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Peripheral blood cellular
profile at pre-lymphodepletion
is associated with
CD19-targeted CAR-T cell-
associated neurotoxicity
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Gianluca Storci1, Noemi Laprovitera1, Mario Arpinati 1,
Enrico Maffini1, Pietro Cortelli 3,4, Maria Guarino4,
Francesca Vaglio1, Maria Naddeo1,2, Barbara Sinigaglia2,
Luca Zazzeroni2, Serafina Guadagnuolo1, Enrica Tomassini2,
Salvatore Nicola Bertuccio5, Daria Messelodi5,
Manuela Ferracin2, Massimiliano Bonafè2*, Pier Luigi Zinzani1,2‡

and Francesca Bonifazi1‡

1IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, 2Department of Experimental,
Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy, 3Dipartimento di
Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy, 4IRCCS Istituto delle
Scienze Neurologiche di Bologna, Bologna, Italy, 5Department of Medical and Surgical Sciences
(DIMEC), University of Bologna, Bologna, Italy
Background: Infusion of second generation autologous CD19-targeted

chimeric antigen receptor (CAR) T cells in patients with R/R relapsed/

refractory B-cell lymphoma (BCL) is affected by inflammatory complications,

such as Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS).

Current literature suggests that the immune profile prior to CAR-T infusion

modifies the chance to develop ICANS.

Methods: This is a monocenter prospective study on 53 patients receiving

approved CAR T-cell products (29 axi-cel, 24 tisa-cel) for R/R-BCL. Clinical,

biochemical, and hematological variables were analyzed at the time of pre-

lymphodepletion (pre-LD). In a subset of 21 patients whose fresh peripheral

blood sample was available, we performed cytofluorimetric analysis of

leukocytes and extracellular vesicles (EVs). Moreover, we assessed a panel of

soluble plasma biomarkers (IL-6/IL-10/GDF-15/IL-15/CXCL9/NfL) and

microRNAs (miR-146a-5p, miR-21-5p, miR-126-3p, miR-150-5p) which are

associated with senescence and inflammation.

Results: Multivariate analysis at the pre-LD time-point in the entire cohort

(n=53) showed that a lower percentage of CD3+CD8+ lymphocytes (38.6% vs

46.8%, OR=0.937 [95% CI: 0.882-0.996], p=0.035) and higher levels of serum

C-reactive protein (CRP, 4.52 mg/dl vs 1.00 mg/dl, OR=7.133 [95% CI: 1.796-

28], p=0.005) are associated with ICANS. In the pre-LD samples of 21 patients,
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a significant increase in the percentage of CD8+CD45RA+CD57+ senescent

cells (median % value: 16.50% vs 9.10%, p=0.009) and monocytic-myeloid

derived suppressor cells (M-MDSC, median % value: 4.4 vs 1.8, p=0.020) was

found in ICANS patients. These latter also showed increased levels of EVs

carrying CD14+ and CD45+ myeloid markers, of the myeloid chemokine

CXCL-9, as well of the MDSC-secreted cytokine IL-10. Notably, the serum

levels of circulating neurofilament light chain, a marker of neuroaxonal

injury, were positively correlated with the levels of senescent CD8+ T cells,

M-MDSC, IL-10 and CXCL-9. No variation in the levels of the selected

miRNAs was observed between ICANS and no-ICANS patients.

Discussion: Our data support the notion that pre-CAR-T systemic

inflammation is associated with ICANS. Higher proportion of senescence

CD8+ T cells and M-MDSC correlate with early signs of neuroaxonal injury at

pre-LD time-point, suggesting that ICANS may be the final event of a

process that begins before CAR-T infusion, consequence to patient

clinical history.
KEYWORDS

chimeric antigen receptor, senescence, inflammation, neurotoxicity,
myeloid activation
1 Introduction

A large number of chimeric constructs have been developed

and tested so far, but only a few second-generation CAR-T cell

products (e.g., anti-CD19/CD137 chimeric and CD19/CD28

chimeric) are currently used in clinical practice (1, 2).

The overall response rate to CAR-T cells in lymphoma

patients is approximately 50-60% (3, 4) and its efficacy is

hampered by systemic hyper-inflammatory adverse events,

including cytokines release syndrome (CRS) and Immune

effector Cell-Associated Neurotoxicity Syndrome (ICANS).

The clinical manifestations of ICANS are heterogeneous,

ranging from language disturbances and frontal-predominant

encephalopathy to akinetic mutism and, anecdotally, fulminant

diffuse cerebral oedema (5–9). Patients with high baseline

inflammatory serum profile as defined by pro-inflammatory

cytokines (e.g., IL-6), C-reactive protein (CRP), ferritin and D-

dimer have increased risk of developing ICANS (10–12).

