of Sports Medicine, Shanghai
General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University,
Shanghai, China, 3Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
Background: It was previously reported that the production of exerkines is

positively associated with the beneficial effects of exercise in lung

adenocarcinoma (LUAD) patients. This study proposes a novel scoring system

based on muscle failure-related genes, to assist in clinical decision making.

Methods: A comprehensive analysis of bulk and single cell RNA sequencing

(scRNA-seq) of early, advanced and brain metastatic LUAD tissues and normal

lung tissues was performed to identify muscle failure-related genes in LUAD and to

determine the distribution of muscle failure-related genes in different cell

populations. A novel scoring system, named MFI (Muscle failure index), was

developed and validated. The differences in biological functions, immune

infiltration, genomic alterations, and clinical significance of different subtypes

were also investigated.

Results: First, we conducted single cell analysis on the dataset GSE131907 and

identified eight cell subpopulations. We found that four muscle failure-related

genes (BDNF, FNDC5, IL15, MSTN) were significantly increased in tumor cells. In

addition, IL15 was widely distributed in the immune cell population. And we have

validated it in our own clinical cohort. Then we created the MFI model based on 10

muscle failure-related genes using the LASSO algorithm, and MFI remained an

independent prognostic factor of OS in both the training and validation cohorts.

Moreover, we generated MFI in the single-cell dataset, in which cells with high MFI

received and sent more signals compared to those with low MFI. Biological

function analysis of both subtypes revealed stronger anti-tumor immune activity

in the low MFI group, while tumor cells with high MFI had stronger metabolic and

proliferative activity. Finally, we systematically assessed the immune cell activity

and immunotherapy responses in LUAD patients, finding that the low MFI group

was more sensitive to immunotherapy.
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Conclusion: Overall, our study can improve the understanding of the role of

muscle failure-related genes in tumorigenesis and we constructed a reliable MFI

model for predicting prognosis and guiding future clinical decision making.
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Introduction

Lung cancer has the second highest incidence of all malignant

tumors and is the leading cause of cancer-related death worldwide (1),

with lung adenocarcinoma (LUAD) being themost common subtype (2).

Although substantial progress has been made in tumorigenesis and

LUAD therapy, the 5-year overall survival rate is still less than 20%

(3), which apparently cannot meet satisfaction. In the past decade, the

application of immunotherapy targeting immune checkpoints has

significantly changed the treatment strategies of LUAD. Emerging

biomarkers have now been used to predict immunotherapy responses,

including PD-L1 expression and tumor mutation burden (TMB) (4, 5).

However, these biomarkers fail to fully reflect the heterogeneous tumor

microenvironment (4, 6), and therefore the immunotherapy could only

benefit a limited amount of LUAD patients (7). Thus, understanding the

crosstalk between tumor immune microenvironment and LUAD, as well

as exploring novel biomarkers and predictive models, may be important

means to improve therapeutic effectiveness.

Physical exercise has long been known to have associations with

reduced mortality (8) and lower cancer incidence (9, 10), and recently

has been increasingly prescribed as a non-pharmacological intervention

to cancer patients. The mechanisms underlying exercise and cancer

therapy are not yet entirely understood. Previous studies have revealed

that exercise could trigger multiple systematic responses against tumor.

Aerobic exercise could promote the mobilization and activation of

tumor-infiltrating IL15Ra+ CD8 T cells, restricting pancreatic tumor

growth and sensitizing pancreatic tumors to a-PD-1 therapy and

chemotherapy (11). Meanwhile, additional physiological effects, such

as improving tumor perfusion and vascularization, limiting

intratumoral hypoxia, and increasing body temperature, may also

modulate anti-tumor immunity and the tumor microenvironment (12).

In response to acute and chronic exercise, skeletal muscle is

capable of releasing exerkines, which comprise a broad variety of

hormones, metabolites (13), peptides (14), DNA, mRNA, microRNA,

and other RNA species (15). These exercise-derived molecules

participate in multisystemic regulatory feedback, like glucose

homeostasis (16), muscle function (14) and anti-inflammatory

responses (17), through endocrine, paracrine, and autocrine

pathways. It was previously reported that the production of

exerkines is positively associated with the beneficial effects of

exercise in cancer patients. For example, muscle contraction during

exercise leads to the release of exerkines like IL-15, IL-7, and IL-6.

These exerkines regulate NK cells, which then contribute to a

reduction in tumor growth (12). However, little is known about the

relationship between exercise-mediated genes, exerkines, tumor

microenvironment, and cancer prognosis.
02
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in

the development and plasticity of normal brain function via activating

the TrkB (18). In addition, the Bdnf mRNA levels in skeletal muscle is

a muscle damage biomarker, and physical exercise has been

demonstrated as an efficient stimulus for BDNF synthesis in rodent

skeletal muscle (19). The FNDC5 gene encodes a membrane protein,

termed fibronectin type III domain-containing protein5, which could

be proteolytically cleaved into a hormone called irisin (20). The

muscles and adipose cells have been regarded the major source of

irisin (21), and the post-exercise irisin secretion from muscles leads to

the activation of browning and energy expenditure in white adipose

tissues (20). IL-15 is a four-a-helix-bundle pro-inflammatory

cytokine that plays an important role in stimulating both innate

and adaptive immune responses (22). IL-15 mRNA level has been

found increased in skeletal muscle groups dominated by type 2 fibers,

especially after resistance exercise (23). Myostatin, as a member of the

transforming growth factor b (TGF-b) superfamily, is a myokine that

regulates skeletal muscle growth by inhibiting muscle hypertrophy

(24). As genes that are strongly related with physical exercise and

skeletal muscle, these four genes have been revealed to influence

tumorigenesis and cancer prognosis directly or indirectly.

