
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Hironori Yoshiyama,
Shimane University, Japan

REVIEWED BY

Hiroyuki Abe,
The University of Tokyo, Japan
Tomoharu Yasuda,
Hiroshima University, Japan

*CORRESPONDENCE

Behdad Afzali
behdad.afzali@nih.gov
Majid Kazemian
kazemian@purdue.edu

SPECIALTY SECTION

This article was submitted to
Viral Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 30 September 2022

ACCEPTED 14 October 2022
PUBLISHED 27 October 2022

CITATION

Chakravorty S, Afzali B and
Kazemian M (2022) EBV-associated
diseases: Current therapeutics and
emerging technologies.
Front. Immunol. 13:1059133.
doi: 10.3389/fimmu.2022.1059133

COPYRIGHT

© 2022 Chakravorty, Afzali and
Kazemian. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 27 October 2022

DOI 10.3389/fimmu.2022.1059133
EBV-associated diseases:
Current therapeutics and
emerging technologies

Srishti Chakravorty1, Behdad Afzali2* and Majid Kazemian1,3*

1Department of Biochemistry, Purdue University, West Lafayette, IN, United States,
2Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive
and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States,
3Department of Computer Science, Purdue University, West Lafayette IN, United States
EBV is a prevalent virus, infecting >90% of the world’s population. This is an

oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in

addition, a significant contributor to the burden of autoimmune diseases. Thus,

EBV represents a significant public health burden. Upon infection, EBV remains

dormant in host cells for long periods of time. However, the presence or

episodic reactivation of the virus increases the risk of transforming healthy cells

to malignant cells that routinely escape host immune surveillance or of

producing pathogenic autoantibodies. Cancers caused by EBV display

distinct molecular behaviors compared to those of the same tissue type that

are not caused by EBV, presenting opportunities for targeted treatments.

Despite some encouraging results from exploration of vaccines, antiviral

agents and immune- and cell-based treatments, the efficacy and safety of

most therapeutics remain unclear. Here, we provide an up-to-date review

focusing on underlying immune and environmental mechanisms, current

therapeutics and vaccines, animal models and emerging technologies to

study EBV-associated diseases that may help provide insights for the

development of novel effective treatments.

KEYWORDS
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Introduction

Oncogenic viruses cause approximately 15-20% of all human cancers (1, 2).

According to the International Agency for Research on Cancer (IARC), there are

seven major human oncogenic viruses (3). These include DNA viruses, such as

Epstein–Barr virus (EBV; also known as HHV4), Kaposi sarcoma-associated
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herpesvirus (KSHV; also known as HHV8), Hepatitis B virus

(HBV), human papillomaviruses (HPV) and Merkel cell

polyomavirus (MCPyV) and RNA viruses, such as human T-

lymphotropic virus 1 (HTLV-1) and Hepatitis C virus (HCV).

Despite many differences, these viruses have evolved common

mechanisms to persist and replicate within host cells and

facilitate escape of infected cells from the host’s immune

surveillance. EBV and KSHV are two oncogenic viral agents of

the g-Herpesviridae subfamily that are known to modulate a

plethora of biological processes in viral-associated cancers. The

g-Herpesviridae family is divided into two genera:

Lymphocrytoviridae which includes EBV and Rhadinoviridae

which includes KSHV. g-herpesviruses encompass a broad range

of pathogens in lower mammals ranging from murine

herpesvirus-68, bovine herpesvirus 4 and equine herpesvirus 2

that closely resemble the rhadinovirus. Interestingly, to date,

lymphocryptoviruses have been found only in primates and

humans (4).

EBV was first discovered by Epstein, Achong, and Barr in

1964 who isolated this virus from the cells of a Burkitt

lymphoma (BL) patient in Africa (5, 6). Since then, it has

become evident that EBV infects ~95% of the world’s adult

population. The typical transmission route is through bodily

fluids, such as saliva, where the orally transmitted virions infect

resting B and epithelial cells of the oral cavity. Primary infection

is typically asymptomatic, although 35-50% of the human

adolescent population develop infectious mononucleosis (IM)

approximately 1 month after infection, and the virus persist

throughout an individual’s life (7–10). After acute infection, a

dormant state is established due to a strong, virus-specific T cell

response (7). However, when the balance between the virus and

host immune system is disrupted, EBV can drive malignant

transformation of both lymphoid and epithelial origins, causing

~200,000 deaths annually (11–13).

As a herpesviruses, EBV can cause either latent or lytic

infection. In epithelial cells, EBV typically undergoes lytic

replication. In B cells, EBV usually establishes lifelong latency

with rare sporadic reactivations. During latency only a few

essential viral genes are expressed and production of virions

are stalled (14–17). The switch from latent to lytic phase is

governed by several factors (18, 19). While EBV-encoded

products in both phases can play a role in transformation

and tumorigenesis, the literature is more extensive on the

oncogenic role of latent genes compared to lytic genes.

However, it is challenging to target latent EBV using current

immunotherapeutic strategies, specifically due to reduced

antigen expression. As a result, patients with EBV+ or EBV–

tumors are typically subjected to similar treatment regimen. This

underscores the need to investigate the complexity of EBV-host

interactions to help the development of EBV-specific cancer

therapies. In this review, we will first discuss the EBV lifecycle

and different types of EBV-associated malignancies. We will

then summarize the major underlying molecular mechanisms
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and therapeutic strategies for EBV+ cancers. Lastly, we will

discuss some of the preclinical animal models and emerging

technologies for investigating different aspects of host-pathogen

interactions in EBV-associated malignancies.
Epstein-Barr virus infection

Lifecycle

Epstein-Barr Virus (EBV) exhibits a biphasic lifecycle that

includes latent and lytic (replicative) phases (20). Upon infection

the virus typically establishes latency within the host cell (21).

During latency, only a handful of latent genes that are necessary

for the maintenance and persistence of the viral genome are

expressed. EBV encodes eight latency genes whose expression in

host cells and/or malignancies defines EBV latency programs

(20). Based on which of the eight latent viral genes are expressed,

viral infection is categorized into three main latency programs,

latency III, II and I/0 (22). EBV-infected naïve B cells exhibit a

latency III program, which allows for the proliferation and

expansion of infected cells (23). Latency III genes include 6

EBV nuclear antigens (EBNA1, 2, 3A, 3B, 3C, LP), 2 latent

membrane protein (LMP1 and LMP2), EBV-encoded small

RNAs (EBERs), and EBV-encoded microRNAs (miRNAs) (24,

25). The cells in this latency program are highly immunogenic

and can be rapidly eliminated by the host immune response,

specifically by EBV-specific T cells (26). Latency II has a more

restricted expression of EBV genes, namely EBNA1, LMP1, and

LMP2A/B making them less immunogenic. Eventually, EBV

sequentially shuts down the expression of all the latent genes

except EBNA1 and a few EBV-encoded RNAs in latency I.

Latency II can also be divided to IIa and IIb based on the

expression of LMPs and EBNA2-3 (IIb is EBNA2-3+LMP–; IIa is

EBNA2-3–LMP+). In most individuals, EBV persists quiescently

within a subset of memory B cells (<0.005% B cells in the

peripheral blood) without expressing any viral genes in latency 0

state, also referred to as a ‘true latency’ (24, 27, 28). Latent EBV

genes are reported to promote tumorigenesis, inhibit apoptosis,

and suppress recognition of infected cells by host immune cells

(29). EBV-related malignancies are linked with different EBV

latency programs. Lymphoproliferative disorders that are

commonly associated with immunosuppression such as post-

transplant lymphoproliferative diseases (PTLDs) and acquired

immunodeficiency syndrome (AIDS) associated lymphomas

exhibit latency III (29). Hodgkin lymphoma, T/NK cell

lymphomas and nasopharyngeal carcinoma (NPC) exhibit

latency II (30). Gastric carcinoma and Burkitt lymphoma

exhibit latency I program (27, 31). So far, EBV in latency 0

has not been associated with any malignancies, presumably due

to dormancy during this program (Figure 1).