Although neurotoxicity is associated with elevation of pro-

inflammatory cytokines, the pathophysiology of ICANS is quite

unclear, thus limiting its appropriate clinical management,

mostly based on corticosteroids administration (13). Literature

data show that the immune myeloid compartment plays a

central role in ICANS onset (5). In particular, monocyte-

derived inflammatory cytokines, such as IL-6, can increase the

permeability of the blood brain barrier (BBB) and promote

myeloid cell infiltration and neurotoxicity (13–16).
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Notably, CAR-T cell-induced neurotoxicity can be

largely influenced by the pre-treatment tumor immune

microenvironment, and by the crosstalk among lymphoma

cells, myeloid cells, cytotoxic and regulatory T cells (17).

In this monocenter prospective study, we aimed at

investigating pre-LD peripheral blood cellular and biochemical

features in patients infused with CAR-T cell therapy to identify

potentially predictive markers of the pathologic processes that

will ultimately lead to ICANS onset.
2 Materials and methods

2.1 Patients’ enrollment

Patients with diffuse large B‐cell lymphoma (DLBCL),

DLBCL from transformed follicular or marginal zone

lymphoma (tFL, tMZL), high grade (HGBCL) and primary

mediastinal B‐cell lymphoma (PMBCL) were enrolled in a

prospective monocenter observational tissue study. The

decision to use either axi‐cel or tisa‐cel was based on slot

production availability and histology, according to each

product approval. All patients received lymphodepleting

chemotherapy with fludarabine and cyclophosphamide from

day ‐5 to day ‐3 (fludarabine : 25–30 mg/m2 and

cyclophosphamide: 250–500 mg/m2). Patients were

hospitalized from lymphodepletion to at least 14 days after
frontiersin.org
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CAR-T cells infusion in an HEPA-filtered room, according to

the institutional SOPs. CRS and ICANS were graded according

to the American Society for Transplantation and Cellular

Therapy (ASCT) criteria (6). The study was conducted

according to the Helsinki declaration and approved by the

local Ethical Committee. The study was registered at

clinicalTrials.gov (NCT04892433). All patients signed a written

informed consent.
2.2 Samples collection

Peripheral blood samples were collected from each patient at

pre-apheresis (pre-AP), pre-lymphodepletion (pre-LD) and at

+3, +7, +13, +21, +30, +90, +180 days after CAR-T cell infusion,

when available.
2.3 Flow cytometry analysis

Flow cytometric analysis was performed using a 3-laser

FacsCanto II (BD Biosciences, San Jose, CA). A minimum of

50.000 CD45+ lymphocytes has been recorded for each analysis.

Flow cytometry data were analyzed with DiVa 6.1.1 software and

FCS Express 7 Reader. Appropriate isotype controls were

included for each sample.

CAR-T cell tracking was performed on fresh whole blood at

all available time-points and on 100 ml of bag leftovers (18). Cells
were stained with the CD19 CAR FMC63 Idiotype antibody-

APC (Miltenyi Biotec, Bergisch-Gladbach, Germany) following

the manufacturer’s instruction. Then, cells were labeled with the

following set of antibodies: CD45, CD3, CD4, CD8, CD45RA,

CD62L, CD57, CD28 (from BD Biosciences). The analysis of

monocytic (M-) and polymorphonuclear (PMN-) myeloid

derived suppressor cells (MDSC) was performed on peripheral

blood mononuclear cells (PBMC) separated by density gradient

centrifugation using Lymphosep (Biowest) within 4 h after pre-

LD sample collection. The following mAbs were used for MDSC

identification: CD11b, CD14, CD15, CD33, CD45, and HLA-DR

(from BD Biosciences). A minimum of 100.000 events has been

recorded in the PBMC-gated population.
2.4 ELISA test

Plasma levels of cytokines (IL-6, IL-10, IL-15, GDF-15),

chemokine CXCL-9 and neuronal damage marker

Neurofilament light chain (NfL) were assessed by high

performance multi analyte microfluidic system Protein ELLA

(19) on pre-LD samples (Biotechne, San Josè California).
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2.5 CAR-T molecular tracking by droplet
digital PCR

DNA was isolated from 200 µl of stored whole blood at each

timepoint using QIAamp DNA Mini and Blood Mini kit

(Qiagen, Germany) eluting in 50 µl of Buffer AE. DNA yield

and quality were assessed with NanoGenius Spectrophotometer

(ONDA Spectrophotometer, Giorgio Bormac s.r.l., Carpi, Italy).

