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the colorectal precancerous
adenoma stage to the
cancerous stage: Mechanisms
and clinical implications
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The majority of colorectal cancers (CRCs) are thought to arise from

precancerous adenomas. Upon exposure to diverse microenvironmental

factors, precancerous stem cells (pCSCs) undergo complex genetic/

molecular changes and gradually progress to form cancer stem cells (CSCs).

Accumulative evidence suggests that the pCSC/CSC niche is an inflammatory

dominated milieu that contains different cytokines that function as the key

communicators between pCSCs/CSCs and their niche and have a decisive role

in promoting CRC development, progression, and metastasis. In view of the

importance and increasing data about cytokines in modulating pCSCs/CSC

stemness properties and their significance in CRC, this review summarizes

current new insights of cytokines, such as interleukin (IL)-4, IL-6, IL-8, IL-17A,

IL-22, IL-23, IL-33 and interferon (IFN)-g, involving in the modulation of pCSC/

CSC properties and features in precancerous and cancerous lesions and

discusses the possible mechanisms of adenoma progression to CRCs and

their therapeutic potential.
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Abbreviations: ALDH1, aldehyde dehydrogenase 1; ALDH1A1, aldehyde dehydrogenase isoform 1A1;
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LGR5, leucine-rich repeat-containing G-protein-coupled receptor 5; MSCs, mesenchymal stem cells;

NSAIDs, nonsteroidal anti-inflammatory drugs; NF-kB, nuclear factor Kappa B; OLFM4, olfactomedin-4;

pCSCs, precancerous cancer stem cells; SCs, stem cells; STAT, signal transducer and activator of

transcription; TGF-b, transforming growth factor-b; TNF-a, tumor necrosis factor-a; Tregs, regulatory

T cells.
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Introduction

Globally, colorectal cancer (CRC) is the fourth most frequent

cancer and it seriously endangers the public health because of its

high incidence and mortality. According to data from 2020, 1.8

million newly diagnosed cases and 0.8 million deaths were

estimated worldwide (1). Although the precise mechanism for

CRC development is not fully clear, numerous clinical and basic

studies have strongly suggested that the development of CRC is

mostly a result of a stepwise process of histological, genetic,

molecular, and immunological alterations in precancerous

adenomas over time (2). Clinical observations also revealed

that only a small number of adenomas eventually progress to

CRCs and most adenomas maintain a relatively stable status for

years (3). Furthermore, although the exact mechanisms by which

various factors determine the progression of precancerous

adenoma to CRC remain incompletely resolved, extensive

evidence suggests that cancers originally develop from a

subpopulation of tumor-initiating cells, termed cancer stem

cells (CSCs) (4). CSCs are involved not only in tumor

initiation, but also in tumor progression, invasion, metastasis,

and resistance to anticancer therapies (5). Precancerous stem

cells, referred to as pCSCs, in adenomatous lesions may have the

potential for bidirectional differentiation into both benign and

malignant lesions, depending on their niche (6). Studies have

shown that the interaction between pCSCs and their niche has a

decisive role in directing the differentiation of pCSCs to CSCs,

which initiates the transitional process of adenoma to CRC (7).

Currently, significant efforts have been made toward the

evaluation of modulatory factors’ effects on pCSCs/CSCs

within the tumor microenvironment (TME) (8).

The adenoma/CRC TME is an inflammatory milieu, in

which several types of immune cells are recruited, activated,

and then undergo phenotypic and functional changes (9).

Accumulated data show that these immune cells together with

other types of cells, e.g., tumor cells, stromal cells, mesenchymal

stem cells (MSCs) and tumor endothelial cells, produce large

amounts of cytokines that play multiple modulatory roles in

immunosuppression regulation, tumor cell growth and

angiogenesis processes during colorectal carcinogenesis. The

overexpression of cytokines has been shown to be closely

associated with adenoma progression and CRC metastasis (2).

Emerging evidence indicates that stem cells (SCs) in both

physiological and pathological conditions deeply interact with

their inflammatory niche (10), in which cytokines may function

as the main communicators to control the CSC properties and

features that are strongly linked to the recurrence and metastasis

of CRC (11). Therefore, we hypothesize that one of the potential

mechanisms by which cytokines can promote the development

of CRC is via the modulation of pCSCs/CSCs from colorectal

precancerous adenomas to CRCs.

In view of the importance and increasing data about

cytokines as communicators in mediating crosstalk between
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pCSCs/CSCs and their surrounding niche, understanding this

modulatory effect is essential to exploit the functional

mechanisms of pCSCs/CSCs as their translation from

precancerous lesions to cancerous lesions. Thus, this review

will summarize recent advances in the research field of

cytokines involved in the modulation of pCSC/CSC properties

and functions. In addition, the possible mechanisms of the

progression of pCSCs to CSCs and their therapeutic potential

are discussed.
pCSCs/CSCs in the adenoma and
CRC tissues

Previous studies have revealed that pCSCs/CSCs can be

identified in both precancerous and cancer lesions (12). By

using reverse transcription-polymerase chain reaction and

RNA in-situ hybridization techniques, Jang et al. (13)

evaluated the expression of various SC markers, e.g., leucine-

rich repeat-containing G-protein-coupled receptor 5 (LGR5),

ASCL2, EPHB2 and olfactomedin-4 (OLFM4) in the

precancerous lesions of CRC. In the normal colonic mucosa,

hyperplastic polyps, and sessile serrated adenomas, SCs positive

for these markers were distributed in the base region of colonic

crypts. However, the distribution of SCs in adenomas was

presented as a diffuse pattern in the adenomatous epithelium

(13). Another study by Baker et al. (14) also showed that

conventional colorectal adenomas diffusely expressed high

levels of LGR5. In contrast, serrated lesions displayed basal

localization of LGR5 as seen in a normal crypt. Bartley and

colleagues (15) used aldehyde dehydrogenase isoform 1A1

(ALDH1A1) as a marker to identify SCs in precancerous

colorectal adenomas and found that adenomas located in the

right site of the colon tended to express a higher level of

ALDH1A1 labeling indices than those in the left site of the colon.