The lytic phase is necessary for EBV progeny production and

horizontal transmission of virus from host to host, so represents an
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integral aspect of viral pathogenesis (32). The switch from latent to

lytic cycle can be either spontaneous or chemically induced. Some of

the commonly used agents to induce lytic cycle include phorbol

esters (PMA), sodium butyrate, calcium ionophores, DNA

methyltransferase inhibitors (DNMTi), transforming growth

factor-beta (TGF-b), doxorubicin and gemcitabine (because these

are stress inducing chemotherapeutic drugs) and anti-IgG or anti-

IgM as B-cell receptor stimulants (33–35). During lytic reactivation,

the full repertoire of >80 viral genes is temporally regulated and

expressed during three phases - immediate early (IE), early (E), and

late (L). The first phase is primarily initiated by BZLF1 (ZEBRA)

and BRLF1, the two key EBV immediate-early (IE) lytic

transcription factors. Both genes function to promote their own

and each other’s expression, as well as the expression of viral E

genes, that code for proteins needed for viral replication (e.g., viral

DNA polymerase). BZLF1 forms a homodimer via its basic leucine

zipper motif and binds to BZLF1-responsive elements (ZRE) on

DNA (36). The binding of BZLF1 to CpGmethylated DNA leads to

activation of several lytic viral genes that are silenced in latent cells

by CpG methylation (37, 38). In addition, binding of BZLF1 to the

origin of lytic replication (oriLyt) ZRE promotes lytic viral DNA

synthesis (39). Similarly, BRLF1 binds to the BRLF1-responsive

elements (RRE) on DNA and is reported to induce lytic replication

via the PI3K and ERK signaling pathways (40, 41). Both BZLF1 and
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BRLFI are quintessential for EBV lytic replication since knocking

out these genes blocks the latent to lytic switch. In addition,

overexpression of BZLF1 and BRLF1 in latently infected cells can

induce EBV lytic reactivation (42). This lytic induction leads to a

cascade of viral gene expression, which promote viral DNA

replication and virion production. Following viral replication, late

viral genes code for structural proteins, such as gp350/220 encoded

by the BLLF1 gene are expressed (32). Interestingly, during lytic

DNA replication in g-herpesviruses, continuous DNA synthesis is

needed for the transcription of late lytic viral genes but not for early

lytic genes (20, 43). The virions can disseminate viral particles

within host cells and among hosts. EBV replicates in latency I, II

and III via proliferation of activated B cells. Interestingly, lytic

replication can only be efficiently induced from latency I/0, and

after extensive methylation of the viral genome. This is because

BZLF1 prefers binding to methylated CpG sequences to initiate

infectious particle production (38, 42).
Genome organization and
DNA methylation

The EBV genome is packaged similarly to that of host cells,

that is to say into nucleosomes, except loci that harbor the origin
A

B

FIGURE 1

Model of EBV infection cycle. (A) Upon primary infection through saliva, EBV infects B cells. The figure depicts a model of EBV infection, where
in EBV drives naïve B cells into latency III program. This activation leads to their differentiation into latency I/O memory B cells. This is often
followed by spontaneous or induced reactivation of EBV within circulating memory B cells. This figure is adapted/modified from Guo et al (44).
(B) Depending on the type of latency or lytic program, EBV infected cells are associated with different malignancies.*Gastric cancer cells also
express genes that are associated with latency II programs. **Post-transplant lymphoproliferative disorders express some of the genes in latency
III as well.
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of plasmid replication (OriP) (44, 45). Nucleosome folding along

with several histone modifications at the promoter of lytic genes

keep them transcriptionally silent during latent infection. For

example, the recruitment of histone deacetylases (HDACs) at

BZLF1 and EBNA2 Cp promoters maintain EBV latency (46)

(47, 48) and, as expected, HDAC inhibitors, such as sodium

butyrate, can activate the EBV lytic cycle (49, 50). Of note, EBV

DNA within virions or soon after lytic replication is nucleosome

free, potentially to allow its encapsulation into the nucleocapsid

(44, 51).

DNA methylation is typically associated with transcriptional

silencing (52, 53). The EBV genome is known to be

hypermethylated in the latent form and in virions (54). DNA

methylation plays a critical role in transcriptional regulation of

LMP1 and EBNA2 and thus contributes to the transition among

latency programs (55). Consistently, inhibitors of DNA

methylation, such as 5-azacytidine can reactivate latently

infected lymphoblastoid cells (LCLs) (56). However, since the

OriP region is required for EBV transcriptional regulation, it is

typically depleted of DNA methylation.
Entry into host cells

EBV typically exhibits dual tropism with the capacity to

actively infect and replicate both in epithelial and B-cells.

Sometimes EBV can also infect other targets such as T

lymphocytes and natural killer (NK) cells (7, 57). The entry of

EBV into target cells is facilitated by its envelope glycoproteins

(gp). B-cell entry requires glycoproteins gp350, gH, gL, gB and

gp42, whereas epithelial cell entry needs BMFR2, gH, gL and gB

(58–61). In epithelial cells, EBV is more likely to be transferred

from EBV-positive B lymphocytes that cause lytic infection (62).

T-cell and NK-cell entry seem to also require gp350 and gp42,

respectively (63, 64).

The EBV virion has a diameter of 150–170 nm, consists of

a linear, ~172 kbp double stranded DNA that codes for more

than 85 protein coding genes (65, 66). However, the exact

function of 30-40% of these genes remains unknown (67). The

EBV genome also has several tandem repeat regions that serve

various functions (20, 68). The entire genome is enclosed

within an icosahedral capsid surrounded by a layer of

tegument proteins and a lipid envelope that is made up of

several unique glycoproteins. EBV can enter human B cells via

a high-affinity interaction between viral gp350 and host

complement receptor type 2 (CR2) protein. HLA class II

can act as a co-receptor (15, 69). These protein-protein

interactions stimulate endocytosis of the virus into non-

clathrin coated vesicles of B cells. The virus also infects

epithelial cells as well as T- or NK-lineage cells albeit at a

lower frequency. Ephrin Receptor A2 (EphA2) was recently

identified as the entry receptor for EBV in epithelial cells. This
Frontiers in Immunology 04
protein interacts with EBV glycoproteins gH/gL and gB (70).

Although less is known about the mechanisms of EBV entry

into other cells, CR2 has been identified as the entry receptor

for T lymphocytes (64) but is apparently not essential for entry

into NK cells (71). HLA class II also plays a role for entry into

NK cells but its role for T cells remains less clear (63).

Upon entering B cells, the viral genome typically persists in

the nucleus as a circular episome, expressing a subset of genes

that promote survival of the infected host cell (58, 59). Typically,

after initial infection, the EBV genome rapidly circularizes either

before or at the same time as the initial phase of viral mRNA

synthesis (21, 72–74). After B cell infection, EBV initiates an

often asymptomatic, lifelong latency program in a few cells with

extremely low viral activity. During this stage, the EBV episome

is replicated by the host cell DNA polymerase primed on the

EBV origin of plasmid replication (OriP) (75, 76).
Variants and risk factors

EBV was originally divided into two major sub-variants,

type 1 and type 2, based on the sequence of two EBV-encoded

genes - EBNA2 and EBNA3 (77, 78). Type 1 is prevalent

globally (e.g., B95-8, GD1, and Akata strains) while type 2

(e.g., AG876 and P3HR-1 strains) is endemic to sub-Saharan

Africa (79). Currently, more that 71 distinct EBV strains have

been identified. EBV variants have different replicative

properties and individuals may become infected with two or

more strains. With the advent of high-throughput sequencing

technologies, it is now possible to sequence EBV genomes

from clinical specimens of diverse populations with different

malignancies. The first sequenced genome was of the

prototypical EBV B95-8 strain. This strain harbored a 12-kb

deletion in its genome. It was not until 2014 that this defect

was noted and EBV from Raji strains was recovered to get the

final complete sequence of wild-type EBV (EBV-wt,26

GenBank accession no. NC_007605.1) (65). This is now the

gold standard reference sequence for many research groups in

the field. It has been reported that certain EBV strains have

more oncogenic potential than others. For instance, the NPC

derived EBV strain, M81, spontaneously replicates at an

unusually high rate in B cells and has an extremely high

propensity to infect epithelial cells (80). This ‘super

infectious’ property is attributed to a single nucleotide

polymorphism (SNP) in the BZLF1 promoter region that

confers binding by host cellular transcription factors,

notably NFATc1 (81) . Increasing studies are now

investigating the heterogeneity of EBV latent and lytic genes

among the different EBV strains in order to identify high-risk

EBV strains (79). Doing so will potentially help identify high-

risk infected individuals and facilitate development of effective

EBV vaccines and anti-EBV T-cell therapies.
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EBV encoded latent gene products
and oncogenesis

EBV latent proteins are generally considered key

drivers of tumorigenesis in EBV-associated cancers and

thus it is important to understand their functions

in establishment of persistent infection and cellular

transformation. In this section we will briefly describe the

function of EBV-encoded latent gene products and

their role in transformation and oncogenesis in EBV-

associated malignancies.
Epstein–Barr virus nuclear antigen 1

EBNA1 is a transcription factor that is essential for EBV

episomal maintenance and replication (82, 83). Consistently,

EBV variants that harbor EBNA1 deletion do not have the

capacity to establish episomal latent infection (84). The DNA

binding domain of EBNA1 is necessary but not sufficient for

EBV replication and requires the N-terminal region (85).

