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Cholesterol: An important actor
on the cancer immune scene

Hossein Halimi and Shirin Farjadian*

Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
Based on the structural and signaling roles of cholesterol, which are necessary

for immune cell activity, high concentrations of cholesterol and its metabolites

not only trigger malignant cell activities but also impede immune responses

against cancer cells. To proliferate and evade immune responses, tumor cells

overcome environmental restrictions by changing their metabolic and signaling

pathways. Overexpression of mevalonate pathway enzymes and low-density

lipoprotein receptor cause elevated cholesterol synthesis and uptake,

respectively. Accordingly, cholesterol can be considered as both a cause and

an effect of cancer. Variations in the effects of blood cholesterol levels on the

outcome of different types of cancer may depend on the stage of cancer.

However, positive effects of cholesterol-lowering drugs have been reported in

the treatment of patients with some malignancies.
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Introduction

In addition to the physical role of fatty acids, they play multifaceted roles in cancer.

Depending on their composition, lipids may have inflammatory or anti-inflammatory

impacts on the tumor microenvironment (1, 2).

The functions of cholesterol in cancer were first noted in the 1900s. Webb reported

that cholesterol crystallization in normal cells led to malignancy (3), and other

researchers subsequently found alterations in blood cholesterol levels in patients with

cancer (4, 5). Recently, cholesterol was considered not only a risk factor, but also a

prognostic factor in cancer (6), as high-density lipoprotein (HDL) cholesterol was

reported to have impact on patient survival and cancer relapse (7). Indeed, cholesterol

accumulation has been observed in different tumor cells (8, 9), through the upregulation

of cholesterol biosynthesis or via increased uptake. Many of cancer cells overexpress low-

density lipoprotein receptor (LDLR) compared to normal cells, and evade negative

feedback mechanisms for enhancing cholesterol uptake – a phenomenon which leads to

their rapid proliferation (10–13).

Cholesterol is crucial to triggering immune responses as one of the components of the

lipid raft, which can recruit receptors and signaling molecules (14). Proteins are also
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localized in the lipid raft via the palmitoylation or

glycosylphosphatidylinositol (GPI) anchor (15). As a result of

cholesterol accumulation, tumor cells have higher membrane

levels of cholesterol, and this structure plays a role in tumor cell

growth, adhesion, migration, invasion and apoptosis (16).

Indeed, Cholesterol metabolism is associated with cancer

stemness. Cancer stem cells are a population within cancer cells

related to progression and metastasis (17). Ehmsen et al.

demonstrated that raised de novo cholesterol synthesis is a

feature of breast cancer stem cells and inhibiting cholesterol

synthesis impedes the growth of cancer stem cells (18).

Cholesterol is a signaling molecule that in turn affects other

signaling pathways such as PI3K and Hedgehog (19). The

metabolism of cholesterol impacts the cancer-associated immune

system through altering responses such as the induction of

exhausted T cells, changing macrophage phenotype, and affecting

antigen presentation by dendritic cells (DCs) (20).

Targeting cholesterol biosynthesis or uptake is a new area in

cancer therapy. In efforts to regulate blood cholesterol levels as

well as research in other treatment modalities such as

immunotherapy, further insights into cholesterol biosynthesis

and uptake may be applied in strategies to prevent tumor relapse

or metastasis, and may extend patient survival (21).

Cholesterol synthesis

Although most human cells are able to synthesize cholesterol,

the liver is the leading site of de novo cholesterol synthesis. This

pathway comprises of more than 20 enzymes (22), and starts with

the conversion of two acetyl-CoA by thiolase and then further

conversion of acetyl-CoA into 3-hydroxy-3-methylglutaryl

(HMG)-CoA. This is followed by the production of other

intermediates such as isopentyl pyrophosphate, farnesyl

pyrophosphate, squalene, lanosterol, and finally cholesterol (20).