Furthermore, a study by Humphries et al. (16) used a

combination of nuclear and mitochondrial DNA lesions and

epigenetic markers to track the lineage of SCs in human

adenomas and identified SCs in precancerous adenomas. They

showed that new growth of intratumor clones of SCs occurred

infrequently, suggesting that SCs in precancerous adenomas

were mostly in a stable condition (16).

We have previously used a various set of cell markers, such

as Musashi, CD133, LGR5 and ALDH1, as biomarkers to

examine the presentation of SCs in different compartments of

adenomas (17). We found that populations of SCs labeled by

diverse markers were increased in the adenoma tissues. In

addition, a spatial change in SCs in the adenoma was

observed: SCs expanded from the base to the middle part of

the transitional crypt and final finally reached the surface of the

adenoma, reflecting a changed track pathway of SCs during the

development of adenomas. Further analysis revealed that

increased populations of LGR5 and aldehyde dehydrogenase 1
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(ALDH1) labeled SCs in the adenoma were associated with the

degree of dysplasia, suggesting the involvement of SCs in the

establishment of adenomas (17).

In a very elegant study, Gao’s group has experimentally

identified a new type of SC that has the potential for both benign

and malignant differentiation in colorectal precancerous lesions

and named these SCs ‘pCSCs’ (6). These pCSCs have the features

of both normal SCs and CSCs and are potentially regulated by

the stem-cell protein Piwil2 (6), which is widely expressed by

cancer cells and precancerous cells in various types of cancers

(18–23). Carpentino et al. found that ALDH1-positive pCSCs

were involved in the transition of colitis to CRC in xenografting

studies as well as in vitro (24), which was accompanied by

upregulated expression of interleukin (IL)-6 and IL-8 in the

TME (24). Therefore, exploring the mechanism by which pCSCs

progress to CSCs is critically important for understanding CRC

development mechanisms, and targeting pCSCs may have an

important translational significance in blocking the transition of

precancerous lesions to cancerous lesions.

Similarly, the evaluation of CSCs in CRC has also been

conducted. CSCs labeled by various markers, e.g., Musashi,

CD44, CD133, CD166, epithelial cell adhesion molecules, LGR5

andALDH1, were observed in the CRC epithelium (13–15, 17, 25–

30). Further studies showed that the density ofCSCswas associated

with the progression, metastasis, and prognosis of patients with

CRC(30–34).We tracked the temporal and spatial changesofCSCs

inCRC tissues and found thatCSCsweremoving up from the basal

to the middle region inside the adjacent transitional crypts and

finally reached the surface of CRC epithelium, with an increased

population (17). Recently, studies reported that CSCs increased the

tumor’s ability to resist chemotherapy or immunotherapy (33, 35,

36), indicating thatCSCs are as an effective target for improving the

treatment of CRCs (37, 38).

The regulation of CSC properties and features is an

important research field. Compelling evidence has shown that

that both pCSCs in adenomas and CSCs in CRCs live in a milieu

that contains dense immune cells and stromal cells (11, 39–46);

these cells produce high amounts of cytokines and form an

inflammatory niche that modulates pCSCs renewal,

differentiation and the early onset of cancer in a coordinated

manner (8, 44–46). Emerging research has shown that cytokines

are involved in the modulation of CSCs (11). Therefore, it is

necessary to evaluate cytokines in the surrounding niche that can

specifically affect the properties and features of CSCs and

determine the recurrence and metastasis of CRC.
Changes in the cytokine profile in
the TME along the colorectal
adenoma-carcinoma sequence

It is well known that the adenoma TME contains high

densities of immune cells that produce large amounts of
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cytokines (2). These cytokines have complex functions by

modulating immune function and interacting with premalignant

adenoma cells, which determines whether premalignant lesions

remain stable or progress (2). For example, we have demonstrated

that the levels of interferon (IFN)-g, IL-12A and IL-18 were

increased in adenoma tissues and decreased in CRC tissues (47).

Since these three cytokines have been recognized as critical factors

in maintaining antitumor immunity, the increasing IFN-g, IL-12
and IL-18 in the TME may imply an initial effort of the host to

combat the appearance of adenomas in the colorectal mucosa.

Importantly, IFN-g is a cytokine that plays a critical role in

controlling the survival of CSCs (48). Increased IFN-g levels at

the adenoma stage may help the host immunity to selectively

eliminate pCSCs sensitive to immunosurveillance and allow

pCSCs resistant to immunosurveillance to survive and progress

to CSCs.

From the adenoma stage to the CRC stage, tumor-

promoting relevant cytokines, such as IL-6, IL-8, IL-17A and

IL-33, are significantly increased (49–52). These cytokines have

been shown to stimulate CRC invasion and metastasis by

inducing immunosuppression and enhancing angiogenesis (53,

54). Mechanistically, cytokine-promoted CRC progression

occurs through the activation of diverse signaling pathways

(41). For example, IL-4 stimulation induced the activation of

signal transducer and activator of transcription (STAT)-6

phosphorylation in epithelial cells (55). Enhanced STAT-6

phosphorylation in patients with CRC was correlated with an

advanced stage and decreased survival (56). Animal experiments

showed that IL-6 promoted the proliferation of CRC cells and

the progression of both inflammation-related and sporadic

CRCs via the activation of STAT-3 signaling in mice (57, 58).

Similarly, IL-17A could indirectly activate STAT-3 through IL-6.

Furthermore, the promoting effect of IL-8 on cancer cell

proliferation, invasion, and angiogenesis occurred through

activation of the Akt and MAPK signaling pathways (59). The

nuclear factor kappa B (NF-kB) signaling pathway is also a key

regulator of cancer cell proliferation, progression and metastasis,

and activation of NF-kB protein cascade complexes by cytokines

has been observed in patients with CRC (60). Somone et al. (61)

demonstrated that the stimulatory effect of TH17 cytokines,

TNF-a and IL-6, could synergistically activate the NF-kB
signaling pathway and then promote CRDC cell growth. Their

results also showed that IL-22 and IL-6 could activate STAT-

3 signaling.