The development of single-cell RNA sequencing (scRNA-seq)

technology and related data analysis methods has provided

unprecedented opportunities to reveal the molecular characteristics of

different immune cell populations in TME (25). Previous studies have

reported that exploring gene expression profiles based on the molecular

characterization of immune cells extracted from scRNA-seq data may be

an effective way to predict prognosis and immunotherapeutic responses

in cancer patients (25, 26). In this study, we first performed a

comprehensive analysis of scRNA-seq of LUAD to understand the

molecular features of four model genes (BDNF, FNDC5, IL15, MSTN)

in LUAD. Next, an MFI (Muscle failure index) was constructed for

predicting the prognosis of LUAD by bulk RNA-seq analysis.

Additionally, the predictive ability of MFI was validated in databases

from TCGA and GEO, and the relationship between MFI and

immunotherapy responses in LUAD was investigated, which may

provide insight for further individualized treatment.
Methods

Online database data extraction

The single-cell transcriptome dataset GSE131907 was collected

from the GEO database (https://www.ncbi.nlm.nih.gov/geo/) and the

data were processed using the 10x Genomics method, containing 58
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sequencing cases from 44 patients. We selected 29 samples for further

analysis, containing the normal lung tissues, early stage, advanced

stage and brain metastatic cancer cases in the dataset. For detailed

data processing and ethics, please refer to the original article (27).

Transcriptome RNA sequencing data, Mutect2 mutation data,

HumanMethylation450 array, copy number variation (CNV) data

and corresponding clinical information of TCGA-LUAD patients

were downloaded from TCGA database (https://cancergenome.nih.

gov/) using GDC API. A total of 492 LUAD samples were collected

after excluding patients with loss of follow-up and missing clinical

information. The raw FPKM sequencing data were normalized by TPM

and used as a training cohort. Three mature LUAD cohorts were

collected from GEO: dataset GSE30219 from the Affymetrix HG-U133

Plus 2.0 Array platform, dataset GSE72094 from the Rosetta/Merck

Human RSTA Custom Affymetrix 2.0 platform, and dataset GSE72094

from the Illumina HumanWG-6 v3.0 expression beadchip. To prevent

batch effects on the chips, we merged the three GEO datasets and log2

normalized the data, using the “sva” package’s combat function (28).

Figure S1 showed that the batch effect is well removed. A total of 615

LUAD metadata with complete clinical information were used as the

validation cohort. We collected publicly available immunotherapy

cohorts with complete clinical information and transcriptomic data,

finally accepted a cohort of 298 advanced uroepithelial cancer patients

receiving anti-PD-L1 immunotherapy (Imvigor210) (29), and a non-

small cell lung cancer (NSCLC) cohort containing 27 patients treated

with PD1 (GSE135222) (30).
Single-cell RNA sequencing data analysis

The R package “Seurat” was used to process the scRNA-seq data

(31). Briefly, cells with “min.cells< 3” and “min.features< 200” were

excluded. After filtering cells with > 60% mitochondrial sequencing

counts and nFeature_RNA > 7000, a total of 47822 cells were retained

for further analysis. The dataset was then normalized using Seurat’s

NormalizeData and ScaleData functions, and the Python package

“scanpy” was used to visualize gene expression in different cell types.

Cell types were identified according to the cell annotations provided

in the original text. The R package “CellChat” was used to identify

receptor-ligand interactions between cell clusters (32). 8 receptor-

ligand interactions between cell clusters were identified at the

molecular level, and the pathways of intercommunication were

inferred. Receptor-ligand pairs with P-values<0.05 were screened to

assess the molecular interaction network between cells.
Construction and validation of MFI models

The TCGA cohort was used as the training model. Firstly,

myokine/exerkine-related genes of interest were identified by

correlation analysis (|cor|>0.4), details of which are provided in

Table S1. One-way COX regression screened for independent

prognostic factors among 884 myokine/exekine-related genes, those

factors with P<0.01 were used for further analysis. The LASSO

penalized Cox proportional risk model was used to identify the best

prognostic model, and a 5-fold cross-validation was set to prevent

overfitting. Considering the random sampling of cross-validation, 300
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iterations were performed to identify the most stable prognostic

model. The model with the highest frequency of occurrence was

used as the final prognostic model and the MFI (Muscle failure index)

was generated according to the formula:

MFI =oi Coefficient(mRNAi)� Expression(mRNAi)

To assess the predictive ability of the risk scores in the training

and validation sets, we used the “survcomp” R package to calculate the

consistency C-index, with larger c-index indicating the prediction

being more accurate (33). The high-MFI and low-MFI groups were

divided based on the median MFI, and the prognostic value of the risk

model was systematically assessed by Km survival curves, single- and

multi-factor Cox regression, and time-dependent ROC curves.
Functional enrichment and immune
infiltration analysis

We performed ssGSEA analysis to assess the immune-related

pathway activity of the samples based on previously published

molecular markers via the R package “gsva”, details of which are

provided in Table S2. We also performed GSEA analysis between the

high and low MFI groups and screened for significant KEGG

pathways with p<0.05. Functional enrichment of genes was

achieved using the Metascape database (www.metascape.org/).

We estimated the infiltration abundance of 22 immune cell types

in the tumor samples using the R package “CIBERSORT” (34). The

immune activity and tumor purity of the samples were assessed by the

Estimate algorithm. The Immunophenoscore (IPS) was calculated

based on previous studies, and higher IPS indicated stronger immune

activity of the samples (35).