Elucidating the cholesterol synthesis pathway is important

because mediators and intermediate enzymes affect the cancer

process. For example, C-terminal farnesylation of proteins leads to

the formation of a hydrophobic tail, thus enabling lipid–protein

and protein–protein interaction (23–25). Indeed, farnesylation is a

necessary step for RAS oncoprotein activation and cell membrane

binding. Moreover, inhibition of this process was shown to have

anti-tumor effects (26, 27). Thus, current evidence suggests that

deeper knowledge of the cholesterol synthesis pathway can point

the way to novel cancer treatments and the potential to extend

patients’ lifespans.

Cancer-associated cholesterol
metabolism

Cholesterol concentrations within the cell are precisely

controlled through the regulation of absorption and synthesis
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(Figure 1). Cholesterol absorption is firmly controlled by

regulating the amount of its receptor. High levels of

cholesterol prevent the activation of SREBPs (sterol regulatory-

element binding proteins), i.e. membrane-bound transcription

factors that activate genes involved in cholesterol synthesis,

thereby reducing LDLR expression (28, 29). In addition,

PCSK9 (proprotein convertase subtilisin/kexin type 9) binds to

LDLR and thus triggers its breakdown (30). Cholesterol

synthesis is also tightly controlled, as high cholesterol levels

cause the degradation of squalene monooxygenase and HMG-

CoA reductase, which catalyzes the conversion of squalene to 2,3

oxidosqualene and HMG-CoA to mevalonate as the precursors

of cholesterol (31, 32).

To utilize more cholesterol, cancer cells evade the feedback

mechanisms of cholesterol inhibition. In this connection it was

found that prostate cancer cells overexpress LDLR and SREBP in

cholesterol-rich conditions in the absence of cholesterol

regulatory mechanisms (10).

Cholesterol absorption is more energy-saving in cancer cells

than de novo synthesis. Accordingly, in large-cell lymphoma,

malignant cells rely more on cholesterol uptake through the

overexpression of LDLR rather than de novo synthesis (33). This

might be explained by the higher LDLR expression in

inflammatory conditions, which enables tumor cells to

accumulate more cholesterol (34). In addition, prostate cancer

cells were reported to accumulate excess cholesterol from the

environment through the overexpression of HDLR, SR-B1 (35);

however, advanced-stage prostate cancer cells were reported to

be dependent on cholesterol synthesis (36).

Another factor that supports cancer progression through

cholesterol synthesis is ATP citrate lyase (ACLY) enzyme, which

converts citrate to acetyl-CoA. Overexpression of this enzyme

has been reported in different kinds of tumor (37).

Because of insufficient vascularization and a high rate of

growth, some cancers such as glioblastoma exist in a hypoxic and

lipid-limited microenvironment. In this condition, SREBP2

overexpression induces cholesterol synthesis (38, 39).

Cholesterol ester is a storage form of cholesterol catalyzed by

acyl-CoA: cholesterol acyltransferase (ACAT), which plays an

important role in cancer biology. Cholesterol acyltransferase

overexpression has been detected in cancer tissues, and it

appears that cancer cells use this storage source for their

proliferation (40). In addition, lysosomal acid lipase breaks

down cholesterol ester to generate fatty acids; the

overexpression of this enzyme and its relation to cancer

progression have been reported in renal cell carcinoma (41).

Oxysterols, i.e. oxygenated sterol derivatives such as

different forms of hydroxycholesterols, are bioactive molecules

which affect cancer cell behavior (42). A role for 27-

hydroxycholesterol has been shown in breast cancer

progression through VEGF overexpression and STAT3

activation (43).
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Cholesterol and cancer cell
signaling

Hedgehog pathway

The Hedgehog signaling pathway is an essential process which

enables appropriate cell differentiation during vertebrate embryonic

development. It is also necessarily activated in circumstances such

as wound healing and tissue repair. It has been shown that this

pathway is involved in cancer growth, and that cholesterol plays a

crucial role in the reactivation of this pathway through binding to

smoothened transmembrane protein (44–46).
Wnt pathway

The Wnt pathway is responsible for stem cell renewal and

organogenesis. This pathway is also involved in the development

of malignancies such as leukemia and gastrointestinal cancer.