The molecular tracking of the transgenic CAR was performed by

probe-based Droplet Digital PCR detecting and quantifying

CAR T DNA (absolute copies) using constant volumes of

DNA input (range of 20-80 ng) and Axi-Cel/Tisa-Cel

Universal CD19-CAR T DNA assay (Bio-Rad, USA).
2.6 Circulating microRNA quantification

For each patient at pre-LD, RNA was purified from 200 µl of

plasma collected at pre-LD using Maxwell RSC miRNA Plasma/

Serum Kit and Maxwell RSC Instrument (Promega, USA).

miRNA polyadenylation and reverse transcription were

performed using miRCURY LNA RT kit (Qiagen, Germany).

A panel of SIP-associated circulating microRNAs including

miR-146a-5p, miR-21-5p, miR-126-3p, miR-150-5p, has been

assessed in each sample by EvaGreen-based Droplet Digital PCR

(Bio-Rad, USA) and miRCURY LNA primers (Qiagen,

Germany). Positive droplet selection was performed using

QuantaSoft software (v. 1.7) to obtain the final absolute levels

of each miRNA (expressed in copies/µl).
2.7 Exosomes phenotypic
characterization

Plasma samples collected at pre-LD were subjected to bead-

based multiplex EV analysis by flow cytometry (MACSPlex

Exosome Kit, Miltenyi Biotec) according to the manufacturer’s

instructions and as previously reported (20).
2.8 Statistical analysis

In the whole cohort of 53 treated patients, descriptive statistics

are reported as mean and standard deviation for continuous

variables and as percentage for categorical ones. The statistical

association of clinical and laboratory variables with ICANS were

assessed in the entire population through Fisher exact test, Mann-

Withney U-test and one-way ANOVA, depending on categorical,

non-normal and normal distribution, respectively. Log

transformation of non-normal laboratory variables allowed to
frontiersin.org
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obtain a parametric distribution. Two-tail significance cut-off of

0.05 was chosen and all variables significantly associated with

ICANS were evaluated in a multivariate logistic regression.

Correlation among variables was measured by means of

Pearson’s coefficient. All statistical analyses were performed

with SPSS 22.0 (IBM Corp. Armonk, NY).
3 Results

A total of 53 patients (47 DLBCL, 6 PMBCL) underwent

leukapheresis and CAR-T cell infusion at our Institution.

Specifically, 29 patients received axi‐cel and 24 received tisa‐

cel CAR-T cell product. Baseline characteristics of treated

patients are reported in Table 1. The median age was 57 years

(range 19-70), 38 patients were in progressive disease and 43

received bridging therapy before infusion. A total of 45 patients

developed CRS of any grade (Table 2): 26 cases grade 1; 19 grade

≥ 2 and 5 grade 3-4. Eighteen patients developed ICANS of any

grade (Table 2): 11 patients had grade 1-2 (6 treated with axi-cel

and 5 treated with tisa-cel), 7 patients had grade 3-4 (all patients

treated with axi-cel). The median time of CRS onset was 2 days

after infusion (range 0-11 days), with 13 cases occurring the

same day of infusion, whereas the time of ICANS onset was 5

days after infusion (range 0-12 days).

In the overall cohort of 53 patients, the univariate analysis

conveyed statistically significant associations between lower total

and CD8+ lymphocytes, INR, Fibrinogen, CRP and ICANS

(Table 3). Multivariate analysis confirmed that lower level of

CD3+CD8+ lymphocytes (38.61% vs 46.82%, OR=0.937 [95% CI:

0.882-0.996], p=0.035) and higher CRP serum level (4.52 mg/dl

vs 1.00 mg/dl, OR=7.133 [95% CI: 1.796-28.133], p=0.005) are

independently associated to ICANS (Table 4).

Prompted by these results, peripheral blood leukocytes collected

at pre-LD time-point were analyzed by cytofluorimetric analysis in

a subgroup of 21 patients whose fresh blood sample was available.