Finally, we also collected the Homologous Recombition Defects

(HRD) score, Intratumor Heterogeneity, indel neoantigens and SNV

neoantigens of the samples, from the study of Thorsson et al (36).
Dissecting the picture of genomic variation
between two subgroups

To compare the differences in mutation burden between the high

and low MFI groups, we processed the mutation data using the

“maftools” R package (37). We first calculated the total number of

mutations in the samples, then identified those genes with a

minimum number of mutations >40, compared the differences in

mutation frequency between the high and low MFI groups using chi-

square tests, and visualized them using maftools. CNV data were

processed by Gistic 2.0 on the Genepattern website, identifying

significantly amplified and missing chromosomal segments,

assessing CNV differences on chromosomal arms, and visualizing

CNV results using the R package ggplot2.
Evaluating risk models for
immunotherapy response

To assess the immunotherapy responses of patients, we predicted

the responses using the TIDE (http://tide.dfci.harvard.edu) web tool.
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In addition, the unsupervised subclass mapping algorithm (https://

cloud.genepattern.org/gp/) was used to assess the responses to anti-

PD1 and anti-CTLA-4 immunotherapy. Lastly, we validated the

predictive efficacy of MFI in the immunotherapy cohort Imvigor21.
Clinical samples collection

73 patients diagnosed with LUAD and treated at our hospital

from September 2015 to December 2020 were selected from tumor

tissue and adjacent normal tissue (at least 5 cm away from lung

cancerous tissue), including 46 males and 27 females, with a median

age of 49-79 years and a mean age of (64.9 ± 7.3) years. All patients

were also followed up every three months for five years. Patient

inclusion criteria: 1, all were diagnosed with LUAD by postoperative

pathological examination; 2, all did not receive radiotherapy or

chemotherapy before surgery; 3, clinical data were complete. Patient

exclusion criteria: 1, combined with chronic systemic diseases; 2,

combined with other malignant tumors. This study design was

reviewed and approved by the Medical Ethics Committee of the

Zhongda Hospital, Southeast University (No. 2021ZDSYLL090-Y01).

In accordance with the principles of the Declaration of Helsinki. All

patients provided and signed the informed consent.
qPCR

Total RNA from tumor tissue and cells was used using RNAiso

Plus (TAKARA, Otsu, Shiga, Japan) and Trizol LS Reagent

(TAKARA, Otsu, Shiga, Japan), respectively. The reliability of the

obtained RNA was then verified using formaldehyde denaturation

electrophoresis assay to continue the subsequent experiments.

Subsequently, reverse transcription polymerase chain reaction (RT-

PCR) experiments were performed using the PrimeScript™ RT kit

(TAKARA, Otsu, Shiga, Japan) strictly according to the instructions.

The mRNA expression levels were quantified by standard real-time

quantitative PCR methods, using SYBR Premix Ex Taq (TAKARA,

Otsu, Shiga, Japan). GAPDH was used as a reference gene.
Immunofluorescence

Sections were routinely dewaxed and rehydrated and incubated

with PD-1 primary antibody (1:200, ABcam) and CTLA4 primary

antibody (1:100, ABcam) at 4°C overnight. Cell climbing slides were

washed with PBS and incubated with Alexa Fluora 594 or Alexa

Fluora 488-labeled sheep anti-rabbit or secondary antibody (1:5000,

ABcam) for 1h. The fluorescence intensity of PD-1 and CTLA4 was

followed by DAPI nuclear fluorescence microscopy (Leica

DM 3000).
Bioinformatics and statistical analysis

All statistical analyses and graphing were performed using R

software (version 4.04). The Wilcoxon test was used for the

comparison between two groups, and differences in proportions
Frontiers in Immunology 04
were compared by chi-square test. The Kaplan-Meier plotter was

used to generate survival curves and statistically significant differences

were assessed using the log-rank test. Time-dependent ROC curves

(tROC) were plotted using the R package “survivalROC”. Single- and

multi-factor COX regressions were done using the R package

“survival”. The R package “rms” was used to plot nomogram and

calibration curves, and Decision curve analysis (DCA) was performed

via the DCA package. Differences were considered significant at the

values of two-tailed p< 0.05 unless especially specified.
Results

Identification of the expression profile of
myokine/exerkine genes in LUAD

Our study focused on four myokine/exerkine genes (BDNF,

FNDC5, IL15, MSTN). We first summarized the genomic

regulatory profiles of myokine/exerkine genes in TCGA-LUAD

patients (Figure 1A). These four genes showed significant

expression differences between tumor and normal tissues, with

FNDC5 downregulated in tumors, whereas BDNF, IL15 and MSTN

upregulated in the tumor group. Further, rare mutations and

extensive copy number variants (CNVs) of these genes were

observed, suggesting that CNVs contributed to the regulation of

these genes. For example, extensive copy number amplification of

MSTN in tumors may lead to increased expression of MSTN in

tumors. In contrast, in terms of IL15, mainly copy number deletion

could be observed. Moreover, DNA methylation plays a regulatory

role for BDNF and MSTN, lower methylation levels may cause an

abnormal increase of BDNF and MSTN in tumor samples. We then

analyzed the correlation of the four myokine/exerkine genes

(Figure 1B), which showed that BDNF was not significantly

correlated with the other three genes, while IL15 was negatively

correlated with FNDC5 and positively correlated with MSTN;

MSTN and FNDC5 were positively correlated. Subsequently, we

found that IL15 and MSTN were favorable factors for OS in LUAD

patients, while FNDC was an unfavorable factor for OS in LUAD

patients. BDNF had no significant effect on survival (Figure 1C). We

analyzed the dataset GSE131907 at single-cell resolution and

identified a total of eight cell subpopulations according to the

original annotation (Figure 1D). The four genes were apparently

increased in tumor cells, and in addition, IL15 was widely distributed

in the immune cell population (Figure 1E).
The expression of four myokine/exerkine
genes is associated with a poor prognosis in
LUAD patients and with immune escape