Interestingly, several studies have revealed that the activation

of these signaling pathways contributes to the stemness of CSCs

in CRC. For example, persistent action of STAT-3 was correlated

with enhanced stemness and proliferation of CRC cells (58).

Additionally, aberrant NF-kB signaling has been identified in

colon cancer cells, which was regulated by downregulating miR-

195-5p/497–5p and upregulating MCM2 (62). These data

suggest that the modulatory effect of cytokines on CSCs may

occur via the activation of diverse signaling pathways in CSCs,
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targeting signaling pathways by specific inhibitors may block the

effect of cytokines (63).

It must be noted that cytokines with anticancer capacity have

been reported. For example, studies have shown that IL-12

produced from mature dendritic cells is a strong inducer of

the antitumor-specific immune response (64), and IFN-g,
secreted by T helper (TH)-1 cells, cytotoxic T cells and nature

killer cells, plays a key role in the activation of anticancer cellular

immunity and the induction of tumor cell apoptosis (65). Studies

have revealed that decreased levels of IL-12 and IFN-g in patients
with CRC were associated with CRC progression (47, 65),

indicating they have a critical modulatory effect on

anticancer immunity.

The potential of cytokine-based immunotherapy in patients

with CRC has been intensively evaluated. For example, a study

by Ying et al. (66) showed that blocking IL-6 signaling with anti-

IL-6 or anti-IL-6 receptor antibodies suppressed STAT-3

signaling pathway and enhanced the efficacy of anticancer

drugs in vitro. Furthermore, a phase I/II clinical trial with

siltuximab (anti-IL-6 monoclonal antibody) monotherapy that

included 32 CRC patients showed that patients tolerated it well

at different doses. Studies have also shown the benefits of a

combination of anti-PD-1 with anti-IL-17 therapy in

microsatellite stable (MSS) CRC (67), and blocking IL-17

signaling may significantly enhance the response to anti-PD1

treatment both in vitro and in vivo (68). In addition, studies have

demonstrated that cytokines were associated with resistance to

therapies in CRC (69–72). Therefore, targeting these cytokine or

receptor signals, e.g., IL-17A, may have significant clinical

potential and improve the response to therapeutics and this

has been considered a promising immunotherapeutic strategy

(68, 73, 74).
Role of cytokines as communicators
in mediating crosstalk between
CSCs and their niche

Persistent exposure of the niche to proinflammatory

cytokines may significantly influence the biological features

and functions of CSCs in CRC. In the following paragraphs,

we briefly summarize and discuss the significance of cytokines as

the main communicators in mediating the interaction between

CSCs and their niche.
IL-4

IL-4 is a multifunctional cytokine that plays a critical role in

the regulation of host antitumor immunity in diverse types of

cancers. Recently, the modulatory effect of IL-4 on CSCs has

been identified (75, 76). Research data indicated that IL-4 could

potentially stimulate stemness genes and CSC survival, which
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were associated with cancer metastasis, recurrence, and drug-

resistance (77–81). Abrogation of IL-4 signaling with an IL-4Ra
antagonist or anti-IL-4 neutralizing antibody could strongly

inhibit the survival of colon CSCs and block resistance to

chemotherapeutic drugs (82). Interestingly, studies also

revealed that IL-4 could function as an autocrine factor to

participate in the regulation of CSCs and the induction of

drug resistance (82).
IL-6

IL-6 is an inflammatory cytokine produced by several types

of cells e.g., T lymphocytes, macrophages, adenoma/CRC cells,

and surrounding stromal cells (83). The current scientific

evidence suggests that IL-6 and its functional receptor IL-6R

are involved in the pathogenesis of CRC development,

progression, and metastasis (84, 85). Previous studies have

shown that IL-6 can activate STAT-3, the major downstream

signaling pathway for IL-6, and it plays a role in the maintenance

of CRC cell survival and tumor initiation (86, 87). JAK-STAT

signaling is highly active in CSCs, and studies have reported that

activation of STAT-3 by IL-6 has a profound effect on tumor

initiation and progression, invasion and metastasis by protecting

tumor cells from apoptosis, driving epithelial–mesenchymal

plasticity, and enhancing angiogenesis (86, 88, 89). In addition,

IL-6//STAT-3 is involved in the induction of drug resistance in

CRC (86, 88, 89).

Notch is another important oncogenic signaling pathway

that contributes to metastasis by inducing epithelial–

mesenchymal transition (EMT) in CRC (90). Studies have

shown that the activation of Notch1 leads to changes in CSC

phenotypes and properties (91, 92). The interplay between IL-6

and Notch has been studied, in which IL-6 was one of the main

inducers of the activation of Notch signaling in both MSCs (93)

and CSCs (94), and it controbuted to the induction of metastasis

and drug resistance (94). Thus, a regulatory effect of IL-6 on

CSCs has been postulated. Indeed, Wang et al. (95) reported that

IL-6 induced the deacetylation of FRA1 at the Lys-116 residue

located within its DNA-binding domain and promoted CRC

stem-like properties by affecting transcriptional and

posttranslational regulation.