Since EBNA1 lacks enzymatic activity, it primarily recruits

host cellular factors to replicate EBV episomes and to govern

mitotic segregation (86). Of note, EBNA1 can also function as

a transcriptional repressor and can downregulate its own

transcription in an autoregulatory loop (87–89). In terms of

oncogenic potential, EBNA1 is involved in progression of

carcinogenesis. Specifically, EBNA1 deletion significantly

decreases immortalization efficiency, while its overexpression

inhibits apoptosis (90, 91). EBNA1 modulates several cellular

signaling pathways that provide survival advantage to infected

ce l l s (92) . Whi le EBNA1 is repor ted to enhance

phosphorylation of STAT1 in one gastric cancer cell line

and two nasopharyngeal cancer cell lines, it inhibits anti-

tumor TGF-b1 and NF-kB pa thways , p romot ing

tumorigenesis (93, 94). EBNA1 also upregulates several

proteins involved in metastasis and oxidative stress in EBV+

NPC cells (95). In addition, EBNA1 induces loss of

promyelocytic leukemia (PML) nuclear bodies and

subsequently abrogates PML functions, such as p53

activation and apoptosis, resulting in increased survival of

gastric cancer cells (96). The fact that EBNA1 is the only EBV

protein that is consistently expressed in all latency types, and

therefore in all EBV-associated tumors, makes it a key target

for EBV specific therapies. Consistently, pharmacological

inhibition of EBNA1 using a small-molecule inhibitor VK-

1727 has been tested in various in vivo xenograft mouse

models for specific EBV+ cancers. These studies have

demonstrated that inhibition of EBNA1 can selectively

suppress EBV+ tumor cell proliferation (97).
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Epstein–Barr virus nuclear antigen 2

EBNA2 is a transcriptional activator of both cellular (e.g.,

CD21, CD23 and c-MYC) and viral genes (e.g., LMP1 and

LMP2) (98, 99). EBNA2 plays a crucial role in transcriptional

reprogramming of B cells to facilitate growth and survival (100,

101). However, unlike EBNA1, it cannot bind to DNA directly

and requires host transcription factors, such as the Notch

pathway DNA-binding factor RBP-Jk and PU.1 to regulate

gene transcription (102). In terms of oncogenic potential,

EBNA2 plays a crucial role in the transformation process and

functionally mimics Notch (103, 104). Consistently, P3HR-1, a

variant EBV strain in which EBNA2 and the last two exons of

EBNA-LP are deleted, does not transform B cells in vitro. EBNA-

LP, a transcriptional co-activator of EBNA2, is also an important

EBV oncoprotein that drives B cell transformation and functions

by up-regulating the expression of EBNA2 targets (105). In

addition, EBNA2 activates MYC enhancers via long-range

interactions. MYC can both increase proliferation and sensitize

cells to apoptosis. However, it is also a known proto-oncogene,

so unsurprisingly, EBNA2-mediated MYC activation seems to

promote lymphomagenesis in Burkitt lymphoma (106).
Epstein–Barr virus nuclear antigen 3
family proteins

The EBNA3 protein family members are stable, tightly

regulated and consist of EBNA3A, EBNA3B and EBNA3C

(107). EBNA3 proteins are well studied classes of

transcriptional regulators known to regulate both EBV (e.g.,

LMP1) and host gene (e.g., CD21) expression and, depending on

context, can function as activators or repressors of gene

expression (108–110). All EBNA3 proteins play a role in

transformation and prolonged persistence of EBV in infected

B cells. EBNA3 transcripts are generated from the Cp latency

promoter and are reported to be only expressed in B cells as a

part of the latency III program (111). Like EBNA2, EBNA3

proteins also do not directly bind to DNA but are, rather,

recruited by cellular DNA binding factors, such as RBP-Jk
(112, 113). RBP-Jk tethers EBNA3s to chromatin, but binding

of EBNA2 and EBNA3 to RBP-Jk are mutually exclusive (113,

114). In terms of their oncogenic potential, the EBNA3 family of

proteins have antagonistic functions but cooperate in a complex

to facilitate EBV persistence, as well as to promote oncogenic

transformation. EBNA3A and EBNA3C are considered

oncogenes s ince they are also involved in B cel l

transformation. However, in the absence of EBNA3A and

EBNA3C, EBV can latently persist in humanized mice (115).

Despite the sequence and structural similarity and reports about

their functional cooperativity, EBNA3 proteins are often have
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opposing functions. For example, EBNA3B is dispensable for B

cell transformation but inhibits EBNA3A- and EBNA3C-

mediated oncogenic functions in vivo. In addition, like

EBNA2, EBNA3 has long-range interactions with enhancers

and super-enhancer elements that drive oncogenesis (116).
Latent membrane protein 1

EBV encoded LMP1 is an essential membrane protein that

has an N-terminal cytoplasmic tail, six transmembrane domains

and a C-terminal cytoplasmic region that is divided into two C-

terminal activation regions 1 and 2 (CTAR1 and CTAR2). These

regions are required for tethering LMP1 to the plasma

membrane and its signaling activity (117).. LMP1 mimics

cellular CD40 receptor, a member of the (TNFR) superfamily

and can drive growth and differentiation of B cells by

substituting CD40 functions in vivo (118). LMP1 signaling is

primarily mediated by the ability of host TNFR-associated

factors (TRAFs) or death domain protein TRADD to interact

with CTAR1 or CTAR2 to facilitate activation of upstream

regulators of several signaling pathways (119, 120). In terms of

oncogenic potential, LMP1 is a well-documented EBV oncogene

and is essential for transformation of B cells in vitro. LMP1 acts

as a constitutively active CD40 receptor and thus can activate

target signaling pathways (e.g. the NF-kB pathway) independent

of ligand engagement (121–123). These includes pro-

tumorigenic functions, such as increase in cell proliferation,

cytokine production (IL-6, IL-8), apoptotic resistance (by

upregulating the expression of anti-apoptotic protein (Bcl-2,

A20)), immune modulation, anchorage-independent growth,

metabolism, angiogenesis, metastasis and invasion, all of which

are known to contribute to EBV-mediated pathogenesis

(124–126).
Latent membrane protein 2

The LMP2 gene encodes two dominant isoforms, LMP2A

and LMP2B. LMP2B is the smaller isoform that structurally

lacks a short cytoplasmic N-terminal domain that harbors an

essential survival signal known as immunoreceptor tyrosine-

based activation motif (ITAM) (75, 127). Interestingly, B cell

receptor (BCR) also has an ITAM motif which, upon

phosphorylation, recruits and activates the Src family and Syk

protein tyrosine kinases (PTKs) and promotes B cell

proliferation and differentiation. However, the association of

these PTKs with the phosphorylated ITAM of LMP2A

negatively regulates PTK activity (127), thereby inhibiting

BCR-driven calcium flux, tyrosine phosphorylation and BZLF1

induction in LCLs (128). In terms of oncogenic potential,

LMP2A and LMP2B seems to be dispensable for in vitro B-cell
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transformation (129). Indeed, LMP2 has anti-oncogenic

potential (130, 131).
Other EBV-encoded latent
gene products

In addition to the latent proteins mentioned above, there are

a few other EBV-encoded latent gene products including EBERs,

BARTs and EBV microRNAs. Two EBERs (EBER 1 and 2) are

small non-coding RNAs that are expressed during all latency

programs. In terms of oncogenic potential, EBERs do not seem

to be essential because EBER-deleted EBV strain can similarly

transform primary B-lymphocytes (132). However, they can

affect cellular processes by enhancing anti-inflammatory

cytokine IL-10 production via RIG-I/IRF3 activation (133). In

certain B cell lymphomas with restricted type 1 latency, EBER2

and EBNA1 can induce expression of cytokines (e.g., IL6) or

cytokine receptors (e.g., CD25) to promote B cell survival (134).