We examined the mRNA expression of four myokine/exerkine

genes, BDNF, FNDC5, IL15, and MSTN, in tumor and paraneoplastic

tissues. The mRNA expression of BDNF, IL15, and MSTN were

significantly higher in tumor tissues than in paraneoplastic tissues,

while the expression of FNDC5 was significantly reduced in tumor

tissues (Figure 2A). Further analyzing the correlation of these four

genes for whether they had lymph node metastasis, whether they were
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positive for ki67, and the clinical stage of the patients according to the

clinical baseline information of the patients, we found that high

expression of the four genes was associated with the tumour

progression of the patients with LUAD (Figures 2B–D). Moreover,

we conducted a Kaplan-Meier analysis of the correlation between the

expression of the four genes in patients’ survival over 3-5 years. The

cut-off thresholds was the median level of BDNF, FNDC5, IL15, and

MSTN mRNA level. And the results showed that patients with high

expression of IL15 and MSTN and low expression of FNDC5, had a

longer survival, while BDNF had no significant effect on survival

(Figure 2E). In Figure 2F, we detected the staining intensity of PD1

and CTLA4 in tumor tissues by immunofluorescence, and analyzed

the correlation between the mRNA levels of the four genes and the

staining fluorescence intensity of PD1 and CTLA4. The results
Frontiers in Immunology 05
showed that high expression of BDNF, IL15, MSTN corresponded

to high fluorescence intensity of PD1 and CTLA4, while the

expression of FNDC5 was negatively correlated with the

fluorescence intensity of PD1 and CTLA4.
Construction and validation of MFI model

We identified genes significantly associated with the four genes

using pearson correlation analysis, and a total of 884 muscle failure-

associated genes were identified according to a cor>0.4 threshold

(Figure 3A). Detailed results are provided in Table S2. Next, 56

muscle failure-related genes were determined with significant

prognostic efficacy using one-way cox regression analysis. We came
A B

D E

C

FIGURE 1

Genomic regulation of myosin genes in LUAD. (A) Transcriptomic profiles of the mRNAs of four secreted proteins, from left to right: analysis of the
differences between tumor and normal samples, FNDC5 was down-regulated, while IL15, BDNF, and MSTN were up-regulated; mutations: all four genes
had few mutations and mutations were not the main regulators of these genes; the frequency of chromosomal amplification and deletion at the
corresponding loci could be seen to be substantial. In terms of genomic variation, these four proteins were mainly regulated by copy number variation,
for example, the amplification number of MSTN was high, which may lead to its overexpression; methylation regulation, the methylation levels of BDNF
and MSTN were negatively correlated with mRNA expression, and lower methylation levels may lead to the abnormal increase of BDNF and MSTN in
tumor samples. (B) Correlation of the four genes, BDNF was not significantly correlated with the other three genes, while IL15 was negatively correlated
with FNDC5 and positively correlated with MSTN; MSTN and FNDC5 were positively correlated. (C) The survival curves of four genes, FNDC5, IL15 and
MSTN were all favorable factors for OS in LUAD patients, while BDNF had no significant effect on survival. (D) Cellular subpopulation of lung cancer
single cell data, a total of 8 cellular subpopulations were identified according to the original annotation. (E) Distribution of four genes in different cell
subpopulations, IL15 was mainly found in immune cells, while BDNF, MSTN and FNDC5 all mainly in malignant cells. ***P<0.001.
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up with the muscle failure-related genes related risk models using

these 56 muscle failure-related genes and performed 300 iterations of

LASSO regression. Among all ten combinations, we found that the

model containing 10 genes was the most stable (150/300), and it had

good accuracy in both the training and validation cohorts

(TCGA:0.685; GEO:0.594) (Figure 3B). This LASSO model was

constructed based on the optimal l value of 0.0522, and the

detailed model coefficients are provided in Table S3. We also

constructed the MFI in the external validation cohort. Based on the

C-index, we found that the MFI was a reliable predictor in both

cohorts (Figure 3C). Patients at high and low risk were distinguished

using the median MFI. Survival analysis suggested that patients in the

high-risk group had lower survival than those in the low-risk group

(Figure 3D; P<0.0001). Figure 3E reveals the distribution of MFI in

the TCGA cohort and the transcriptional profiles of the model genes.
Frontiers in Immunology 06
The AUC values of the model at 1, 3, and 5 years were 0.743, 0.716,

and 0.677, respectively (Figure 3F). tROC analysis indicated that MFI

was the best predictor (Figure 3G). Subgroup analysis showed that

MFI was suitable for patients of different ages and genders, while in

terms of staging, it was mainly suitable for patients with early LUAD

(Figure 3H). The predictive efficacy of the model was also evaluated in

the validation set, with survival analysis suggesting a significantly

worse survival of the high MFI group (Figure S2A, p<0.0001). Figure

S2B shows the distribution of MFI and expression of model genes in

the GEO cohort. ROC analysis exhibited adequate predictive efficacy

of the model in the external validation set, specifically, 0.615 at 1 year,

0.624 at 3 years, and 0.583 at 5 years (Figure S2C). Subgroup analysis

demonstrated that MFI was applicable in young and middle-aged

patients (Age<70), both genders, and in early LUAD patients

(Figure S1D).
A

B

D

E

F

C

FIGURE 2

The expression of four myokine genes is associated with a poor prognosis in LUAD patients and with immune escape. (A) qRT-PCR detection of mRNA
expression of BDNF, FNDC5, IL15, MSTN in cancer and paraneoplastic tissues; (B–D) Correlation of mRNA expression of BDNF, FNDC5, IL15, MSTN with
lymph node metastasis, clinical stage, and ki67 in patients with LUAD; (E) Kaplan-Meier analysis of the correlation between the survival time in LUAD
patients over 3 to 5 years and the expression levels of BDNF, FNDC5, IL15, and MSTN; (F) PD-1 and CTAL 4 was detected by double-label
immunofluorescence and analyzed for the correlation of the fluorescence intensity of PD-1 as well as CTAL 4 with the expression of BDNF, FNDC 5, IL
15, and MSTN. *P<0.5, **P<0.01, ****P<0.0001.
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Assessing the predictive independence
of MFI