The Wnt protein interacts with a heterodimeric receptor

including Frizzled and LRP5/6 proteins. Dishevelled and other

signaling molecules are then recruited to the receptor and

transduce the signal through activated b-catenin (47, 48). It

has been indicated that cholesterol can bind to the PDZ domain

of scaffold proteins including NHERF1/EBP50, and then activate

Wnt signaling pathways (49, 50). An additional way in which

cholesterol plays a role in cancer biology is by triggering the Wnt

pathway through its interaction with Dishevelled scaffold

protein (51).
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mTORC1 pathway

The mTORC1 pathway is a key factor in cell growth and

survival. It is also suggested that mTORC1 is involved in cancer

cell proliferation. This signaling pathway is responsible for lipid

synthesis in malignant cells via SREBP2 upregulation (52, 53).

Cholesterol can increase tumor cell proliferation through

activation of the mTORC1 pathway at the lysosomal surface by

SLC38A9 (solute carrier family 38 member 9), a lysosomal

transmembrane protein that senses cholesterol in addition to

arginine, with independent motifs (54).
Relevance of cholesterol and
cancer-associated immune cell

Although cholesterol is essential for the formation of the

immunological synapse through receptor clustering and

recruitment of signaling molecules, high amounts cholesterol

have a negative effect on immune responses (55) (Figure 2).
Macrophages

Macrophages are innate immune cells with a dual effect on

cancer immunity. These cells show plasticity depending on the

tumor microenvironment. At an advanced stage of cancer,

macrophages convert to the M2 phenotype with tumor-

promoting function (56).
FIGURE 1

Normal and tumor cells in cholesterol-rich environment. (A) In normal cells, a high concentration of cholesterol triggers regulatory mechanisms
of cholesterol synthesis and uptake, which downregulate SREBP and degrade HMG- CoA reductase. (B) Tumor cells evade feedback
mechanisms in a cholesterol-rich environment. SREBP shows high activity; thus LDLR expression and/or cholesterol synthesis are elevated.
ACAT catalyzes the synthesis of cholesterol ester; therefore, cholesterol accumulates in tumor cells. ATP citrate lyase converts citrate to acetyl-
CoA and induces fatty acid synthesis (created with biorender.com).
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Cholesterol has a pivotal effect on macrophage phenotype

and function. Goossens et al. showed increased cholesterol efflux

from the macrophage membrane and depletion of cholesterol

from the lipid raft induced the tumor-promoting phenotype in

tumor resident macrophages in a mouse model of ovarian cancer

(57). Park et al. also revealed tumor-derived M-CSF activated

PPARb/d (peroxisome proliferator-activated receptor belonging

to the nuclear hormone receptor family) through increased fatty

acid synthesis, thereby augmenting IL-10 and arginase 1

expression in macrophages, which resulted in cancer invasion

and angiogenesis (58).
Dendritic cells

MHC molecules play a pivotal role in tumor antigen

presentation to immune cells and the induction of anti-tumor

responses (59, 60). Dendritic cells are innate immune cells with a

central role in triggering an anti-tumor response by presenting
Frontiers in Immunology 04
tumor antigens to T cells. Cancer cells can downmodulate the

function of DCs by increasing the concentration of cholesterol (61).