The BARTs encode BARF0, RK-BARF0, A73 and RPMS1. The

function of BART proteins encoded by corresponding ORFs

needs further examinations. The 44 EBV microRNAs are

arranged either adjacent to the BHRF1 gene or within the

BART introns. These microRNAs are associated with different

EBV latency programs (135, 136) and are differently induced

during the lytic cycle (137). However, the significance and

function of most remain unclear.
EBV-associated diseases

EBV is associated with a wide variety of diseases and

malignancies. Infectious mononucleosis (IM) is an extremely

common, self-limiting, and acute disease associated with primary

EBV infection. It is characterized by lymphadenopathy, transient

fever and hepatosplenomegaly that usually resolves in time. Chronic

active EBV infection (CAEBV), although rare, is a severe and fatal

condition characterized by unusually high EBVDNA load (103–107

copies/mL) (138), which is now considered to be one of the EBV+ T

or NK cell lymphoproliferative diseases and can lead to two lethal

conditions: hemophagocytic lymphohistiocytosis and

chemotherapy-resistant lymphoma (139). Historically CAEBV

was partially managed using immunomodulatory agents such as

interferon-a (IFN-a) and IL-2 (140), but JAK/STAT inhibitors are

now a standard component of treatment (141).

EBV is also a major risk factor for immunocompromised

patients. In HIV patients the lack of efficient and EBV-specific T

cell responses significantly increases the risk of developing EBV-

associated lymphoma (142, 143). Oral hairy leukoplakia (OHL) is a

hyperproliferative disorder observed in immunocompromised

patients that is triggered by EBV lytic state (144–147). Post-

transplant lymphoproliferative disorder (PTLD) represents severe,
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life-threatening uncontrolled B cell proliferation post-organ or

bone-marrow transplantation, which in majority cases is

associated with EBV reactivation and replication (148). EBV

infection is typically associated with cases of early onset (within

one year of transplantation) compared to late-onset PTLDs (149)

and higher EBV viral loads increase the risk of PTLD (150). One of

the main reasons for EBV reactivation during transplantation is the

use of immunosuppressants to prevent transplant rejection.

However, these immunosuppressants inhibit all T cells, including

EBV-specific ones, providing an opportunistic means for EBV to

escape from immune surveillance (151). Consistently, pre-emptive

treatment with inhibitors of EBV DNA replication can reduce the

incidence of PTLD (152).

EBV infection has also been implicated in the development

of autoimmune diseases, such as multiple sclerosis (MS) (153).

MS is characterized by autoreactive B cells in the cerebrospinal

fluid (CSF) that attack the myelin sheath of the central nervous

system (CNS). Recently, a large-cohort study on 62 million

serum samples taken from over 10 million US military

personnel provided compelling evidence suggesting a necessary

but not sufficient role of EBV infection towards the development

and progression of MS (154). Pathologically, another recent

study showed that EBNA1 mimics the CNS protein glial cell

adhesion molecule (GlialCAM), which is expressed by myelin

sheath-forming cells. Antibodies against a particular region of

EBNA1 highly cross-react with GlialCAM in MS patients,

potentially resulting in “off-target” autoimmune attack against

the myelin sheath in CNS of patients with MS (155).

The ability of EBV to immortalize B cells is testament to its

tumorigenic potential (156, 157). Indeed ~1-2% of all human

tumors are attributed to EBV, equating to ~300,000 new cases

worldwide in 2020 (158–160). EBV infects both genders, however,

EBV-associated malignancies are slightly more prevalent in males

compared to females (161). EBV infection is associated with various

lymphomas, including Burkitt’s lymphoma (BL), Hodgkin

lymphoma (HL), diffuse large B cell lymphoma (DLBCL), NK/T

cell lymphoma and primary effusion lymphoma (6, 162), as well as

epithelial malignancies, such as NPC and gastric carcinoma (GC).

Below, we will discuss some EBV-associated malignancies in

greater detail.
Burkitt’s lymphoma

BL is a highly aggressive B cell non-Hodgkin neoplasm first

reported in Africa by Denis Burkitt (163). The WHO

classification describes three clinical variants of BL: endemic

(eBL), sporadic (sBL), and immunodeficiency-related (usually

HIV-related) (164). While around 95% of eBL are EBV+, only

15% of sBL and 40% of immunodeficiency-related BLs are

associated with EBV (67). Despite primarily having the type I

latency programs, some other EBV genes (e.g., EBNA2) are

sporadically detected (165). Although the role of most EBV
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that EBNA1 can inhibit apoptosis in BL cell lines by interacting

with host proteins, such as p53-regulator USP7 and an anti-

apoptotic protein survivin (166).

The eBL variant is common in malaria endemic regions and

is commonly characterized by the presence of large tumors in the

head and abdominal cavity. EBV is detected in nearly all the cells

of eBL tumors, however the exact underlying mechanism has not

yet been fully elucidated (167). Fortunately, BL tumors typically

respond to intensive chemotherapy and are often curable when

diagnosed early but it still remains a fatal disease in much of the

affected sub-Saharan African population (168). This is attributed

to several factors, such as diagnostic delay, inadequate

healthcare, poverty, and malnutrition (169, 170). Outside of

malaria-endemic regions, the occurrence of BL is about 10-fold

lower mostly constitutes the sBL variant, which is concurrent

with a lower EBV prevalence (10-30%) (171). Clinically, the

majority of sBL cases present as tumors in the abdominal and

thoracic cavities. Despite a poor prognosis, current ongoing

clinical trials using a modified chemotherapeutic approach are

showing some promise (NCI 9177 trial). Nonetheless, more

specific and less toxic treatment options are needed.

The best known molecular feature of BL is the translocation

of the proto-oncogene MYC to an enhancer locus next to the

immunoglobulin heavy chain gene, causing constitutive

expression of MYC (172, 173). However, in addition to

enhanced MYC activity, the development of BL requires

additional genetic or epigenetic aberrations (174). Over the

years, extensive genomic and transcriptomic characterization

of BL cases have identified genes that are recurrently mutated

(e.g., BCR, TCF3, ID3, CCND3, ARID1A and SMARCA4) (175,

176). For instance, it has been experimentally demonstrated that

mutations in ID3 promote proliferation and cell cycle

progression (177). Genes in the ID3-TCF3-CCND3 pathway

are frequently mutated in MYC-rearranged eBLs and may

represent one of the major underlying causes of BL (178).

Nevertheless, the mutational and transcriptional landscape of

EBV+ BLs is quite distinct from EBV– BLs and is primarily

attributed to the presence of EBV. Recent studies have explored

the spectrum of aberrations in EBV+ BLs and the complex

interplay between specific viral-host transcriptional programs

(179, 180). For example, the frequency of MYC, ID3, TCF3 and

p53 somatic mutations is lower in sBLs, while the frequency of

mutation in ARID1A, RHOA and CCNF are higher in eBLs

(179). Interestingly, it has been previously reported that LMP2A

enhances MYC driven lymphomagenesis through activation of

the PI3K-pathway (181–183), suggesting that activation of PI3K

by LMP2A might be an alternative and/or convergent

mechanism to the one driven by TCF3/ID3 mutations. In

addition to LMP2A, a recent study described the role of LMP1

in MYC-induced lymphomagenesis in a subset of BL cases (184).

Further, comparative transcriptome analysis of eBL and sBL

tumors have highlighted key mutational differences between the
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two types of BLs, with sBL having a significantly higher

mutational burden, which correlates strongly with the EBV

status rather than geographical distribution (185, 186). A

recent study has found a genome-wide increase in aberrant

somatic hypermutation (SHM) in EBV+ BLs, attributed to the

higher expression of host activation-induced cytidine deaminase

gene AICDA, which is also a target of EBNA3C (187).