We first analyzed the relationship among the risk score, clinical

characteristics of the cancer patients, and their prognosis, using one-

way Cox and multi-way Cox regression. In one-factor Cox regression,

MFI was an independent prognostic indicator in both the training

and validation sets (p<0.0001) (Figure 4A). Multi-factor Cox

regression showed that, after correction for other clinical

characteristics, MFI remained an independent prognostic factor for

OS in both the training and validation cohorts (p<0.0001)

(Figure 4B). Thus, we concluded that the risk score could be a

reliable prognostic marker for OS in LUAD patients. We then

constructed the Nomogram to better quantify risk assessment in

LUAD patients (Figure 4C). Nomogram correction curves showed

good stability and accuracy of the Nomogram model at 1, 3 and 5

years (Figure 4D). tROC analysis suggested that the Nomogram

model was the best predictor compared to clinical characteristics

(Figure 4E). We further performed DCA to evaluate the decision
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benefit of the Nomogram model, and it demonstrated that

Nomogram was suitable for risk assessment of LUAD patients at 1,

3, and 5 years (Figure 4F).
MFI at single-cell resolution

We examined the distribution of MFI model genes in different cell

populations and found that EMP3, CD74 and BIRC3 were widely

distributed in immune-related cell populations and less expressed in

malignant cells. The remaining 7 model genes were relatively silent in

all cell types (Figure 5A). Further, we generated MFIs in the single-cell

dataset, which revealed that MFIs were mainly allocated in a specific

group of malignant cells as well as in most immune cells (Figure 5B).

We classified malignant cells into high and low MFI groups based on

MFI (Figure 5C). To understand the functional differences of these

groups, we performed cellular communication analysis. The

communication networks between all cells are shown in Figure 5D

and Figure 5E, with high MFI cells receiving and sending more signals
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FIGURE 3

Building and validating the MFI model. (A) We identified genes with high correlation with our 4 model genes(r>0.4), finding 884 genes in total, including
580 of IL15, 40 of FNDC5, 6 of BDNF and 258 of MSTN. (B) Screening the best LASSO model, left: frequency of different gene combinations in the
LASSO Cox regression model; right: C-INDEX of the best model in the TCGA and GEO cohorts. (C) Comparison of C-INDEX of different metrics, MFI had
a leading advantage in TCGA. (D) Survival curves of high and low LIS subgroups, high MFI group showed significant worse survival. (E) Distribution of MFI
in the TCGA cohort and transcriptional profiles of model genes. The scatter plot showed the survival status of patients with different LIS in the TCGA
cohort. The low MFI group had fewer death cases and better survival. ARNTL2, BIRC3, NMI, EMP3 were favorable factors, whereas CCR2, CD200R1,
BTN2A2, CD74, ZNF682, C1orf101 were adverse factors. (F) ROC plot of MFI in the TCGA cohort. The AUC values of the model at 1, 3, and 5 years were
0.743, 0.716, and 0.677, respectively. (G) tROC curve of MFI in the TCGA cohort. The results indicated that MFI is the best predictor. (H) Subgroup
analysis suggested that MFI was applicable to patients in different ages and gender groups, while in terms of staging, it was mainly suitable for patients
with early LUAD. *P<0.5, ***P<0.001.
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(Figure 5F). Finally, we inferred the specific pathways of intercellular

communication and found that high MFI cells showed stronger

activity in the GDF, VEGF, SEMA3 and UGRP1 pathways

compared to the low MFI group (Figure 5G). These results suggest

that high MFI cells could be characterized as more active in cancer

proliferation, metabolism, and angiogenesis.
Differences in the biological functions of the
two subtypes

We first identified DEGs between the two subtypes via limma

package, and a total of 806 DEGs were identified according to the

threshold of FDR<0.05, FC>2, of which 607 DEGs were upregulated in

the high MFI group and 199 DEGs were upregulated in the low MFI

group. Functional enrichment analysis showed that the upregulated

genes in the highMFI groupmainly regulated cell cycle and Gap-linked

pathways (Figure 6A), while those upregulated in the low MFI group

mainly regulated hematopoietic cell lineage, inflammatory response,

cell adhesion and lymphocyte migration (Figure 6C). GSEA analysis

indicated that the enriched pathways in the high MFI group were TCA

cycle pathway, pentose phosphate pathway, proteasome, and glycolytic

pathway (Figure 6B). On the contrary, the pathways that were enriched

in the lowMFI group were mainly B-cell receptors, T-cell receptors and
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Jak-stat signaling pathways, as well as hematopoietic cell line-related

pathways (Figure 6D). In conclusion, these results confirm that the low

MFI group has stronger anti-tumor immune activity, whereas the high

MFI tumor cells tend to have stronger metabolic and proliferative

activity, which may contribute to the differences in prognosis between

the two groups.
Dissecting the immune infiltration of MFI

We further evaluated the correlation between MFI and immune

landscape in detail. Initially, we assessed MFI in terms of immune

activity, and the heat map demonstrates the relationship between

MFI, immune pathway activity, typical immune checkpoints, and

clinical features (Figure 7A). The corresponding correlation analysis

is shown on the right side of the heat map (Figure 7B). The results

demonstrated that myeloid immunity, PD-L1 and IDO1, were

significantly increased in the high MFI group and positively

correlated with MFI. Conversely, all immune pathway activities

except MHC Class 1 and paracancerous immunity were

significantly increased in the low MFI group, and almost all

immune checkpoints were negatively correlated with MFI and

enhanced in the low MFI group. We next evaluated MFI from the

perspective of immune infiltration, and the heat map shows the
A B
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C