The gating strategy was specifically designed to address the presence

of CD45RA+CD62L- terminally differentiated effector (TEMRA)

cells, CD45RA+CD28-CD57+ senescent immune phenotype (SIP)

cells and non-SIP cells defined as CD45RA+CD28+CD57-,

CD45RA-CD28+CD57-, CD45RA-CD28-CD57+ in the CD8+

compartment (Figure 1A). A higher percentage of CD8+TEMRA

(median value: 18.50 vs 11.00, p=0.030), CD8+SIP cells (median

value: 16.50 vs 9.10, p=0.009), as well as the SIP over non-SIP ratio

(2.24 vs 0.42, p=0.0045) were found in patients who developed

ICANS (Figures 1B–E). No significant differences were observed

when the other T cell compartments were examined (Supplemental

Figures 1A, B). Cytofluorimetric analysis was also performed on

blood leukocytes collected at the time of leuko-apheresis: a

substantial interindividual heterogeneity, but no significant

difference in the percentage of SIP cells and in the SIP over non-

SIP ratio in patients who developed ICANS was observed

(Supplemental Figures 2A–E). The infusion product analysis did
Frontiers in Immunology 04
not reveal any significant changes in T subpopulations of patients

who developed ICANS (Supplemental Figure 3A).

Noteworthy, CAR-T cell expansion kinetics assessed by FACS

analysis and ddPCR showed no statistically significant differences in

the expansion peak between ICANS and no-ICANS patients.

Notably, the expansion peak occurred at day 7 to day 13 post

CAR-T infusion, i.e., after the median time of ICANS onset (5 days

after infusion, Supplemental Figures 3B–D).
TABLE 1 Patients’ characteristics.

MEDIAN AGE (range) 57 (19-70)

GENDER
Male
Female

37 (69.8%)
16 (30.2%)

ECOG
0-1
2-3

48 (90.6%)
5 (9.4%)

HCT-CI
0-1
2-3
4-6

22 (41.5%)
23 (43.4%)
8 (15.1%)

DIAGNOSIS
DLBCL, NOS
t-DLBCL
HGBCL
PMBCL

27 (50.9%)
17 (32.1%)
3 (5.7%)
6 (11.3%)

STAGING
NA
I-II
III-VI

1 (1.9%)
10 (18.9%)
42 (79.2%)

IPI SCORE
NA
0-1
2-4

27 (50.9%)
7 (13.2%)
19 (35.9%)

DISEASE STATUS
PD
SD/PR

38 (71.7%)
15 (28.3%)

MEDIAN LINES OF THERAPY (range) 3 (2-11)

ASCT
YES
NO

14 (26.4%)
39 (73.6%)

BRIDGING THERAPY
YES
NO

43 (81.1%)
10 (18.9%)

CELLULAR INFUSED PRODUCT
Axi-cel
Tisa-cel

29 (54.7%)
24 (45.3%)

TOTAL 53

ECOG, Eastern Cooperative Oncology Group; HCTI-CI, Hematopoietic cell
transplantation-specific comorbidity index; DLBCL, NOS, Diffuse Large B-Cell
Lymphoma, not otherwise specified; t-FL, transformed Follicular Lymphoma; FL,
Follicular Lymphoma; GZL, “Gray-zone” Lymphoma; HGBCL, High grade b cell
lymphoma; PMBCL, Primary mediastinal large b cell lymphoma; PD, Progressive
disease; SD, Stable disease; PR, partial response; IPI, International Prognostic Index;
ASCT, Autologous stem cell transplant.
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In the attempt to identify soluble markers of the pro-

inflammatory/senescent profile at the pre-LD time-point, we

assessed the plasma levels of miRNAs associated with

inflammation and senescence, namely miR-146a-5p, miR-21-

5p, endothelial homeostasis miR-126-3p and B-cell tumor

burden miR-150-5p: no significant differences between the two

groups of patients were observed (Figure 2A). We also assessed

the pre-LD plasma levels of senescence-associated cytokines

GDF-15 and IL-15, of the myeloid chemokine CXCL-9, as well

as of the neuroaxonal damage marker (21) NfL (Figures 2B–E).

The plasma level of CXCL-9 was higher in patients who

experienced ICANS (mean value [pg/ml]: 10605.50 ± 12639 vs

2140.46 ± 1231.38, p=0.024). Moreover, plasma level of

circulating NfL, although did not significantly differ between

ICANS and no-ICANS patients (mean value [pg/ml]: 116.6 ±

151.8 vs 45.65 ± 25.77, p=0.210) were positively correlated with
Frontiers in Immunology 05
SIP non-SIP ratio (r=0.555, p=0.014), CXCL-9 (r=0.812,

p=0.00024), IL-10 (r=0.729, p=0.001).

Interestingly, the flow cytometric analysis of EVs phenotype

at pre-LD time-point revealed an enrichment of leukocyte-

derived CD45+ EV (mean fluorescence intensity 4.37 ± 3.34 vs

1.62 ± 1.11, p=0.029) and myeloid cell-derived CD14+ EV (mean

fluorescence intensity 2.59 ± 1.34 vs 1.48 ± 0.65, p=0.042) in

patients who developed ICANS (Figure 2F). Notably, CD45+EVs

were associated with the level of NfL (r=0.651, p=0.006).