Overexpression of AICDA increases the likelihood of DNA

breaks and MYC translocations as well as pathogenic

mutations (188). Other factors, such as co-infection, seem to

also contribute to BL pathogenesis. For example, Plasmodium

falciparum induces DNA damage, which can turn EBV-infected

B cells into eBL. Likewise, impaired immune surveillance in

HIV-infected patients can induce EBV-associated BLs (179,

189, 190).
Hodgkin lymphoma

HL is a lymphoid neoplasm that originates from B cell. The

two major forms of HL are the classical type (cHL) and the

nodular lymphocyte predominant type (NLPHL), the latter

being considered as an EBV– malignancy. One of the main

features of cHL is the presence of large multinucleated cells

known as Hodgkin and Reed-Sternberg (HRS) cells (191).

Although derived from B cells, HRS cells lack the normal B

cell phenotype which is attributed to functional aberrations in

key B-cell associated TFs, such as PAX5, EBF1, TCF3/E2A and

NF-kB (192, 193). In addition, the HRS cells co-express various

hematopoietic cell markers and have anomalous activation of

several signaling pathways (e.g., NF-kB and JAK/STAT),

attributed to the frequent mutations of key TFs and/or cellular

interactions within the tumor microenvironment (TME) (194).

Globally, nearly 50% of cHL cases are EBV+ but the EBV

prevalence varies with geography. For instance, about 30-40%

of cHL cases in North America and Europe are EBV+, while in

Africa, Asia, and Latin America, all cases are EBV+ (192). EBV+

cHLs are typically characterized by a massive immune cell

infiltration (195). Although the exact mechanistic role of EBV

in cHL pathogenesis is unclear, the presence of EBV throughout

disease progression underscores its role in maintaining the

tumor phenotype (196). EBV+ cHLs exhibit type II latency

program, maintaining high levels of LMP1 and LMP2A

proteins in all HRS cells (191, 197). LMP1 and LMP2A can

both contribute to the pathogenesis of cHLs by mimicking

cellular receptors, namely CD40R and BCR, that are essential

for cell survival and expansion (99, 198–204).
Nasopharyngeal cancer

NPC is a unique and complex form of a head and neck

epithelial cancer. While the disease prevalence is extremely low
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North Africa, Greenland, Alaska, and the Middle East, affecting

around 30 per 100,000 individuals. The distinct geographical

distribution pattern of NPC cases worldwide suggests both

environmental (e.g., consumption of preserved, salt-cured

foods) and genetic factors (e.g., mutations in HLA, TNFRSF19,

CDKN2A/B, and TERT) as its etiology (205–208). Nonetheless,

EBV infection is reported to be a critical risk factor and plays an

essential role in NPC progression (209–211). About 90% of

malignant cells in NPC are either undifferentiated or poorly

differentiated squamous epithelial cells that typically express

several EBV latency type II gene products (212). These include

EBER1/2, EBNA1, LMP1, LMP2, BARF1, and several other

EBV-encoded non-coding transcripts. LMP1 is one of the key

oncogenic drivers of NPC that is expressed in 20%–60% of NPCs

and all pre-malignant or pre-invasive lesions, making it a prime

therapeutic target (213).

NPCs harbor a high somatic mutation burden. A recent

study identified more than 50 mutations per tumor in a panel of

111 micro-dissected EBV+ tumor samples. A whole exome

sequencing study of NPCs identified a range of somatic

mutations in key cellular genes and pathways including p53,

HLA, NF-kB, MAPK, and P13K (214). Given that somatic

mutations in NF-kB pathway were mutually exclusive to

LMP1-overexpressing NPCs, the NF-kB pathway activation

either by EBV or mutation seems to be vital for NPC

pathogenesis (215). This is corroborated by another genome-

wide analysis that reported that ~90% of the EBV+ NPCs have

constitutive activation of NF-kB inflammatory pathways either

due to somatic mutations or expression of EBV encoded LMP1

oncogene (216). Additionally, chromosome instability (CIN) is

hallmark of NPCs. Early studies have linked EBV infection with

genomic instability. Detailed differences in the genomic and

epigenomic landscapes of EBV driven epithelial malignancies

have been reviewed elsewhere (207).
EBV-associated gastric cancer

Gastric cancer (GC) is one of the leading causes of cancer-

related mortality (165). Nearly 10% of the 950,000 yearly new

cases of GC cases are attributed to EBV infection. EBV+ GC

usually mimics the histological features of lymphoepithelioma-

like carcinoma, in which dense lymphocytic infiltrates (mainly

CD8+ T cells) are present. EBV+ GC is, in fact, of the four

molecular subtypes of GC, namely EBV+ GC, GC with

microsatellite instability, genomically stable GC, and GC with

chromosomal instability (217). EBV+ GC and GC with

microsatellite instability are mutually exclusive. There are two

common theories regarding the mechanism of occurrence of

EBV+ GC. First, that EBV enters the digestive tract via the saliva

and directly infects gastric epithelial cells. Second, EBV within B

cells of the stomach is reactivated (through unknown
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mechanisms) and infects surrounding gastric epithelial cells

(218). EBV+ GC cells exhibit latency I or intermediate latency

I/II programs (219, 220). Consistently, EBNA1 and LMP2A are

expressed in 100% and ~50% of EBV+ GC cases, respectively, but

LMP1 is not expressed (221). EBV+ GCs have distinct genomic

aberration, clinicopathological features, cellular gene

methylation, and comparatively favorable prognosis compared

to EBV– GCs (217, 222–224). Unlike NPCs and EBV– GCs, p53

mutations are rare in EBV+ GCs (225). This might also partially

explain a comparatively favorable prognosis for EBV+ patients

since it is known that mutations in p53 reduces sensitivity to

chemotherapy and radiation (226). EBV can also extensively

induce cellular DNA methylation, which could inhibit tumor

suppressor genes (e.g. p16 and E cadherin) and thus increase the

risk of cancer formation (227). Recent studies report the

increased expression of certain immune checkpoint proteins in

EBV+ GC, such as PD-L1 and IDO-1 and their upstream

regulators (180), which could explain their favorable response

to immune checkpoint therapy (228). The pathogenic role of

EBV, underlying molecular mechanisms and current treatment

options for EBV+ GC have been further discussed

elsewhere (218).
Mechanisms underlying EBV
induced diseases

To establish infection and persistence, EBV employs

different strategies to evade the host immune response and to
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compromise innate and adaptive immunity during its life cycle

(229). Some of these mechanisms includes genetic and

epigenetic alterations, inhibition of apoptosis, enhanced cell

proliferation and inhibition of immune recognition of EBV-

infected cells (Figure 2). Broadly, tumorigenesis can occur by i)

enhancing antiapoptotic or reducing proapoptotic gene

expression; ii) promoting cell growth and survival signaling

pathways; and iii) shaping the tumor microenvironment for

malignant cells to escape immune surveillance. In this section,

we will briefly discuss some of these mechanisms, focusing on

the role of the tumor microenvironment and immune escape

mechanisms in EBV-induced malignancies.
Tumor microenvironment

EBV is known to alter the cellularity and the properties of

the tumor microenvironment (TME) thereby shaping an

immunosuppressive environment. This involves inhibition of

anti-tumor effector immune cells, such as NK cells and CD8+ T

cells and recruitment and differentiation of immune-suppressive

and/or anti-inflammatory cells, such as regulatory T cells

(Tregs), dendritic cells (DCs), Th17 cells, M2-polarized tumor-

associated macrophages (TAMs) and myeloid-derived

suppressor cells (MDSCs) (230). In addition to the immune

compartment, TME also includes stromal cells, soluble

mediators such as chemokines and cytokines that can be

modified by EBV. Together, these changes facilitate tumor

growth by several mechanisms including promoting immune
FIGURE 2

A few examples of key host cellular processes perturbed by EBV. Examples of EBV-encoded gene products that are related to the indicated
mechanism are shown.
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evasion. Extensive research has been done to understand the

TME of both EBV– and EBV+ malignancies (67). Studies on the

TME are limited for certain EBV+ malignancies due to low

incidence rates (e.g. NK/T cell lymphoma) or high heterogeneity

among the sites of the disease and immune compartment

(e.g. PTLD).