A study by Ying et al. (66) demonstrated that the expression

of Notch 3 was significantly upregulated in colon cancer

spheroid-forming cells compared with adherent cells, which

was upregulated by IL-6 administration, and blocked by an

anti-human IL-6R monoclonal antibody. Furthermore, they

confirmed that blocking the IL-6 receptor or Notch3

inhibition may be superior to STAT-3 inhibition for CSC-

targeting therapies concomitant with anticancer drugs in CRC

cell lines (66). Kim et al. (96) found that IL-6 and IL-8 produced

by stromal myofibroblasts could expand CSCs by activating

Notch/HES1 and STAT-3 pathways in early CRCs, indicating
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an important role of cytokines in mediating the crosstalk

between stromal cells and CRCs. Interestingly, studies have

also revealed that the activation of Notch signaling could

enhance the production of IL-6 in stromal cells in the TME

and then promote tumor cell growth and disease progression

(97, 98). The study conducted by Jin et al. (99) indicated that the

activation of Notch signaling was mediated by two components

of the NF-kB cascade that could upregulate IL-6 expression in

breast tumor cells. In turn IL-6 enhanced the activation of Notch

again in an autocrine action pathway (100). Other studies

reported that IL-6/Notch signals could cooperatively stimulate

tumor metastasis and drug-resistance (101, 102). In addition,

Wongchana and Palaga (103) found a direct regulatory effect of

Notch on IL-6 activation at the transcript level in immune cells,

and another study (104) found that IL-6 was also a mediator of

crosstalk between fibroblasts and tumor cells in the CRC TME.

Taken together, these results strongly suggest that IL-6 is a

critical mediator of the interaction between CSCs and their

surrounding cells within the TME.
IL-8

Previous studies have suggested that IL-8 is an inflammatory

cytokine released frommany types of cells, such as macrophages,

stromal, endothelial, epithelial and tumor cells, involved in

promoting EMT, angiogenesis, tumor growth, metastasis and

the immunosuppressive microenvironment in human cancers

including CRC (105–112). Previous studies also revealed that a

high expression level of IL-8 in human CRC tissues, mediated by

IL-8 functional receptors IL-8RA and IL-8RB (43, 110, 113–

115), was particularly associated with the properties and features

of CSCs (51, 113). Recent studies have confirmed that IL-8 is an

of the important modulators of the biological behavior of CSCs

e.g., stemness properties that contribute to CRC recurrence and

metastasis (42, 113–117). These regulatory effects were found to

be mediated via a direct impact on the generation and

maintenance of CSCs (42, 113–117) through its functional

receptors IL-8RA and IL-8RB expressed in CSCs (43, 110,

113–115). A study by Hwang et al. revealed that the stemness

properties of CD44-positive CSCs in CRC were regulated by

Snail-IL-8 axis. Results from their works demonstrated a

significant correlation between Snail and both IL-8 and CD44

expression; Snail and IL-8 are frequently expressed in CD44-

positive CSCs, which have significant stemness properties and

more malignant features. The authors further revealed that Snail

could directly modulate IL-8 at the transcriptional level.

Blocking IL-8 signaling by using shRNA or neutralizing

antibody could significantly decrease the expression of

stemness genes and reduce drug-resistance. Their findings

provided direct evidence to show the modulatory effect of

Snail and IL-8 on stem-like properties in CRC.
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Luo et al. (118) also demonstrated that mono (2-ethylhexyl)

phthalate treatment could remarkably increase the population of

CSCs and promote the association of the b-catenin-TCF with the
IL-8 promoter, both in cell lines and in mice. Chang et al. (119)

demonstrated that Oct4 is a gene involved in the stemness of SCs

and it is regulated by cytokines. They reported that IL-8

stimulated the expression of OCT4 and stemness properties in

tumor cells (119). Fisher et al. (120) confirmed that targeting IL-

8 signaling in the TME could remarkably decrease the tumor

volume in mice with xenografts. They further showed that IL-8

stimulation induced a dose-response in in vitro CSCs, and

blocking IL-8 or IL-8 receptor signals significantly inhibited

cell cycle progression (cyclin D1 and B1) and induced a

decreased rate of proliferation and angiogenesis in both in

vitro CSCs and in vivo xenograft mice (120). Recently,

Shimizu and Tanaka (121) showed that overexpression of IL-8

could induce increased glucose uptake, which was required for

the generation and maintenance of CSC characteristics in colon

cancer cells.

The effect of IL-8 produced by stromal cells on CSCs was

also studied. Kim et al. (96) showed that IL-8 produced from

stromal myofibroblasts could expand the population of CSCs by

activating hes family bHLH transcription factor 1 in early CRCs,

suggesting an interaction between CSCs and stromal cells.

Recent evidence has shown that MSCs are an important

source of IL-8, and MSC-derived IL-8 levels are even higher

than CRC cell-derived IL-8 levels in CRC (122), which

stimulates angiogenesis in a paracrine manner (113).

Furthermore, the activation of the IL-8 network, modulated by

a set of cytokines such as IL-1b (123), in the TME may

contribute to the establishment of an immunosuppressive CSC

niche (11, 113–115). In a recent study, we showed that the IL-8

niche of CSCs is regulated by IL-1b throughout the colorectal

adenoma-carcinoma sequence (123). Interestingly, recent

studies also reported (124) that IL-8-derived from CRC cells

with high stemness features stimulated the process of

angiogenesis. Therefore, this evidence suggests that crosstalk

between CSCs and their surrounding cells contributes to tumor

angiogenesis and progression, in which IL-8 functions as a key

regulator of CSCs in CRC (113).
IL-10

IL-10 is produced by many types of cells, including T cells,

monocytes, macrophages, and epithelial cells. IL-10 exhibits a

dual role, both promoting and protecting effects, in CRC

development and progression. Studies have shown that

binding of IL-10 to its receptor IL-10Ra results in the

activation of signals e.g., STAT-1, STAT-3, and STAT-5, and

then activates selected genes (125). Kang et al. previously

reported that IL-10 promoted self-renewal of hematopoietic
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SCs (126). Recently, Biton et al. (127) found that intestinal SCs

(ISCs) expressed several cytokine receptors including the IL-10

receptor IL-10Ra. They reported that both coculture with

intestinal regulatory T cells (Tregs) and stimulation with IL-10

led to ISC expansion within organoids, and cells from IL-10-

treated organoids had a significantly more “stem-like”

pseudotime distribution (127). Their results indicated that IL-

10 exhibits modulatory potential on ISC renewal. Since the

modulatory mechanisms of cytokines on CSCs are similar to

those on ISCs, we postulate that IL-10 may have a modulatory

effect on CSCs. Future studies that identify the expression of IL-

10Ra in pCSCs/CSCs and the exact effects of IL-10 on pCSCs/

CSCs need to be performed.
IL-17A

IL-17 is an inflammatory cytokine that released from

numerous types of cells such as TH17 cells, gamma-delta-T

cells (gd/IL17 cells), Tregs, stromal cells, and tumor cells.