We thus evaluated the myeloid cell compartment, by

assessing M-MDSC and PMN-MDSC cell subpopulations

(Figure 3A). No difference in the percentage of monocytes

(defined as CD14+HLA-DR+) (median value: 14.4 vs 14.3,

p=0.687) was observed between ICANS and no-ICANS

patients (Figure 3B). Higher percentage of M-MDSC (defined

as CD14+HLA-DR-/lowCD11b+CD33+) (median value: 4.40 vs
TABLE 2 Clinical complications after CAR-T infusion.

TISA-CEL AXI-CEL

CRS
YES
NO

45 (84.9%)
8 15.1%)

20 (83.3%)
4 (16.7%)

25 (86.2%)
4 (13.8%)

MEDIAN ONSET (days) 2 (0-11) 1 (0-7) 2 (0-11)

GRADE OF CRS
1
2
3
4

26 (57.8%%)
14 (31.1%)
3 (6.7%)
2 (4.4%)

12 (60%)
7 (35%)

0
1 (5%)

14 (56%)
7 (28%)
3 (12%)
1 (4%)

MEDIAN DOSES OF TOCILIZUMAB 3 (1-4) 3 (1-3) 3(1-4)

INCANS
YES
NO

18 (34%)
35 (66%)

5 (20.8%)
19 (79.2%)

13 (44.8%)
16 (55.2%)

MEDIAN ONSET (days) 5 (0-12) 4 (1-12) 5 (0-11)

GRADE OF ICANS
1
2
3
4*

5 (27.8%)
6 (33.3%)
3 (16.7%)
4 (22.2%)

3 (60%)
2 (40%)

0
0

2 (15.4%)
4 (30.7%)
3 (23.2%)
4 (30.7%)

LINES OF THERAPY
TOCILIZUMAB 8 mg/kg
6-METHYLPREDNISOLONE 1 mg/kg q12h
DEXAMETHASONE 10 mg q6h
DEXAMETHASONE 20 mg q6h
6-METHYLPREDNISOLONE 1000 mg QD
ANAKINRA 100 mg q12h
SILTUXIMAB 11mg/kg

32 (46.4%)
13 (18.8%)
12 (17.4%)
1 (1.4%)
5 (7.2%)
3 (4.4%)
3 (4.4%)

14 (60.9%)
5 (21.7%)
3 (13.1)

0
1 (4.3%)

0
0

18 (39.1%)
8 (17.4%)
9 (19.6%)
1 (2.2%)
4 (8.7%)
3 (6.5%)
3 (6.5%)

ICU TRANSFERRAL
YES
NO

11 (20.8%)
42 (79.2%)

3 (12.5%)
21 (87.5%)

8 (27.6%)
21 (72.4%)

INVASIVE VENTILATION 3 (5.7%) 0 3 (5.7%)

MEDIAN DURATION FROM ICU ADMISSION (days) 9 (1-25) 4 (1-25) 10 (2-18)

ICANS, Immune effector cell-associated neurotoxicity syndrome; CRS, Cytokine release syndrome; ICU, Intensive care unit.
*2 people died for neurological complications, 2 and 11 days after neurotoxicity onset respectively.
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TABLE 3 Univariate analysis of ICANS.

ICANS Sig.