Oxysterol secretion by tumor cells affects LXRs (liver x

receptors) in DCs, which leads to CCR7 reduction, hampering

the migration of DCs to lymph nodes and thus reducing T cell

priming (62, 63). In addition, a high amount of lipid in the tumor

microenvironment increases the uptake and accumulation of

lipids in DCs, which in turn reduces tumor antigen presentation

by these cells (64). It is also showed that oxidized lipids reduce the

expression of MHC class I on DCs (65).
T lymphocytes

Cholesterol has a dual effect on T cell function. During T cell

responses, SREBPs exert an effect on cell proliferation through

cholesterol synthesis (66). The results of one earlier study

showed that cholesterol can bind to the transmembrane part

of the TCR b-chain and keep T cells in the resting state (67). In
FIGURE 2

Effect of a cholesterol-rich tumor microenvironment on immune cells. Increased cholesterol efflux from macrophage membranes induces the M2
phenotype in tumor resident macrophages. In cholesterol-rich area, T cells overexpress exhaustion markers, and cholesterol binds to the TCR b-
chain and puts T cells in a resting state. Oxysterol recruits CXCR2-positive neutrophils, which in turn induces angiogenesis and tumor growth.
Tumor-released factors induce MDSC suppressive responses through cholesterol accumulation. The accumulation of cholesterol in DCs causes a
reduction in MHC class I and CCR7 expression, which diminishes the immune response against tumor cells (created with biorender.com).
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addition, the tumor microenvironment is a cholesterol-rich

milieu which leads to endoplasmic reticulum stress; as a result,

T cells express more inhibitory receptors such as Tim-3, LAG3

and PD-1, and become exhausted. On the other hand

cholesterol-lowering drugs such as atorvastatin were reported

to decrease checkpoint inhibitors on T cells (68, 69). Although

both CTLs and target cells are exposed to perforin within the

synapse, high cholesterol content in the CTL cell membrane

protects them against lysis by perforin (70).

In conclusion, although a sufficient concentration of

cholesterol is needed for an efficient immune response, high

levels of cholesterol can disrupt immune cell functioning (55).
Neutrophils

There is cross-talk between cancer cells and neutrophils, the

latter of which can play an anti-tumor or tumor-promoting role.

In this connection, it was shown that microenvironmental

conditions such as lipid level can change neutrophil

functions (71).

Tumor-secreted oxysterols recruit CXCR2+ neutrophils that

can release tumor growth factors (72, 73). In addition, hypoxia-

induced Hif1 can elevate the expression of CYP46A1

(cytochrome P450 family 46 subfamily A member 1). This

enzyme plays a role in cholesterol metabolism in the brain,

and converts cholesterol to 24s-HC oxysterol, which can pass

through the blood–brain barrier. One study showed that lipid

accumulation recruited proangiogenic neutrophils in a

pancreatic neuroendocrine tumor model (74).
Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) originate from

immature or myeloid progenitor cells, and potentiate

suppressive responses. Hence these cells can support cancer

growth through regulatory mechanisms such as interference

with T cell trafficking, release of suppressive factors (IL-10 and

TGF-b), and depletion of essential T cell amino acids.

Furthermore, tumor cells can induce MDSC responses through

lipid-mediated mechanisms (75).

MDSCs are heterogeneous cells which are divided into two

major groups: polymorphonuclear MDSCs (PMN-MDSCs) and

monocytic MDSCs (M-MDSCs). Lectin-type oxidized LDL

receptor 1 (Lox-a1) has been identified as one of the newest

PMN-MDSC markers, which is evidence of a probable

suppressive effect of cholesterol on these cells (76). Moreover,

tumor-secreted G-CSF and GM-CSF induce the expression of

lipid transporters on MDSCs through STAT3 and STAT5

signaling; consequently, elevated lipid absorption and

accumulation trigger a suppressive response of MDSCs

(77), Table 1.
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The effect of cholesterol on
different types of cancer

Hypercholesterolemia is considered a risk factor for the

induction of different types of cancer. Moreover, high

cholesterol levels have also been shown to play a role in cancer

progression and metastasis.
Colon cancer

Blood concentrations of cholesterol in patients with colon

cancer were reported to be lower than in healthy individuals (78,

79). The higher expression of LDLR by colon cancer cells results

in decreased blood cholesterol levels, and colon cancer surgery

can elevate cholesterol levels after 1 year (11).