It is known that tumor cells can affect immune cell

infiltration as well as drive the infiltrated immune cells

towards a tolerogenic or exhausted state rendering them non-

functional. Although highly variable, EBV+ carcinomas are

generally characterized by high immune cell infiltration. This

includes CD8+ T cells, CD4+ T cells (Th1, Th2, Treg cells, etc.)

and CD163+ M2-TAMs (TAMs) (231). T cells are prevalent in

EBV+ epithelial cancers. For example, EBV+ GCs attract high

numbers of CD8+ T cells better known as cytotoxic T

lymphocytes (CTLs) (232) and the CTL infiltration is

positively correlated with EBV viral load (233). Despite a

significant increase of CD8+ T cells within the TME of EBV+

NPCs, they exhibit an exhaustion signature and reduced

cytotoxic activity (234, 235). In EBV+ NPC, LMP1-mediated

glycolysis promotes MDSC expansion within TME leading to

tumor-induced immunosuppression (236). Tregs and the CD8+

T cells are dominant in cHL. However, CD8+ T cells are

primarily exhausted due to the high levels of PD-L1

expression (237). In contrast, higher numbers of M2-TAMs

seems to be the most prominent in the TME of Burkitt

lymphomas (238), which are also known to affect tumor

progression via upregulation of immune checkpoints and

expression of specific cytokines. Similarly, an increased

frequency of CD57+ NK cells is reported in EBV+ GC, NPCs

and cHL compared to their EBV– counterparts (231). Unlike T

cells, the role and the presence of B cells within the TME of

EBV+ malignancies are mixed and warrant further investigation.

Altered expression profile of certain soluble mediators

including cytokines within the TME have an important role in

EBV-associated malignancies and often these alterations precede

immune cell infiltration. For instance, EBV induces host CXCL9,

CXCL10, and CCL20 in some EBV+ tumors, which in turn

attract regulatory T cells into TME (239, 240). The cytokines

often have pleiotropic effects. For instance, IL-10 is known to

downregulate the expression of HLA class I and II antigens,

induce Tregs (which in turn inhibit T-cell proliferation and IFN-

g secretion) and inhibit CD8+ T cell cytotoxic function resulting

in an overall immune-suppressive microenvironment within the

tumors (241–243). Other soluble mediators such as IL-1b, IL-4,
IL-6, IL-8, and IL-13, IFN-g, CXCL10 and CXCL12 are also

frequently upregulated in EBV+ malignancies and implicated in

disease progression (231). It is also known that EBV proteins

such as LMP1 and EBNA1 can significantly promote an

immunosuppressive microenvironment by promoting

expression of chemokines and cytokines. Compared to their

EBV– counterparts, EBV+ GC cells have an overall higher

involvement of Th1 and CD8+ T cells and produce more
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cytokines/chemokines including CCL20, CCL22, and CCL17

(244, 245). Other non-immune cells within the TME (e.g.,

cancer-associated fibroblasts) are also known to produce pro-

inflammatory cytokines and have been reported to surround

tumor cells in EBV+ solid tumors (246).
Immune evasion

The human immune system has developed several strategies

to combat invading pathogens. Central components of such

strategies are the innate and adaptive immune responses. While

innate immune responses are the first line of defense, they are

often non-specific. In contrast, the adaptive immunity is more

specific and long lasting and maintains specific memory of

invading pathogens. Despite these host immune defense tools,

EBV can establish latency within infected cells suggesting that

the virus has developed mechanisms to escape, inhibit, or

subvert host immune responses to ensure its own persistence.

A typical mechanism of innate immune evasion in EBV

infection is downregulation of pattern recognition receptors,

such as toll like receptors (TLRs). Similarly a general mechanism

of adaptive immune-evasion in EBV-associated malignancies is

the overexpression of immune checkpoint proteins (e.g., PD-L1,

IDO-1, CTLA-4, LAG-3, TIM-3, and VISTA), thus making them

susceptible to treatment with immune checkpoint blocking

immunotherapy (247). Below, we will briefly discuss the

strategies used by EBV to evade the innate and adaptive

immune responses.
Innate immune response and
EBV evasion

The innate immune response against EBV originates from

both the EBV-infected cells themselves (B and epithelial cells) as

well as from bystander cells like myeloid and NK cells. One of

the major elements of innate immunity are the pattern

recognition receptors (PRRs) that can recognize a diverse

array of pathogen associated molecular patterns (PAMPs) and

recruit downstream effector mechanisms, such as secretion of

type I interferons in response. To date, 10 TLRs have been

identified in humans. TLR9 is the key receptor for sensing EBV

and is abundantly expressed in B cells and certain myeloid cells.

TLR9 specifically senses unmethylated CpGs of EBV DNA

motifs present in viral particles immediately after primary

infection in B cells. Upon stimulation, TLR9 can activate the

NF-kB pathway, which in turn promotes production of pro-

inflammatory cytokines and B cell proliferation.

Dendritic cells (DCs) can sense, phagocytose, process and

present antigens to cells of the adaptive immune system. DCs are

generally classified into two types, conventional DCs (cDCs) and

plasmacytoid DCs (pDCs), which express TLR3 and TLR9,
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respectively. Unlike TLR9, TLR3 is endosomally located and

recognizes dsRNAs, including EBV-RNAs (EBERs).

Nevertheless, both TLR3 and TLR9 stimulate type I IFN

production when triggered. Even monocytes and macrophages

sense EBV via TLR3 and TLR9 leading to cytokine and

chemokine production. Another interesting cellular player are

the NK cells. NK cells are critical cytotoxic innate lymphocytes

that target infected cells. Like DCs, NK cells have two broad

subsets, CD56bright and CD56dim, the latter being more relevant

in B cells restricted EBV infections (248). This is supported by

studies which suggest that deficiencies in NK cells can increase

the occurrence of EBV-driven pathologies. Consistent with this

notion, NK cells recognize and preferentially target infected cells

with lytic EBV infection (249, 250). Despite the intricate network

of innate immune players, EBV has developed strategies to

counteract innate immunity. For example, EBV can reduce

expression of several TLRs. For example, EBV lytic protein

BGLF5 reduces TLR9 expression and LMP1 suppresses TLR9

function in EBV+ PTLDs and cHLs. A detailed review of

interplay between EBV and host innate immune responses can

be found elsewhere (251).
Adaptive immune response and
EBV evasion

Adaptive immunity can be broadly classified into humoral

and cell-mediated processes, which are mediated primarily by B

and T cells, respectively. Adaptive humoral responses are the

direct product of interaction between antigens and

immunoglobulin (Ig) on the surface of naïve B cells, which

leads to secretion of antigen-specific antibodies and antigen

presentation to T cells. T cells in turn help B cells with Ig-class

switching and affinity maturation either specifically via CD40L/

CD40 binding or non-specifically via interleukin/cytokine

release (252). Primary EBV infection triggers an immediate

IgM response to viral capsid antigen (VCA) and BMRF1

encoded early antigen diffuse (EaD) complexes. The

importance of humoral immune responses and molecular

details of antibody response against EBV has been previously

reviewed (252). EBV-specific T cells are key players in

determining the fate of EBV infected cells. Both types of T

cells, namely, CD8+ cytotoxic and CD4+ helper T cells can

recognize EBV antigens presented on the surface of infected

cells by HLA molecules (253, 254). While HLA class I antigens

are expressed on almost all nucleated cells, HLA class II antigens

are expressed on the surface of antigen presenting cells (APCs)

(253). Despite increased infiltration of CD8+ T cells in EBV+

tumors compared to EBV– tumors (255), EBV has developed

several strategies to evade T cell responses, for example by

downregulating HLA expression, blocking antigen presentation

pathways or creating an immunosuppressive TME. The latter is

mediated by increased production of immunosuppressive
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cytokines and/or increased expression of immune checkpoint

molecules that are known to induce T cell exhaustion (229).