Mean (st. dev.) YES NO

Age 51.2 (17.6) yrs 55.6 (12.3) yrs 0.298

Hemoglobin 10.97 (1.38) g/dL 11.54 (1.79) g/dL 0.142

Platelets 171 (97) x 10^9/L 193 (74) x 10^9/L 0.354

White blood cells 5.306 (3.207) x 10^9/L 5.677 (2.751) x 10^9/L 0.672

Neutrophils 3.859 (2.689) x 10^9/L 3.877 (2.456) x10^9/L 0.961

Lymphocytes 0.731 (0.559) x 10^9/L 1.117 (0.700) x 10^9/L 0.021

Monocytes 0.469 (0.625) x10^9/L 0.525 (0.262) x10^9/L 0.731

Eosinophils 0.064 (0.069) x10^9/L 0.128 (0.256) x10^9/L 0.352

Basophils 0.026 (0.029) x10^9/L 0.030 (0.023) x10^9/L 0.730

CD3+ 81.5 (12.9) % 84.4 (10.6) % 0.382

CD3+CD4+ 41.7 (18.0) % 35.4 (14.1) % 0.170

CD3+CD8+ 38.5 (13.8) % 46.9 (14.1) % 0.045

CD4+/CD8+ 1.7 (2.7) 0.9 (0.6) 0.108

CD56+CD16+CD3- 11.6 (5.5) % 13.7 (10.3) % 0.508

CD19+ 6.2 (10.2) % 1.3 (4.1) % 0.018

INR 0.97 (0.25) 0.96 (0.18) 0.017

aPTT 0.85 (0.16) 0.84 (0.17) 0.404

Fibrinogen 445 (131) mg/dL 342 (109) mg/dL 0.004

D-Dimer 1.31 (1.86) mcg/mL 0.69 (0.84) mcg/mL 0.178

Triglycerides 156 (106) mg/dL 169 (70) mg/dL 0.594

LDH 382 (262) U/L 313 (265) U/L 0.372

Ferritin 827 (1637) ng/mL 322 (332) ng/mL 0.083

LogFerritin 2.35 (0.77) 2.29 (0.48) 0.746

CRP 4.52 (6.42) mg/dL 1.03 (1.76) mg/dL 0.005

LogCRP 0.18 (0.70) -0.37 (0.57) 0.002

IL-6 17.1 (22.4) pg/mL 8.2 (9.2) pg/mL 0.077

LogIL-6 0.98 (0.51) 0.75 (0.38) 0.089

IgG 481 (195) mg/L 572 (251) mg/L 0.209

DISEASE STATUS
PD
PR
SD

15 (28.3%)
1 (1.9%)
2 (3.8%)

23 (43.4%)
8 (15.1%)
4 (7.5%)

0.271

Gender
Female
Male

9 (17%)
9 (17%)

7 (13.2%)
28 (52.8%)

0.032

HCT-CI
0-1
≥2

5 (9.4%)
13 (24.5%)

17 (32.1%)
18 (34%)

0.239

(Continued)
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1.80, p=0.020), but not PMN-MDSC (defined as CD15+HLA-

DR-/lowCD11b+CD33+) (median value: 4.20 vs 2.60, p=0.578)

were found in patients who developed ICANS (Figures 3C, D).

The MDSC-inducing cytokine IL-6 (mean value [pg/ml]: 14.12 ±

2.39 vs 3.71 ± 2.69, p=0.030) and the MDSC-secreted cytokine

IL-10 (mean value [pg/ml]: 5.12 ± 4.99 vs 1.45 ± 1.21, p=0.030)

were increased at the pre-LD time-point in ICANS patients

(Figures 3E, F).
4 Discussion

These findings support that systemic inflammation preceding

CAR-T cell infusion, marked by high CRP serum levels, has a

negative prognostic value for CAR-T cell toxicity (22, 23). Several

markers of systemic inflammatory activation, including ferritin,

IL-6 and fibrinogen (here significantly associated with ICANS in

univariate analysis) have been linked to CAR-T cell toxicity (22,

24). In our series, ICANS occurred in patients who previously

developed CRS. Although these two complications may occur in

the same patients, the mechanisms underlying these adverse

inflammatory events are likely to be different. CRS
Frontiers in Immunology 07
pathogenesis has been extensively studied and appropriate

treatment (IL-6 axis targeting antibodies) are currently

available (25–27). Instead, the pathophysiology of ICANS and

its management have been less clearly defined. Higher levels of

endothelial stress (e.g. angiopoietin-2) and coagulopathy (e.g.

high concentration of D-dimers) markers have been showed to

correlate with severe neurotoxicity (14, 16, 22, 27, 28). Notably,

IL-6 receptor system blockade by tocilizumab seems to be

ineffective in ICANS (29), whereas the inhibition of myeloid-

derived mediators such as IL-1 is potentially capable to

ameliorate neurotoxicity in the murine model (13–15) and may

be of clinical relevance (30). Several sources of systemic

inflammation can be envisaged in patients undergoing CAR-T

cell therapy. Here, in our case series, we found that patients

developing ICANS have decreased levels of CD3+CD8+ T cells

and total lymphocytes at pre-LD time-point. This decrease may

be the consequence of immune-senescence (31). Accordingly, in

these patients we found an increase in pre-LD senescent CD8+ T

cells. Senescent T cell onset may be due to the prolonged attrition

of tumor antigens, the long-lasting exposure to senescence-

inducing factors in the tumor microenvironment, as well as the

exposure to cytotoxic therapies (31). Moreover, senescent T cells
TABLE 3 Continued

ICANS Sig.