Extensive studies have shown that IL-17A contributes to the

initiation, progression, metastasis, and drug-resistance in diverse

types of human cancers (69, 128). More recently, IL-17A has

been implicated in the regulation of CSCs in cancers (83, 129).

Previously, a study by Sui et al. (69) reported that IL-17A

contributed to resistance to the chemotherapeutic drug

cisplatin in vivo. Their results showed that IL-17 promoted the

viability of HCT116 colorectal cells treated with cisplatin, while

blocking IL-17 signaling downregulated apoptosis-related

proteins and led to an increased rate of apoptosis in HCT116

colorectal cells.

Furthermore, Lotti et al. (130) found that IL-17A produced

by tumor-associated fibroblasts in the CRC TME may drive the

growth of CSCs. Their data showed that exogenous IL-17A

enhanced CSC self-renewal and invasion, and targeting IL-17A

signaling could significantly suppress CSC growth. They

reported that fibroblasts in the TME were activated in

response to chemotherapy in patients with CRC, which further

resulted in increased production of IL-17A from activated

fibroblasts and functioned as a mediator for the induction of

drug-resistance. Therefore, they suggested that blocking IL-17A

signaling may be a potential therapeutic strategy for overcoming

drug resistance in CRC.
IL-22

IL-22 is the main cytokine product of TH22 cells (53). The

majority of studies showed a positive link between IL-22 and

CRC initiation and progression (131–134). Recent scientific

evidence suggests that the promoting effect of IL-22 on CRC

development occurs via the induction of stemness in tumor cells

(135). In line with this hypothesis, Xi et al. (136) demonstrated
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that IL-22 could stimulate the activation of STAT-3 and then

upregulate the expression of PD-1 in human colon cancer cells.

Since STAT-3 is highly expressed in CSCs, it is reasonable to

speculate about potential modulatory effect of IL-22 on CSCs.

Furthermore, studies have reported that the promoting effect

of IL-22 on CRC development occurs through the activation of

STAT-3 (137), and neutralizing both IL-22 and STAT-3 signals

reduces tumorigenesis in vivo and in vitro (61). Kryczek et al.

(138) have previously shown that IL-22 could enhance CRC cell

stemness and tumorigenic potential by upregulating core stem

cell genes that relied on a STAT-3-dependent pathway, and

pretreatment with anti-IL-22 antibody could significantly

suppress tumor development and growth in mice after the

subcutaneous injection of primary colon cancer cells.

Lindemans et al. (139) further confirmed that recombinant IL-

22 could directly increase proliferation and promote intestinal

SC expans ion through the ac t iva t ion of STAT-3

phosphorylation in LGR5-positive SCs and that this process

was involved in intestinal epithelial regeneration.

OLFM4 is a member of the olfactomedin domain-containing

protein family, and overexpression of OLFM4 has been

identified in intestinal SCs (140). Recently, Neyazi et al. (141)

reported that overexpression of OLFM4 in the colonic

epithelium was modulated by IL-22. By using patient-derived

colonic epithelial organoid cultures (EpOCs) model, they were

able to show that IL-22 stimulation significantly upregulated the

expression of OLFM4. Dame et al. (142) confirmed that OLFM4

in LGR5 positive pCSCs in the colonic adenomatous epithelium

was modulated by IL-22. Their findings indicated that pCSCs are

regulated by IL-22 in precancerous adenomas. Finally, studies

indicated that IL-22 might also be implicated in drug resistance

in both CRC patients (143) and CRC cell lines (144).

Additionally, studies that focus on the contributory

mechanisms of IL-22 to drug resistance in CRC are necessary.
IL-23

IL-23 is an inflammatory cytokine mainly produced by TH

cells, macrophages, and dendritic cells. In patients with adenoma

and CRC, increased IL-23 has been detected and may function as

an upstream factor to regulate the production of IL-17A from

TH17 cells (145). A study byWang et al. (146) showed that IL-23

stimulated the self-renewal of CD133 positive CSCs in ovarian

cancer in an autocrine manner by activating the STAT-3 and

NF-kB signaling pathways. In addition, IL-23 can activate

stemness-relevant genes, such as the Wnt/Notch signaling

pathway in esophageal carcinoma (147) and the STAT-3

signaling pathway in gastric cancer (148). Furthermore, a

study by Chan et al. (149) showed that IL-23 was sufficient to

induce colorectal tumorigenesis. Suzuki et al. (150) reported that

IL-23 could directly stimulate the proliferative and invasive

activities of CRC cells, and Zhang et al. (151) reported a
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selective effect of IL-23 on CRC metastasis both in vitro and in

vivo; thus, all this evidence may suggest a direct or indirect effect

of IL-23 on CSCs.
IL-33

As reviewed by us and others, the contribution of IL-33 to the

development and progression of CRC has been intensively studied

(54, 152). Considerable evidence suggests that IL-33 promotes the

development of CRC through several mechanisms, such as stromal

remodeling, proangiogenesis, the induction of other protumor

factors and immunosuppression (54). The modulatory effect of

IL-33 on the properties of SCs has been reported. For example,

Huang et al. (153) reported that hematopoietic SC regeneration

after radiation injury could be stimulated by IL-33. Taniguchi and

colleagues (154) reported that the formation of an IL-33–TGF-b
niche was vital for the promoting effect of CSCs on carcinogenesis

in a mouse model of squamous cell carcinoma, in which IL-33

stimulated the differentiation ofmacrophages and then sent TGF-b
signals to CSCs to induce invasion and drug-resistance. Zhang

et al.’s study showed that the serum level of IL-33 may serve as a

predicator of cetuximab treatment efficacy in patients with

CRC (72).