Glycoprotein programmed death ligand 1 (PD-L1)

represents one of the several immune checkpoint molecules

that is modulated by EBV and is used as a mechanism of

immune evasion by many tumors. This occurs as a function of

PD-L1 engagement with cell surface receptor programmed death

1 (PD-1 or CD279) expressed on T cells (256). PD-1 interacts

typically with its ligand PD-L1 (CD274 or B7-H1) and less

frequently with PD-L2 (CD273 or B7-DC) (257). While PD-L1

is expressed by a wide-range of cell types, the latter is expressed

only by specific cell types, including DCs, mast cells and

macrophages (258). PD-1 is an inhibitory receptor that is

rapidly upregulated upon antigen-mediated T cell receptor

(TCR) stimulation (259). Recent studies have identified PD-1

expression in a plethora of other immune cell subsets such as B

cells, DCs, NK cells, and monocytes (260, 261). The PD-1/PD-L1

pathway plays a crucial role in immune tolerance by fine-tuning

the quality and duration of T cell response thereby serving as a

‘rheostat’ of immune response (262, 263). This is partly achieved

by counterbalancing the T cell activation signal triggered by

binding of CD28 on T cells with CD80/CD86 on APCs. The

binding of PD-1 receptor with its cognate ligands attenuates

TCR signaling and leads to T cell exhaustion (264). This

inhibitory interaction serves to protect target tissues from

hyper-activated immune mediated damage. Tumor cells take

advantage of this mechanism by frequently upregulating PD-L1

expression to escape the host anti-tumor immune response

(265). Consequently, the PD-1/PD-L1 axis serves as one of the

promising targets for immunotherapy in such malignancies.

Infectious viruses such as Epstein-Barr virus (EBV), hepatitis

C virus (HCV) and hepatitis B virus (HBV) leverage the PD1/

PD-L1 pathway to facilitate escape of infected cells from the

antiviral immune response (266). Consistently, PD-L1

expression is higher in EBV+ relative to EBV– tumors in NPC,

GC and DLBCL (180).

Several mechanisms have been reported for increased PD-L1

expression. These include alterations at the genetic level, specifically

the amplification of the chromosomal region 9p24.1, which

includes the genes PD-L1, PD-L2, and JAK2 (217, 267). Such

genetic alterations have been associated with certain B-cell

lymphomas and gastric cancer (268–271). Interestingly, in ~40%

of cHLs, increased PD-L1 expression is not due to this amplification

but attributed to upregulation by certain EBV-encoded gene

products (272). The dysregulated expression of PD-L1 in cancer

has been attributed to the oncogenic activation of multiple signaling

pathways, including JAK/STAT, PI3K/Akt/mTOR, MEK/ERK, and

Jun/AP-1 which can either act independently or synergistically to

regulate PD-L1 expression (273–275). In addition, another

important mechanism of PD-L1 upregulation is 3’-UTR

disruption of PD-L1 by EBV insertion at this locus (276). EBV

encoded genes are also known to modulate host immune responses.

BZLF1 (Zta) can induce expression of host immunosuppressive
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genes, such as TGFB1, which further downregulate expression of

immune responsive genes, such as TLR9, IFI6, and IL23A (277,

278). LMP1 promotes AP-1, JAK-STAT and NF-kB signaling

mediated activation of PD-L1 (279–281), suggesting that LMP1-

mediated signaling might also be a key player in the immune escape

strategy in cancers that express LMP1 (e.g. NPC, cHLs and

DLBCLs). LMP1 also promotes proliferation and survival and

LMP1-driven PD-L1 upregulation correlates with poor prognosis

in certain lymphomas (282). Lack of LMP1 expression in EBV+

eBLs, consequently, is associated with absence of PD-L1 expression

observed in these tumors (283). Likewise, EBNA1 also modestly

promotes IFN-g-induced PD-L1 overexpression in GC cell lines

(284). The role of other EBV genes in inducing PD-L1 expression in

EBV-associated cancers is less clear and further investigation is

needed to determine how different viral gene products affect

immune responses and PD-L1 expression in different EBV-

associated cancers.
Therapeutic strategies for targeting
EBV-associated malignancies

Since EBV contributes to malignant cell transformation and is

found in almost every cell of EBV+ tumors, it has been considered

a potential target for precision medicine and individualized cancer

treatment. While non-specific chemotherapy is typically the first

line of therapy, several additional strategies have been proposed
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specifically targeted towards EBV+ malignancies (Figure 3). These

include i) antivirals against EBV; ii) small molecule inhibitors for

EBV-encoded gene products, such as LMP1 and EBNAs; iii)

induction of the lytic form of EBV replication in tumor cells in

combination with prodrugs that are cytotoxic in lytically infected

cancer cells; iv) enhancing the host immune response to viral

antigens expressed by EBV-infected tumor cells; v) use of EBV

vaccines. Additional strategies that are under consideration

include induction of EBV episome loss by treating tumors cells

with low-dose hydroxyurea and expressing toxic genes using

EBV-dependent approaches (285, 286). There is also

considerable enthusiasm for immune checkpoint therapies for

the management of EBV associated cancers. Some are approved or

under investigation in clinical trials for the treatment of NPC, GC,

and HL. Based on initial trial reports, PD-1 targeting treatments,

such as pembrolizumab and nivolumab, seem to improve

longevity and/or partial response, especially in patients with

PD-L1+ tumors (287–293). Here, we will discuss some of the

major therapeutic strategies for EBV+ cancers, focusing on recent

developments and highlighting current gaps and/or challenges.
Chemotherapy

For lymphomas, such as BLs, the conventional chemotherapeutic

regimen include R-CHOP (Rituximab plus cyclophosphamide,

doxorubicin, vincristine and prednisone), CALGB (cancer and
FIGURE 3

Therapeutic approaches hypothesized or in clinical use, for the treatment of EBV-associated malignancies. Shown are broad categories of
treatments (red), subcategories (bold) and specific examples (italicized). HDAC: Histone deacetylase; DNMT: DNA methyltransferase; R-CHOP:
Rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone.
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leukemia group B), Hyper-CVAD +/- R (cyclophosphamide,

vincristine, doxorubicin, and dexamethasone, with or without

Rituximab), CODOX-M/IVAC +/- R (cyclophosphamide,

vincristine, doxorubicin, methotrexate, ifosfamide, etoposide, and

cytarabine, with or without Rituximab), and dose-adjusted (DA) R-

EPOCH (rituximab, etoposide, prednisone, vincristine,

cyclophosphamide, and doxorubicin) (294). Although BLs and HLs

are generally curable, these regimens for relapsed aggressive B cell

lymphomas are typically ineffective. Currently a novel

chemotherapeutic approach is under investigation in a phase II

clinical trial (NCT01964755) for relapsed EBV-associated

lymphomas that utilizes a combination of drugs to potentiate the

function of zidovudine (ZDV) to suppress NF-kB and viral latency.

Unlike in lymphomas, there is limited evidence on the

clinical gains of chemotherapy alone in EBV+ epithelial

cancers. Surgery (typically gastrectomy) and chemotherapy

remain the first line of treatment for patients with EBV+

gastric cancer. Nevertheless, the efficacy of chemotherapy

remains speculative. Corallo et al. reported that 6 EBV+ GC

patients who received fluorouracil and platinum as first-line of

chemotherapy had a 3-year survival rate of 80% compared to

26.5% in EBV– GC patients (295). However, another

observational cohort study with 31 patients reported an overall

response rate of only 29% in metastatic EBV-GC patients who

received taxane/trastuzumab, fluoropyrimidine and platinum as

the first-line therapy (296). Owing to the single center nature of

these studies and small sample sizes, it is necessary to confirm

these observations in larger cohorts and clinical trials (297).

From the limited evidence it seems that patients with EBV+ GC

have few metastases, longer survival, and high disease control

rates. Although, chemotherapy helps some patients by

increasing the frequency of event free and overall survival, it is

still insufficient to treat EBV+ cancers completely and eradicate

infected cells. Combining chemotherapy with immunotherapy

has provided encouraging preliminary results but further

exploration and development of more effective combinatorial

strategies are required.
Adoptive cell therapy

Adoptive cell therapy (ACT) is a form of immunotherapy

where specialized in vitro expanded or modified immune

(usually T) cells are transferred to patients to enhance or

repress immunity. These T cells are either specific for an

antigen (e.g. viral protein or tumor-associated antigen) or are

genetically engineered to express chimeric antigen receptor

(CAR) or modified T cell receptor (TCR). The first ACT was

performed in 1994, where donor leukocytes which included

EBV-specific cytotoxic T cells (CTLs) were infused into 5

patients who had developed EBV-associated PTLD. Complete

remission was observed in 5/5 patients, however all of them

developed graft-versus-host disease (GVHD) due to alloreactive
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T cells (298). Since then, significant progress has been made in

the field of ACT for patients with EBV-associated PTLDs and

the concept is expanding to include patients with NPC and HL,

as summarized elsewhere (299). One of the strategies to

minimize alloreactivity (i.e. to reduce the risk of GVHD)

includes infusion of in vitro stimulated and expanded EBV-

specific CTLs that are donor-derived (300, 301). Interestingly,

adoptively transferred CTLs not only restore the anti-EBV

immune response but can also establish long-term persistence

(302, 303). Similar strategies for ACT have been developed for

patients with NPC and HL, where CTLs specific to EBV latent

antigens (e.g. EBNA1, LMP1, LMP2) are expanded ex vivo and

infused into patients (304). Phase I/II clinical trials with such

immunotherapy approaches have increased the overall survival

of patient with recurrent or refractory NPC (305–307) and

HL (308).