CELLULAR PRODUCT
Axi-cel
Tisa-cel

13 (24.5%)
5 (9.4%)

16 (30.2%)
19 (35.9%)

0.085

BRIDGING THERAPY
No
Yes

1 (1.9%)
17 (32.1%)

9 (17%)
26 (49%)

0.137

LINES OF THERAPY
2-3
≥4

11 (20.8%)
7 (13.2%)

23 (43.4%)
12 (22.6%)

0.770

DIAGNOSIS
PMBCL
Other

5 (9.4%)
13 (24.5%)

1 (1.9%)
34 (64.2%)

0.014

ICANS, Immune effector cell-associated neurotoxicity syndrome; CD3+, T-lymphocytes; CD3+CD4+, CD4+ subtype of T-lymphocytes; CD3+CD8+, CD8+ subtype of T-lymphocytes;
CD4+/CD8+, ratio between two subtypes; CD3-CD56+CD16+, NK-cells; CD19+, B-lymphocytes; INR, international normalized ratio; aPTT, activated partial thromboplastin clotting
time; CRP, C reactive protein; LogCRP, log transformation of CRP; PMBCL, Primary mediastinal large b cell lymphoma; PD, Progressive disease; SD, Stable disease; PR, partial
response; HCTI-CI, Hematopoietic cell transplantation-specific comorbidity index.
The bold characters indicate the statistically significant values.
frontier
TABLE 4 Multivariate analysis of ICANS.

OR (95% CI) Sig.

CRP 7.133 (1.796-28.323) 0.005

% CD3+CD8+ T cells in peripheral blood 0.937 (0.882-0.996) 0.035

DIAGNOSIS (PMLBCL vs Other) 19.454 (1.490-254.007) 0.024

LogPCR, log transformation of CRP; CD3+CD8+, CD8+ subtype of T-lymphocytes; PMBCL, Primary mediastinal large b cell lymphoma.
The bold characters indicate the statistically significant values.
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are poorly responsive to specific stimuli, while retaining the

ability to trigger inflammation by cytokines/chemokines (GDF-

15, CXCL-9 and IL-6) secretion (32, 33). In turn, the plasma/

serum levels of these mediators have been associated with frailty

and poor outcome in a variety of diseases (32–34).
Frontiers in Immunology 08
At least in the subgroup of 21 cases, we found higher pre-LD

IL-6 serum level in patients developing ICANS. This cytokine

acts as the main regulator of MDSC-driven compensatory

circuitry, which physiologically switches-off inflammation (32).

However, when the MDSC-driven feedback loop stalls, it creates
A

B D EC

FIGURE 1

Cytofluorimetric analysis. (A) Gating strategy used to identify CD8+ T cell subsets. A lymphocyte gate was set based on the CD45+ and SSC
parameters. Among CD3+CD4+ or CD3+CD8+ compartments, different subsets were analyzed: Naive (CD45RA+62L-), central memory (CM)
(CD45RA-62L+), effector memory (EM) (CD45RA-62L-), terminally differentiated effector (TEMRA) (CD45RA+62L-) T cells; Among CD3+CD8+

compartment, SIP+ cells were measured as percentage of CD45RA+28-57+ whereas CD45RA+28+, CD45RA-57+ and CD45RA-28+ among CD8+

T cells were defined as non-SIP. The box plots show the changes in the percentage of (B) TEMRA, (C) non-SIP, (D) SIP, (E) SIP:non-SIP ratio
among CD3+CD8+ T cell compartment in ICANS and no-ICANS patients. Comparisons between 2 groups were made using the non-parametric,
unpaired Mann-Whitney test. *p <0.05; **p <0.01; ns = not significant.
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a combination of inflammation and immunodepression that is,

on the one hand, favorable for tumor progression and, on the

other hand, unfavorable for an efficient immune surveillance,

thus thwarting the efficacy of immunotherapy. Accordingly, we

found high levels of M-MDSC in patients later developing

ICANS. We found that IL-6 (hallmark of the MDSC

secretome (32)) levels were positively correlated with the

percentage of MDSC. Noteworthy, despite its powerful anti-

inflammatory activity, higher IL-10 levels have been previously

linked to neurotoxicity (5, 16). It is also worth noting that higher

MDSC levels have been linked to a blunted CAR-T cell

expansion (12). To reinforce the notion that MDSC up-

regulation is the telltale of myeloid compartment activation at

pre-LD time-point, we found high levels of the myeloid specific
Frontiers in Immunology 09
chemokine CXCL-9 in patients who developed ICANS. In