Regarding the role of IL-33 in colorectal adenomas, IL-33

signaling has been reported to promote intestinal polyposis via

activation of the tumor stroma (155). More recently, Fang et al.

(156) revealed apromoting effect of IL-33 on stemnessproperties in

CRC. They showed that IL-33 significantly activated the core stem

cell genes NANOG, NOTCH3, and OCT3/4 via the ST2 signaling

pathway, activated the phosphorylation of c-JunN-terminal kinase

(JNK) and enhanced binding of c-Jun to the promoters of the core

stem cell genes.
IFN-g

Several studies have shown that IFN-g is a critical cytokine

regulating CSC survival and stemness features (48, 157, 158). Ni

et al. (48) reported that IFN-g selectively upregulated the apoptosis
pathway and promoted the apoptosis process by binding to

receptors expressed in colon cancer LGR5-positive CSCs both in

vitro and in vivo. In addition, the authors found that the

administration of IFN-g with the chemotherapy agent

oxaliplatin resulted in a synergistic anticancer effect (48).

Furthermore, a study by Song et al. (159) showed that non-

small cell lung cancer-derived cell lines treatment with IFN-g at a
low dose induced a higher proportion of CD133 positive CSCs,

and treatment with IFN-g at a high dose resulted in enhanced

apoptosis of tumor cells, indicating a modulatory effect of a low

dose of IFN-g on tumor cell stemness. More recently, Zhuang et al.

(160) showed that IFN-g at a dose of 26.68ng/mL could

remarkably inhibit ALDH1-positive CSCs and decrease the
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expression of ALDHA1 protein in breast cancer cells. Therefore,

IFN-g might be proposed as a selective anti-CSC cytokine, and

modulating the IFN-g response could function as a targeting

strategy for CSCs in cancers (161). Indeed, we have previously

found that the expression level of IFN-g in the adenoma stage was

slightly increased and then it was significantly decreased in the

CRC stage, implying a selective role of IFN-g in the management

of malignant status along the adenoma-carcinoma sequence (47),

in which increased IFN-g in the adenoma stage maintains pCSCs

in a relatively stable state, and decreased IFN-g level in the CRC

stage enhances CSC stemness and malignancy. In the future, the

roles and exact mechanisms of IFN-g as a key factor in modulating

pCSCs/CSCs along the adenoma-carcinoma sequence need

further exploration.

Despite the complexity of the cytokine network, there are

now considerable data suggesting the modulatory effect of

cytokines on pCSCs/CSCs during the process of CRC

(Table 1). Based on current findings, the possible regulatory

mechanisms of protumor cytokines on CSCs are summarized

in Figure 1.
Clinical implications for CRC
development, prevention,
and treatment

Could modulation of cytokine signaling
affect the function of MSCs?

Published literature indicated that the interaction between

MSCs and cytokines might create a favorable milieu to promote

tumor angiogenesis, metastasis, drug resistance, and recurrence

(122, 162, 163). Recently, we showed that TH17/IL-17A signal

activation is associated with dynamic reaction of stromal cells

including MSCs throughout the colorectal adenoma-carcinoma

sequence (50), which has been verified as a promoting factor

contributing to the adenoma and CRC progression (164). Thus,

targeting cells or elements, e.g., fibroblasts, macrophages andMSCs

and extracellularmatrix (ECM) componentswithin theTME, could

remodel the CSC niche and this would affect CSC characteristics

(165). For example, tumor stromal fibroblast-derived IL-8

stimulates the stemness properties in ovarian cancer cells (166).

Similarly, tumor-associated macrophage-derived cytokines, such as

transforming growth factor (TGF)-b, tumor necrosis factor (TNF)-

a, IL-6 and IL-10, promote CSC transition and characteristics

through epithelial–mesenchymal transition (EMT) in diverse

types of cancers (167). Shintani et al. (168) reported that

fibroblast-derived IL-6 mediated the communication between

fibroblasts and cancer cells and contributed to chemoresistance by

enhancing EMT in non-small-cell lung carcinoma. In breast cancer,

blocking Hedgehog signaling in fibroblasts could restore the

sensitivity of resident CSCs to chemotherapy agents (169).

Stromal cells can also function as a vehicle to deliver cytokines.
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Experimental studies have shown that MSCs could be used as a

cytokinedeliveryapproach thatprovides a sustained release of target

cytokines in the TME and leads to a more effective antitumor

response (170). Therefore, the potential ofMSCs as a vehicle for the

delivery of bioagents that target cytokine signals into the CSC niche

and have a modulatory effect on CSCs should be evaluated.
Are cytokines involved in the
modulation of pCSCs/CSCs in colitis-
associated CRC?

Previously, Yasuda reported different rates of expression of

the stem cell markers CD133, OCT4 and NANOG between CAC

and sporadic CRC tissues (171). Iwaya et al. (172) found that the

density of CSCs labeled by LGR5 in CAC was lower than that in

sporadic CRC. However, Nakagomi et al. more recently reported

that increased expression of CSCs is observed in both sporadic

CRC (N=23) and CAC (N=22) neoplastic lesions. They found

that the expression of CSCs labeled by ALDH1A1 in CAC tissues

was higher in those with a longer disease duration than in those

with shorter disease duration. CAC exhibits extensive and long-

lasting chronic inflammation, and cytokines have been shown to

be the most important driving mediators in the induction and

maintenance of chronic inflammation (173). These results may

imply a key role for cytokines in affecting CSCs in CAC.

Kazama et al. (174) showed that the rate of CD133-positive

CSCs in CAC tissues was remarkably higher than that in
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dysplastic tissues, but the rate of LGR5-positive CSCs was not.