FIGURE 4

Assessing the predictive independence of MFI. (A) One-factor COX regression analysis of OS in TCGA and GEO cohorts. MFI was an independent
prognostic indicator in both the training and validation sets; (B) Multi-factor COX regression analysis of OS in the TCGA and GEO cohorts. After
correcting the other three common clinical variables, multifactorial cox still suggests MFI as a significant independent prognostic factor;
(C) Quantification the risk of individual patients via Nomogram to predict the survival at 1, 3, and 5 years; (D) Calibration curves of Nomogram at 1, 3, and
5 years. The results revealed satisfied stability and accuracy of Nomogram model at 1, 3 and 5 years; (E) tROC curves of Nomogram. Nomogram model
was a better predictor compared to clinical characteristics; (F) DCA curves of Nomogram at 1, 3 and 5 years.
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relationship between MFI, Estimate score, immune cell abundance

and clinical features (Figure 7C). The corresponding correlation

analysis is shown on the right side of the heat map (Figure 7D).

The results indicated increased tumor purity in the high MFI group,

whereas stromal cells and immune cells increased in the low MFI

group. In addition, we observed an increase of Tregs, M0

macrophages, neutrophils and mast cells in the high MFI group,

while monocytes, DC cells, memory B cells and CD4 memory T cells

were increased in the low MFI group. Finally, we analyzed four

indicators related to tumor-specific antigens: HRD score, Indel

neoantigens, Intratumor Heterogeneity and SNV neoantigens

(Figures 7E–H). The results revealed that MFI has a negative

correlation between HRD score, Indel neoantigens and SNV

neoantigens, and these three indicators were increased in the low

MFI group. Intratumor Heterogeneity, however, showed no

significant correlation with MFI, indicating the low MFI group is

characterized with more severe chromosome instability, more tumor

neoantigens, and stronger immune activity, suggesting this group

may be more likely to benefit from immunotherapy.
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Correlation between MFI and
genomic variation

Several recent studies have observed that TMB is related with

immunotherapy responses, which may due to the increased

mutation-derived antigens generated by somatic cell mutations.

When the immune system recognizes those antigens containing

mutant peptides, anti-tumor immunity would then be activated.

Considering the critical role of TMB, we explored the correlation

between TMB and MFI. We summarized the mutational signature

events in the high and low MFI groups. The results showed that

smoking, APOBEC and DNA mismatch repair-related mutational

events (SBS4, SBS2 and SBS6; Figures 8A, B) occurred frequently

in both high and low MFI groups. Notably, two unknown

mutational events, SBS5 and SBS17b, also presented in high MFI

group, suggesting that SBS5 and SBS17b may be cancer markers of

that associated with muscle failure. Afterwards, we found a

negative correlation between MFI and TMB, and TMB was

significantly elevated in the low MFI group (Figure 8C).
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FIGURE 5

MFI at single-cell resolution. (A) Distribution of the model genes in different cells, showing that EMP3, CD74 and BIRC3 were widely distributed in
immune-related cell populations and less expressed in malignant cells. The remaining 7 model genes were less expressed in all cell types;
(B, C) Distribution of MFI in different cells. MFI was mainly distributed in a specific group of malignant cells and most of the immune cells (B); we divided
the malignant cells into high and low MFI groups based on MFI (C); (D, E) The cellular communication network of different cells. High MFI tumor cells
had more receptor-ligand communications; (F) The number of communications in different cells, High MFI tumor cells receive and send more signals,
indicating that these cells are more active; (G) Evaluation of specific communication pathways. Our results showed that compared to low MFI cells, high
MFI cells were more active in GDF, VEGF, SEMA3 and UGRP1 pathways.
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Forestplot shows the driver mutated genes with higher mutation

frequency in the low MFI group (Figure 8D), and Figure 8E shows

the mutational landscape of high frequency mutated genes in

LUAD patients in detail. CNV has been known to cause

chromosomal variation in another way, thus we further
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evaluated the relationship between MFI and CNV. We found an

increased frequency of amplifications and deletions at the

chromosome arm level in the low MFI group (Figure 8F). Box

plots showed an increase in amplification and deletion events in

the low MFI group (Figures 8G, H).
A

B

D

C

FIGURE 6

Differences in biological functions of the two subtypes. (A, C) GO analysis of high- and low-expressed genes. Functional enrichment analysis showed
that the upregulated genes in the high MFI group mainly regulated cell cycle and Gap-linked pathways (A), while the upregulated genes in the low MFI
group mainly regulated hematopoietic cell lineage, inflammatory responses, cell adhesion and lymphocyte migration (C); (B, D) KEGG analysis of high
and low-expressed genes. The enriched pathways in the high MFI group were TCA cycle pathway, pentose phosphate pathway, proteasome, and
glycolytic pathway (B). In contrast, the pathways that were enriched in the low MFI group are mainly B-cell receptors, T-cell receptors and Jak-stat
signaling pathways, as well as hematopoietic cell line-related pathways (D).
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Low MFI group is more sensitive to
immunotherapy

IPS can systematically assess effector immune cell activity and

immunotherapy responses in cancer patients, and we found

significantly higher IPS in low MFI group in both discovery TCGA

and GEO cohorts (Figure 9A, Figure S3A). Meanwhile, the TIDE

algorithm predicted that patients with low MFI may have higher

response rates to immunotherapy (P=0.01, Figure 9B). ROC analysis

showed that MFI exhibited a leading advantage over commonly used

evaluation indicators (AUC=0.607, Figure 9C), and the same result

was observed in the validation cohort (Figures S3B, C). Furthermore,

subclass mapping results in both the TCGA and GEO cohorts

suggested that patients in the low MFI group were more sensitive

to anti-PD1 therapy (TCGA: FDR=0.011, GEO: FDR=0.027)