LDL increases intestinal inflammation and the proliferation of

malignant colon cells through the generation of reactive oxygen

species (ROS) and activation of the MAPK signaling pathway. In

addition, LDL promotes malignant colon cell migration and

induces stemness genes such as Sox2 and Oct4 in these cells (13).
Breast cancer

There is controversy regarding the relevance of cholesterol

levels in breast cancer, although cholesterol is generally

considered a risk factor. A recent report noted increased body

mass index (BMI) as an important factor associated with breast

cancer (80). Moreover, a cholesterol-rich diet reportedly elevates

the risk of breast cancer. In this study, they found that high levels

of cholesterol in patients with breast cancer are related to a poor

outcome and a higher malignant cell proliferation rate (81).

In this connection, abundant expression of LDLR was seen

in breast cancer cells (82), and LDL was reported to have an

impact on breast cancer cell proliferation in association with

overexpression of Akt and ERK pathway intermediates (83).

Moreover, overexpression of CYP27A1 (sterol 27-hydroxylase),

which produces 27-hydroxycholesterol, was reported in patients

with breast cancer. This oxysterol downregulates the expression
TABLE 1 Effects of high cholesterol levels on cancer cells and
immune cells.

Cancer cells Immune cells

Overexpression of VEGF and
angiogenesis

Reduce CCR7 and MHC class I on DCs

ROS generation T cells exhaustion

Stemness and proliferation Recruitment of CXCR2 positive
neutrophils

Metastasis Induce tumor-promoting macrophages

Drug resistance Elevate MDSC response
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of P53,which in turn results in epithelial–mesenchymal

transition and initiates the metastatic cascade (84, 85).
Prostate cancer

There is controversy regarding the correlation between blood

cholesterol levels and prostate cancer (86–88). High cholesterol

synthesis and elevated LDLR expression may play a role in the

outcome of this cancer (36); in this connection, high LDLR

expression has been demonstrated in prostate cancer. Also,

elevated amounts of cholesterol and cyclin E overexpression

were detected inside of nucleus; hence cholesterol may play a

role in the cell cycle of prostate cancer cells (89). In addition,

androgen is necessary for prostate cancer cell proliferation, and

prostate cancer cells were reported to gradually gain androgen

synthesis potential by themselves in cholesterol-rich conditions

(90, 91).
Hepatocellular cancer

The liver is the primary source of cholesterol synthesis in the

body (92). Many studies have documented high cholesterol

concentrations in patients with hepatocellular cancer. It has

been suggested that malignant cells are responsible for elevated

cholesterol levels in these patients (93, 94). In this connection,

the impairment of cholesterol feedback mechanisms was shown

to have a substantial impact on lipid production in malignant

liver cells (95).
Lung cancer

It is currently hard to delineate specific correlations between

lung cancer and blood cholesterol levels. The results of some

studies showed that patients with low cholesterol levels have

lower survival (96, 97). In contrast, one report suggested that

elevated cholesterol is a risk factor for lung cancer (98). In this

connection, a recent study suggested that moderate cholesterol

levels can prevent lung cancer, whereas high and low cholesterol

concentrations are both risk factors for this malignancy (99).

The results of an in vitro study showed that 25-

hydroxycholesterol promoted lung adenocarcinoma cell

migration and invasion (100). It remains to be seen whether

or not elevated cholesterol is a hallmark of lung cancer.
Pancreatic cancer

The association between blood cholesterol concentration

and pancreatic cancer remains unclear. Although one study

found high cholesterol intake to correlated with pancreatic
Frontiers in Immunology 06
cancer (101), other research, in contrast, reported that low

cholesterol levels result in an increased risk (102).