Their results may suggest that pCSCs also exist in colitis-

associated dysplasia.

Furthermore, their results explained the difference in the CSC-

positive rate between different markers in CAC tissues. By using a

mouse CAC development model induced by azoxymethane and

dextran sodium sulfate treatment, Kim et al. (175) showed that

CSCs in crypt base regions detected by RNA in situ hybridization

in all dysplasia and CAC samples were increased. Carpentino et al.

(24) used fluorescence-activated cell sorting to isolate and identify

pCSCs labeled by ALDH from human colitis tissues and their

transition to CSCs in both xenografting experiments and in vitro.

They demonstrated that pCSCs/CSCs contribute significantly to

colorectal carcinogenesis from colitis to CAC (24). Therefore,

current scientific evidence suggests the involvement of pCSCs in

the development of CAC. The precise modulatory effects of

cytokines on pCSCs/CSCs throughout the inflammation-

dysplasia-CAC sequence remain unclear, however, a hypothesis

has been proposed (176) in which the promoting role of cytokines

on pCSCs/CSCs should not be ignored.
How does cytokines modulate pCSCs/
CSCs in CRC with a familial
adenomatous polyposis background?

Similar to sporadic adenoma polyps, several studies have

identified an increased number and enhanced survival of pCSCs
TABLE 1 Main cytokines known to modulate CRC CSCs.

Cytokines Main cellular sources Target
receptor

Effect on CSCs Experimental
model

References

IL-4 TH2 cells IL-4Ra,
IL-2Rg

Inhibited CSC apoptosis In vitro, in vivo (79, 81)

IL-6 macrophages, T cells, adenoma/
CRCcells

IL-6RA,
gp130

Stimulated CSC phenotypes and properties by
acting diverse signaling pathways

In vitro, in vivo,
human biopsy

(66, 92, 93,
95)

IL-8 Macrophages, monocytes, T
lymphocytes, endothelial cells, and

adenoma/CRC cells

IL-8RA,
IL-8RB

Stimulated CSC stemness, properties,
generation, and maintenance; recurrence and

metastasis

In vitro, in vivo,
human biopsy

(24, 118–121,
124)

IL-10 Macrophages, Tregs, adenoma/CRC
cells

IL-10Ra Promoted stemness of ISCs, its effect on CSCs
has not been reported

In vitro (127)

IL-17A TH17 cells and neutrophils,
adenoma/CRC cells

IL-17RA,
IL-17RB,
IL-17RC

Stimulated CSC stemness, growth and drug-
resistance

In vitro, human
biopsy

(69, 130)

IL-22 TH22, TH17 cells IL-22R Enhanced CRC cell stemness and tumorigenic
potential, activate stemness gene and increase

drug-resistance

In vivo, in vitro,
human biopsy

(138, 139,
143, 144)

IL-23 T lymphocytes, macrophages, and
dendritic cells

IL-23R Enhanced CSC self-renewal, proliferation,
stemness

In vitro (150)

IL-33 Epithelial, endothelial, fibroblasts, and
adenoma/CRC cells

ST2,
IL-1RAP

Promote CSC stemness properties and drug-
resistance

In vivo, human
biopsy

(72, 156)

IFN-g TH1 cells, cytotoxic T cells, NK cells
and macrophages

IFNGR1
and

IFNGR2

Enhanced CSC apoptosis, inhibit CSC
differentiation

In vitro (48)
fr
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in FAP tissues (177, 178) (198). For example, Jennelle et al. (179)

showed an increased rate of pCSCs positive for LGR5 in 7

subjects with Lynch syndrome, 4 subjects with FAP and 1 subject

with MUTYH-associated polyposis syndrome, which were

expressed in colon crypts of subjects with FAP. Ma et al. (180)

reported that sulindac treatment of FAP patients might

significantly change their pCSC dynamics, indicating that

pCSC alterations may be a promising biomarker. However,

since FAP is a rare disease, the modulatory effect of cytokines

on FAP pCSCs/CSCs remains to be evaluated.
Can selective reprogramming of the
pCSC/CSC niche by engineering cellular
or inflammatory components affect CRC
initiation and progression?

In CRC prevention, one of the most important steps is to

reduce the occurrence of precancerous adenomas. Clinically,

the management of adenomas in patients relies on

colonoscopy, during which the majority of adenomatous

polyps can be removed. After the polyps are removed,
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regular colonoscopy follow-ups to prevent subsequent CRC

(181, 182).

Recent clinical trials have shown that chemoprevention is a

promising method to reduce the occurrence of adenomas (183),

and nonsteroidal anti-inflammatory drugs (NSAIDs) can

significantly reduce the number and size of adenomas in

patients with familial adenomatous polyposis (181). However,

the effect is incomplete and it is unlikely to replace colonoscopic

polypectomy as primary therapy. Furthermore, this NSAID-

associated adenomatous polyp reduction cannot decrease the

long-term CRC risk. Long-term treatment with NSAIDs may

also increase the risks for severe side effects, such as cardiological

toxicity (184), renal functional impairment (185) and

gastrointestinal mucosa damage (186). For example,

approximately 1 to 2% of patients experience a serious

gastrointestinal complication during treatment with NSAIDs,

which include mucosa severe mucosal damage, ulcers and

bleeding (186). Therefore, there is an urgent need to seek

novel preventive drugs that are more effective and safer.

It has recently been discussed that therapeutics that target

pCSCs combined with their regulatory signals represent an
FIGURE 1

Schematic perspectives of potential role of cytokines on CSCs in the CRC. Based on current research findings, we therefore summarized the
regulatory effects of cytokines on CSCs in the CRC.
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attractive approach. Studies have revealed that pCSCs have the

potential for bidirectional differentiation into both benign and

malignant lesions, which depends on the interactions between

pCSCs and their niche (6). Therefore, how to induce a pCSC to

differentiate to a benign direction becomes important. Since

cytokines have been reported to be modulators for CSCs,

blocking cytokine signals within the niche may have an

impact on the differentiation of pCSCs to CSCs and then

affect the initiation of precancerous adenomas to CRCs.