(Figure 9D; Figure S3D). Patients with low MFI were also found to

benefit from anti-CTLA-4 treatment in the TCGA cohort (P=0.015,

Figure 9D). We constructed MFI in a well-established

immunotherapy cohort and showed significantly worse survival in

the high-risk group (P<0.001, Figure 9E). We then evaluated the

relationship between TMB, neoantigens and MFI in the

immunotherapy cohort and observed that MFI was negatively
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correlated with TMB and neoantigen number, with TMB and

neoantigen number significantly higher in the low-risk group

(Figures 9F, G), which may lead to a better outcome of PD-L1

immunotherapy. In conclusion, our results determined that low

MFI group is more sensitive to immunotherapy.
Discussion

As immunotherapy advances, a growing number of predictive

biomarkers of immunotherapy responses are being identified (38). The

impact of TME on cancer immunotherapy efficacy has been intensively

studied, and TME-related biomarkers are now attracting more attention

(39). However, reliable biomarkers and models focusing on tumorigenic

TME for immunotherapeutic response and prognosis in LUAD still

remain rare (40). The development and progression of scRNA-seq

technology provide us a way to comprehensively understand the

molecular signature of tumor-infiltrating immune cells in TME (41). It

was previously reported that the production of myokine/exerkines is

positively associated with the beneficial effects of exercise in cancer

patients (42, 43). However, little is known about the relationship

between exercise-mediated genes, exerkines, tumor microenvironment,
A B D
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FIGURE 7

Differences in immune infiltration between the two subtypes. (A, B) Assessing the relationship between MF, MFI, immune pathway activity, typical
immune checkpoints and clinical features in terms of immune activity. Tumor myeloid immunity, PD-L1 and IDO1 were significantly increased in the high
MFI group and positively correlated with MFI. On the contrary, the activity of all immune pathways except MHC Class 1 and paracancerous immunity was
significantly increased in the low MFI group, and almost all immune checkpoints were negatively correlated with MFI and increased in the low MFI group.
(C, D) The relationship between MFI, MFI, Estimate score, immune cell abundance and clinical features was evaluated from the perspective of immune
infiltration. The results revealed increased tumor purity in the high MFI group, while stromal cells and immune cells increase in the low MFI group. In
addition, Tregs, M0 macrophages, neutrophils and mast cells increased in the high MFI group, while monocytes, DC cells, memory B cells and CD4
memory T cells increased in the low MFI group. (E–H) Differences between the two groups in four indicators related to tumor-specific antigens: HRD
score, Indel neoantigens, Intratumor Heterogeneity and SNV neoantigens. The results showed a significant negative correlation between MFI and HRD
score, Indel neoantigens and SNV neoantigens, and the three indexes were significantly increased in the low MFI group; however, there was no
significant correlation between MFI and Intratumor Heterogeneity, which indicated more chromosomal instability in the low MFI group and more tumor
neoantigens with stronger immune system activity, suggesting that low MFI group tend to benefit more from immunotherapy. ns p>0.05; *p< 0.05;
****p< 0.0001.
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and cancer prognosis. Here, we used single-cell RNA sequencing data to

identify the expression profile of myokine/exerkine genes in LUAD and

constructed the MFI model in Bulk sequencing data based on interacting

genes. The significance of MFI in terms of clinical significance, biological

function, TME and genomic alterations were also systematically assessed.
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We first focused our perspective on the dynamic changes caused

by muscle injury in LUAD and developed the MFI model, which

could accurately predict the OS in patients with LUAD. Several

researchers have previously proposed models for the risk of

apoptosis, injury and stress-related LUAD (44–47).Our model
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FIGURE 8

Correlation between MFI and genomic variation. (A, B) Mutation marker events in the high and low MFI groups, showing that smoking, APOBEC and DNA
mismatch repair-related mutation events (SBS4, SBS2 and SBS6) were frequent in both high and low MFI groups. (C) Differences in TMB between the two
subtypes, showing that MFI was significantly negatively correlated with TMB, and the latter was significantly increased in the low MFI group.
(D) Forestplot showed the driver mutated genes with significantly higher mutation frequency in the low MFI group. (E) Oncoplot showed the mutation
landscape of TOP24 mutation driver genes among subtypes. (F) Histogram revealed the CNV events on chromosome arms among subtypes.
(G) Differences in overall amplification events between subtypes. (H) Differences in overall deletion events between subtypes. *P<0.5, **P<0.01,
***P<0.001, ****P<0.0001.
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showed better accuracy than previously reported methods, which was

confirmed by comparing the AUC values. Moreover, our model could

also be used to classify “cold” and “hot” tumors, which results in

differences in genomic alternation status and sensitivity toward

immunotherapy. To summarize, our results reveal for the first time

the poss ible impact of musc le damage on the tumor

microenvironment and show exciting clinical applications of LUAD.

We first identified the expression profiles of four genes (BDNF,

FNDC5, IL15, MSTN) in LUAD. FNDC5 was down-regulated in

tumors, while BDNF, IL15 and MSTN were up-regulated. Then, we

examined the mRNA expression levels of BDNF, FNDC5, IL15, and

MSTN, in tumor tissues and paracancerous tissues. The expression

levels of BDNF, IL15, and MSTN were significantly higher in tumor

tissues than in paraneoplastic tissues, while the expression level of

FNDC5 was significantly reduced in tumor tissues. Next, we analyzed

the dataset GSE131907 at single cell resolution and identified a total of 8

cell subpopulations according to the original annotation, finding that

IL15 was mainly distributed in immune, whereas BDNF, MSTN and

FNDC5 mainly distributed in malignant cells. We next generated the

MFI model based on muscle failure-related genes by the LASSO
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algorithm, which showed excellent predictive efficacy in both the

training dataset and the two external validation datasets, with a

significantly lower survival rate for high-risk patients. Further, we

analyzed of the correlation between the expression of the four genes

in patients’ survival over 3-5 years, and the results showed that patients

with high expression of IL15 and MSTN and low expression of FNDC5

had a longer survival. In addition, we detected the staining intensity of

PD1 and CTLA4 in tumor tissues by immunofluorescence, and

analyzed the correlation between the mRNA levels of the four genes

and the staining fluorescence intensity of PD1 and CTLA4. The results

showed that high expression of BDNF, IL15, MSTN corresponded to

high fluorescence intensity of PD1 and CTLA4, while the expression

level of FNDC5 was negatively correlated with the expression level of

PD1 and CTLA4. The results suggest that the expression of four

myokine genes is associated with poor prognosis and immune escape

in patients with LUAD.