Overexpression of ACAT1 is related to cholesterol ester

accumulation in tumor cells and unwanted cell survival (103);

furthermore, the higher absorption of cholesterol by cancer cells

than by normal cells is associated with LDLR overexpression (12).
Ovarian cancer

Contradictory results have appeared regarding blood

cholesterol levels and ovarian cancer (104, 105). In one

ovarian cancer cell line, high ACAT1 expression was shown,

leading to cholesterol ester accumulation. Furthermore, ACAT1

inhibition was reported to suppress cancer cell proliferation

(106). Other research documented the importance of HMG-

CoA reductase in ovarian cancer, finding that genetically proxied

inhibition of HMG-CoA reductase was related to a lower rate of

ovarian cancer (107).
Hematologic malignancies

Studies of the relationship between blood cholesterol levels

and leukemia have yielded conflicting results. Lower cholesterol

concentrations were reported in patients with chronic

lymphocytic leukemia (CLL) and acute lymphocytic leukemia

(ALL) than in healthy controls (108, 109), but a different report

documented high cholesterol levels in patients with CLL (110).

The results of another study demonstrated that in patients with

CLL, elevated SREBP2 expression resulted in increased LDLR,

thus cholesterol accumulation in the tumor cell cytoplasm was

noted as a possible cause of this cancer (111).
The role of anticholesteremic
agents in cancer treatment
and patient survival

Cholesterol serves as the component involved in drug

resistance in cancer (6). Drug-resistance cells elevate

cholesterol uptake and biosynthesis. Increased cholesterol

content in cancer cell membrane changes the signaling

pathway because of the interaction of cholesterol and different

receptors on the surface of these cells. Furthermore, high

cholesterol levels convert the entrance drug pathway in

malignant cells (112), for example gefitinib-resistant non-small

cell lung cancer (NSCLC) cell lines possess higher cholesterol in

their lipid raft than gefitinib-sensitive cell lines, as gefitinib exerts

a better function on cholesterol-depleted cells (113).

Taken together, surveying a drug that adjusts cholesterol

levels for achieving practical and effective treatment.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1057546
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Halimi and Farjadian 10.3389/fimmu.2022.1057546
Statins (HMG-CoA reductase inhibitors) are a group of

drugs that can help to lower LDL cholesterol. The advantages

of statins for cancer monotherapy or combination therapy have

been widely reported. It is suggested that statins reduce cancer

cell growth through AKT suppression (114), promote cancer cell

apoptosis through Bax overexpression and Bcl2 inhibition (115),

and also exert an effect on cell cycle regulatory elements and thus

reduce cancer cell proliferation (116).

Numerous studies have documented the beneficial effects of

statins on cancer recurrence and mortality (117); for example,

lipophilic statins were found to decrease breast cancer

recurrence (118).

Other research showed that statin together with palliative

care can reduce the mortality rate in patients with hepatocellular

carcinoma (119). In addition, statins were found to reduce the

mortality rate of colorectal cancer (120, 121). Another study

reported beneficial effects of statins on cancer mortality both

before and after diagnosis (122). However, statins may have no

benefits for patients with advanced cancer (123).

Regarding the interaction of statins with other treatments for

cancer, cholesterol-lowering drugs were found to be safe for use

along with immunotherapy (124), chemotherapy (125), and

radiotherapy (126).
Conclusion

Cholesterol has a dual effect on the immune response

depending on its concentration. High serum levels of

cholesterol are related to a higher risk of cancer progression

because of their effect on signaling pathways. Tumor cells have

complex interactions with their surrounding environment; in

generally, tumor cell metabolic pathways are modified by

increased cholesterol synthesis and/or uptake. Cholesterol-rich

environments change immune cell phenotypes and functions,

such that these cells may support cancer cell survival.

Reports of the correlations between blood cholesterol levels

and different types of cancer are conflicting. Elevated cholesterol

uptake by malignant cells may be associated with low blood

cholesterol levels, whereas high blood cholesterol levels in

patients with cancer may be viewed as a result of increased
Frontiers in Immunology 07
cholesterol synthesis in tumor cells. Therefore, cholesterol can

potentially act as a cause or an effect of cancer, although the type

and stage of the tumor should not be overlooked.

In light of the effects of high cholesterol levels in cancer

biology, prescribing cholesterol-lowering drugs may be valuable

in cancer therapy. To reduce the side effects of these drugs and

achieve better outcomes, targeting the pathways of cancer cell

cholesterol metabolism is a potentially helpful avenue for

further research.
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