Several possible strategies need to be experimentally

evaluated and addressed. For example, can we use blockades

of cytokines combined with selective bioagents targeting

pCSCs to modulate the malignant perspectives of a pCSC

toward a CSC? Could pCSCs be reversible to SCs? Finally,

the efficacy of cytokine signaling blockade combined with CSC

targeted therapy in CRC needs to be assessed (refer to

Figure 2). In the future, answers to these questions are

important for understanding the mechanisms of the
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progression of a pCSC to a CSC and the identification of

novel therapeutics to block this process.

As mentioned above, the biological behavior of pCSCs/CSCs

in adenoma/CRC mass is modulated by their niche, which

consists of distinct types of cells and factors. Therefore, selective

reprogramming of the pCSC/CSC niche by engineering cellular or

inflammatory components may affect the biological functions of

pCSCs/CSCs (187). Indeed, Park et al. (188) demonstrated that

caffeic acid could effectively inhibit self-renewal capacity, stem-like

characteristics, and migratory capacity of CD44-positive and

CD133-positive CSCs both in vitro and in vivo. Moreover, Park

et al. (188) revealed that PI3K/Akt signaling might be linked to

multiple CSC-associated characteristics, such as radioresistance,

stem-like properties, and tumorigenic potential in CRC.

Therefore, signaling pathways that regulate CSC biology and

function may be identified as promising CSC targets in the future.

The SC stemness landscape is associated with the response to

immunotherapy in CRC (35). Cytokines, as modulators of CSC
FIGURE 2

Future perspectives of cytokine signal blockades with pCSC/CSC target therapies in the prevention and inhibition of CRC development and
progression. Based on the previous finding that pCSCs have an potential for bidirectional differentiation to both benign and malignant lesions,
we therefore prospected that bioagents that can precisely target pCSCs/CSCs with cytokine signals may change both the differentiation
direction of pCSCs at the precancerous stage and the effect of CSCs at the CRC stage.
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stemness properties, may also serve as therapeutic targets in

CRC. Indeed, previous studies have reported that increased

expression levels of cytokines are associated with the initiation

of adenoma and CRC in both Apc (Min/+) mice (143) and

humans (51, 189), and blocking cytokines or their receptors by

the administration of specific antibodies, e.g., anti-IL6 and anti-

IL-17A/receptors, effectively suppresses the development and

progression of CRC (190, 191). Recently, SC therapies that target

CSCs or MSCs have been tested and have shown certain efficacy

in established CRCs, which suggests that selectively targeting

CSCs is a promising therapeutic strategy to eliminate the

development of CRCs and reduce the risk of recurrence (37).

Therefore, targeting cytokine signals that modulate CSC

differentiation and function might represent an attractive and

novel approach to combat CRC and improve the current CSC

targeted therapy.
Can targeting cytokine signaling improve
drug sensitivity?

Drug-resistance is a major problem for cancer patients

treated with chemotherapy. Studies have shown that CSCs

function as a major driving force of drug-resistance and they

are deeply involved in the pathogenesis of drug resistance (192,

193). Targeting cytokine/receptor signals holds promise for

overcoming drug resistance and restoring sensitivity to

anticancer therapies (77, 194). For example, IL-4 has been

reported to protect CRC CSCs from apoptosis and the

potential benefits of standard chemotherapies, radiotherapies

or immunotherapies in combination with IL-4 inhibitors may

enhance the therapeutic efficacy in the context of CRC (77).

A study by Jiang et al. (194) assessed the efficacy of targeting

IL.-8 signaling to overcome drug resistance in advanced gastric

cancer, and their results showed that increased expression of IL8

significantly activated drug resistance. IL8 signaling targeted by

RNA interference or reparixin reversed chemotherapy resistance

with limited toxicity in vivo and in vitro. Targeting CSCs has

been recognized as an effective therapeutic for CRC (37). Studies

have revealed that the effect of IFN-g on CSCs was dose-

dependent (159). In non-small cell lung cancer-derived cell

lines, IFN-g at a low concentration induced enhanced

stemness, and IFN-g at a high concentration caused apoptosis

in CSCs, which could improve the therapeutic efficacy of

chemotherapeutic drugs (48, 159). This bidirectional effect of

IFN-g on CSCs may suggest a possible strategy for modulating

IFN-g signaling to selectively inhibit CSC survival and stemness.

However, how to reduce the side effects of cytokine-based

immunotherapy is still a challenging issue (195). Most cytokines

exhibit a pleiotropic effect and work in a complex network. They

play a significant role in immune regulation, antimicrobial

infection, and modulating the body’s response to disease.
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Systematic blockade or enhancement of cytokine signaling

may significantly influence host immune homeostasis. In

addition, bioagents that target cytokine signals may have their

own side effects and drug toxicity (195). Therefore, a better

approach for cytokine-based therapy would be the precise

targeting of local cytokine signals that can be reached by a

selective delivery vehicle (170).
Conclusions

In light of the current knowledge, we may conclude that

cytokines function as the main communicators to mediate

crosstalk between pCSCs/CSCs and their niche, which is

involved in both adenomatous polyp and sporadic CRC onset

and progression. Additional studies focused on the pathways of

pCSCs/CSCs regulated by cytokines could reserve new

perspectives in the field of precision cancer-targeted therapy.

In the future, more attention should be given to evaluating the

mechanisms of cytokines in regulating the progression of pCSCs

to CSCs in adenomas that hold promise for the design of novel

therapeutics to prevent the onset of CRC. Finally, pCSCS/CSCs,

together with cytokine signals, are attractive potential targets for

the treatment of CRC. The therapeutic efficacy of targeting

cytokine/receptor signals to inhibit the progression of pCSCs

to CSCs is waiting to be evaluated in the future.
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