Further, we analyzed the distribution of MFI model genes in

different cell populations, and the results showed that MFI mainly

distributed in a specific group of malignant cells as well as in most

immune cells. To understand the functional differences between
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FIGURE 9

Low MFI group is more sensitive to immunotherapy. (A) Differences in IPS between the two subtypes. Low MFI group was characterized with apparently
higher IPS; (B) IDE algorithm predicted the immunotherapy response rates in high and low MFI groups, showing that patients with low MFI had higher
response rates (p=0.01); (C) ROC curves showed the predictive accuracy of MFI and different immunomarkers. Compared to other assessments, MFI showed
a non-negligble advantage (AUC=0.607); (D) Subclassmapping assessed immunotherapy responses from another different perspectives. (E) Survival curves for
high and low MFI subgroups in the Imvigor210 cohort. (F) Correlation of MFI with Neoantigens in the Imvigor210 cohort. (G) Correlation between MFI and
TMB in the Imvigor210 cohort. *P<0.5, ****P<0.0001.
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different MFI subtypes of malignant cells, we performed cellular

communication analysis, which showed that high MFI cells receive

and send more signals compared to low MFI cells. We inferred

specific pathways of intercellular communication, and the results

suggest that high MFI cells are a group of cells that are more active in

cancer proliferation, metabolism, and angiogenesis.

Functional enrichment analysis showed that the MFI group had

stronger anti-tumor immune activity, while tumor cells with high MFI

had stronger metabolic and proliferative activity, which may contribute

to the differences in prognosis between the two groups. Moreover,

immune infiltration analysis also suggested the presence of much severe

chromosomal instability and more tumor neoantigens with stronger

immune system activity in the low MFI group, suggesting that

immunotherapy could bring more benefits to this group.

Next, to elaborate the molecular features of the two subtypes, we

compared the genomic alterations.We first summarized the mutational

signature events in the high and low MFI groups and found that

smoking, APOBEC and DNA mismatch repair-related mutational

events (SBS4, SBS2 and SBS6) showed high frequency in both high

and low MFI groups. Interestingly, two unknown mutational events,

SBS5 and SBS17b, also presented in high MFI group, suggesting that

SBS5 and SBS17b may be muscle failure-associated mutational markers

of cancer. MFI was significantly negatively correlated with TMB, which

significantly elevated in the low MFI group. We further evaluated the

correlation between MFI and CNV and observed an enhanced

frequency of amplifications and deletions in the low MFI group at

the chromosome arm level. Some studies have reported a negative

correlation between CNV and the benefit rate of immunotherapy,

which is contrary to our results and may be caused by more TMB

producing more neoantigens (48, 49). These results suggest that the

low-MFI group may have more tumor-specific neoantigens and

showed promoted sensitivity to immunotherapy.

Finally, considering the heterogeneity of subtypes in immunotherapy,

we evaluated the predicting efficacy of MFI. The results suggested that MFI

exhibited high accuracy in the immunotherapy cohort, and it also showed

better accuracy compared to commonly used biomarkers (MDSC, MSI

score, IFNG, CD8 and CD274).We found that patients with lowMFImay

have more neoantigens, which may lead to greater sensitivity to

immunotherapy. In conclusion, our results define that MFI is not only a

robust prognostic marker, but also a promising predictive marker

for immunotherapy.

There are several limitations of our study. First, this signature was

constructed based on a public dataset. Its predictive ability needs to be

further validated in a large prospective clinical study. Second, this

study only assessed the predictive ability of MFI indirectly, without

examining those patients receiving immunotherapy in real. Finally,

this study did not include any in vitro or in vivo evidence to further

explore the potential molecular mechanisms of MFI in predicting

prognosis and immunotherapeutic response.

In summary, we proposed and validated a new prognostic model

consisting of four muscle failure-related genes in LUAD, via a

comprehensive analysis of single cells and bulk RNA sequencing.

The model could serve as a valid prognostic biomarker and

potentially predict the immunotherapy responses in LUAD

patients. Our study provides new insights into the role of myokine/

exerkine genes in the prognosis and immunotherapeutic responses of

patients with LUAD.
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SUPPLEMENTARY FIGURE 1

Removal of the batch effect. (A) The Umap plot shows a significant batch effect

before removal. (B) The Umap plot shows no significant batch effect after removal.

SUPPLEMENTARY FIGURE 2

External validation of MFI. (A) Survival curves of the high and low MFI subgroups in

the GEO cohort. (B) Scatter plot showing the survival status of patients with different
MFI in the GEO cohort. (C) ROC analysis of MFI in the GEO cohort. (D) Subgroup
analysis of MFI in patients with different clinical characteristics in the GEO cohort.
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SUPPLEMENTARY FIGURE 3

Validation of subtype immune infiltration. (A) Differences in IPS between the
two subtypes in the GEO cohort. (B) Using TIDE algorithm in the GEO cohort

to predict the response rate to immunotherapy for high and low MFI groups.
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(C) ROC curves in the GEO cohort showing the predictive accuracy of
MFI and different immune markers. (D) Prediction of immunotherapy

response rates for high and low MFI groups in the GEO cohort via
Subclassmapping algorithm.
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