addition, CXCL-9 levels were found to be highly correlated

with CD45+ EVs and IL-10 plasma levels, as well as senescent

CD8+ T cells. Notably, it has been reported that CXCL-9

expression in the tumor microenvironment at the pre-

treatment stage affects the local immune landscape in patients

treated with CAR-T cell therapy (17). Speculatively, CXCL-9

circulating levels may provide information about the role of the

tumor microenvironment in the onset of ICANS (17). Moreover,

since CXCL-9 takes part to senescent secretome (34), our data

corroborate the notion that at pre-LD time-point, systemic

inflammation and myeloid cells activation are predisposing

conditions for CAR-T cell toxicity and may functionally linked

each other. Notably, despite we could not document a clear
A B

D E

F

C

FIGURE 2

Plasma markers analysis. (A) Box plots report the expression levels of miR-146a-5p, miR-21-5p, miR-126-3p, miR-150-5p at pre-LD in ICANS and no-
ICANS patients. Plasma levels of (B) GDF-15, (C) IL-15, (D) CXCL-9 and (E) NfL at pre-LD in ICANS and no-ICANS patients. (F) Range from min to max of
the Mean Fluorescence Intensity (MFI) for each plasma EVs marker. Plasma from patients experiencing ICANS in red and no-ICANS patients in green;
values have been normalized to blank control. Comparisons between 2 groups were made using t test. *p = <0.05; ns = not significant.
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difference between ICANS and no-ICANS patients, at the pre-

LD time-point circulating NfL serum levels were positively

correlated with myeloid markers (CXCL-9, IL-10, CD45+ EVs)

and with the percentage of senescent CD8+ T cells. These data

suggest that a latent neuronal damage is already present before

CAR-T treatment, thus predisposing to the later ICANS (32). In

keeping with this reasoning, high plasma levels of NfL before

CAR-T infusion have been associated with severe ICANS in

larger case series (35). In conclusion, our data suggest that pre-

CAR-T systemic inflammation associated with the ICANS onset
Frontiers in Immunology 10
is linked to CD8+ T cells senescence, myeloid compartment

activation and preexisting neuroaxonal injury.

ICANS is therefore likely to be the final event of a pathologic

process that begins before the infusion of CAR-T cell therapy. Since

we did not detect signs of CD8+ T cells senescence in patients who

later developed ICANS at the pre-apheresis time-point, the

phenomenon could be also associated with the bridging therapy

regimen, especially if chemotherapy-based. A larger sample and/or

multicenter studies are warranted to verify this hypothesis and its

implication in the management of CAR-T patients.
A

B D

E F

C

FIGURE 3

Cytofluorimetric analysis. (A) Gating strategy used to identify the M- and PMN-MDSC in a patient before receiving CAR-T cell infusion. The CD14+HLA-
DR−/low cell subset for M-MDSC or CD15+HLA-DR-/low for PMN-MDSC was gated, and the proportion of CD11b+CD33+ was evaluated. The box plots
report the percentage of (B) Monocyres, (C) M-MDSC, (D) PMN-MDSC, and plasma levels of (E) IL-6, (F) IL-10 at pre-LD in ICANS and no-ICANS
patients. Comparisons between 2 groups were made using the non-parametric, unpaired Mann-Whitney test. *p <0.05; ns = not significant.
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SUPPLEMENTARY FIGURE 1

Cytofluorimetric analysis. The box plots show the changes in the

percentage of Naïve, CM, EM and TEMRA among (A) CD3+CD8+ and (B)
CD3+CD4+ T cell compartments at pre-LD in ICANS and no-ICANS
patients. Comparisons between 2 groups were made using the non-

parametric, unpaired Mann-Whitney test. *p = <0.05; **p = <0.01;
***p = <0.001.

SUPPLEMENTARY FIGURE 2

Cytofluorimetric analysis. Scatter plots report the distribution of different

maturation subsets among (A) CD4, (B) CD8, (C) SIP and non-SIP in
CD3+CD8+ T cell compartment at pre-AP; Box plots report the changes in

the percentage of SIP (D) and SIP:non-SIP ratio (E) among CD3+CD8+ T
cell compartment at pre-AP (F).

SUPPLEMENTARY FIGURE 3

Cytofluorimetric analysis. (A) Histograms show the comparison of

frequency distribution of Naive, CM, EM and TEMRA cells gated on
CD3+CAR+CD8+ cell compartment in infusion product bags leftovers

stratified according ICANS. (B) Representative gating strategy of CAR+ T
cell population at expansion peak (day+7). CAR-T cell expansion kinetics

in patients receiving axi-cel and tisa-cel assessed by (C) flow cytometry
and (D) ddPCR (red: patients who developed ICANS; black: no-ICANS

patients. Comparisons between 2 groups were made using the non-

parametric, unpaired Mann-Whitney test. *p = <0.05; **p = <0.01;
***p = <0.001.
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