A modified version of ACT for the treatment of EBV+

cancers is to engineer T cell receptors before transferring T

cells to the patients. Such EBV-specific TCR-engineered T cell

therapy is based on the rationale that TCRs on CD8+ T cells can

be re-engineered to specifically recognize EBV latent and lytic

proteins. The stability and anti-tumor effect of these chimeric

TCRs have been evaluated in murine models and provide

encouraging results (309). For instance, T cells expressing

LMP1-specific TCR inhibited tumor growth and prolonged

survival in xenograft mice (310). Another type of ACT being

widely investigated is EBV-specific CAR T cell therapy. CAR-T

cell therapies targeting specific antigens, for instance CD19,

CD20, CD22 and CD30, have provided encouraging results for

treatment of lymphoma in clinical trials (311–313). One

drawback of CAR T cell therapy is that CD8+ T cells

engineered with a CAR will also express their own native

TCR, so the potential for auto-reactivity remains. Another the

major limitation of CAR-T cell therapy is specificity for tumor-

associated antigens, as some of these might be expressed by

normal cells. This leads to adverse off-tumor toxicity, cytokine

release syndrome and deficiencies in B-cell mediated humoral

responses. Some of these limitations have been addressed by

developing CAR-T cells that are specific to EBV antigens such as

LMP1, since they would be specifically expressed in EBV

infected malignant cells (314). In fact, LMP1-specific CAR-T

cells exhibit enhanced tumor inhibition in LMP1-positive NPC

xenograft mouse models (315). The translation of these therapies

for the treatment of EBV-associated cancers warrants further

evaluations before it can be prescribed as personalized

immunotherapy for EBV+ cancers in humans.
Antiviral therapy

Several antiviral drugs have been identified and are being

currently evaluated for clinical use. These can be broadly divided

into three classes: 1) nucleoside analogs such as acyclovir (ACV),
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1059133
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chakravorty et al. 10.3389/fimmu.2022.1059133
ganciclovir (GCV), penciclovir (PCV), and their oral prodrugs

valacyclovir (VACV), valganciclovir (VGCV) and famciclovir

(FAM), respectively; 2) nucleotide analogs such as cidofovir

(CDV); and 3) pyrophosphate analogs, including foscarnet.

Although these antiviral agents have been clinically evaluated

for different viruses, their clinical utility in the context of EBV-

associated malignancies is lacking. To date, there is no effective

Food and Drug Administration (FDA) or European Medicines

Agency (EMA) approved antiviral therapy available for EBV

infections. Nevertheless, we will briefly discuss some of these

antiviral agents in the context of EBV-associated diseases. A

more in-depth review of these drugs can be found published

elsewhere (316).

Nucleoside analogs such as ACV and GCV inhibit EBV in

vitro. The antiviral effect of ACV is attributed to the preferential

incorporation of its triphosphate into the viral DNA due to high-

affinity interaction with EBV polymerase compared to the

cellular polymerase. This process irreversibly and specifically

terminates viral DNA elongation and replication (317). The

effective dose of ACV against EBV is orders of magnitude lower

(0.3mM) than host cells (250 mM) (318), resulting in a highly

favorable therapeutic index and toxicity profile. The antiviral

effect of GCV is greater than ACV but it is more toxic. Antiviral

(e.g. ACV, GCV or VACV) prophylaxis has significantly

reduced development of PTLD in high-risk EBV-seronegative

lung transplant patients (319) and reduces EBV viremia in

pediatric renal transplant patients (320). Clinical trials

administering ACV along with prednisolone have shown the

inhibition of EBV replication in the oral cavity, however they do

not alleviate the duration or intensity of clinical symptoms (321).

Importantly, none of the nucleoside analogs have any effect on

latent infections. This is because the viral enzymes that are

needed for the prodrug activity are not expressed during latent

phase (322). Other nucleoside analogs with efficacy against

varicella zoster virus, such as omaciclovir, have not yet been

evaluated against EBV (323).

Cidofovir is a nucleotide analog that possesses both antiviral

and antiproliferative properties and is metabolized into its active

form by cellular kinases (324). The antiproliferative effect of

Cidofovir on EBV-infected NPCs has been previously reported

(325). Consistently, intra-tumoral injection of cidofovir

suppresses tumor growth in EBV+ NPC xenografts in nude

mice (326). Another study showed that treatment of NPC (C15)

and BL (Raji) cell lines with cidofovir decreases expression of

LMP1 and EBNA2 oncoproteins and increases apoptosis and

enhances ionizing radiation (IR)-induced regression of EBV+

NPC and BL tumor bearing nude mice (327). Tenofovir (TFV) is

an acyclic nucleoside/nucleotide analog that has already been

approved for the treatment of HIV and HBV infection, where it

acts as an inhibitor of the viral reverse transcriptase (328). The

prodrugs of tenofovir, disoproxil fumarate (TDF) and tenofovir

alafenamide (TAF), are both orally bioavailable and are more

potent than ACV, PCV and GCV (329). All of these antiviral
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agents target EBV DNA polymerase, however, unlike others, the

tenofovir prodrugs are metabolized independently of viral

enzymes to their active forms and depend on host enzymes,

thus, permitting their usage for latently infected cells (330).

Despite the availability of a plethora of antiviral agents, there

aren’t any effective antivirals for EBV-associated cancers.

However, studies on compounds like tenofovir holds some

promise and warrants further study (331).

Foscarnet is a pyrophosphate analogue with a broad

antiviral activity against the Herpesviridae family (332). As a

pyrophosphate analogue, it disrupts viral DNA polymerase

activity by inhibiting cleavage of pyrophosphate from the

nucleoside triphosphate. Unlike ACV and GVC, foscarnet

does not depend on viral protein kinases for its activity,

making it useful in cases of ACV/GCV acquired resistance.

However, it might be less tolerated in patients due to increased

toxicity. Several case reports have shown benefits of foscarnet in

treatment of EBV+ PTLDs (333, 334). However, the systematic

efficacy of foscarnet in treatments of EBV-associated needs to be

further evaluated.
Lytic induction therapy

As discussed, latent EBV infection is associated with human

malignancies, such as BL, PTLD, NPC, GC, HL and non-HLs.

GCV and ACV are commonly used antiviral drugs that require

the EBV lytic encoded protein kinase (EBV-PK) and thymidine

kinase (EBV-TK) for the conversion of pro-drugs into active

viral drugs. As a result, these drugs are inefficient in eliminating

EBV-infected cells that are in the latent state. One therapeutic

approach is therefore the induction of EBV lytic replication, also

known as cytolytic virus activation (CLVA), in combination

with antiviral drugs to enable specific targeting of tumor cells

that harbor EBV in a lytic state (18, 335). CLVA within infected

tumor cells can induce i) a cytotoxic or cytostatic effect from the

lytic viral proteins; ii) expression of viral enzymes that

metabolize and activate antiviral pro-drugs, such as ACV and

GCV; and iii) a range of antigenic viral proteins that can now be

recognized by host-immune cells (336) (Figure 4).

Although, several classes of lytic inducers have been

identified and their mechanism of action has been elucidated

in different cell types, only one clinical study has reported a

promising outcome in a small fraction of patients with EBV+

tumors (337, 338). This is primarily because these compounds

have three major drawbacks limiting their use in clinical settings.

First, most of these compounds have low efficiency and can

induce the lytic cycle in only a small percentage of cells, therefore

a considerable proportion of cells are refractory (339). Second,

the efficiency of these lytic inducers is heavily dependent on the

cell type, thus cannot be broadly utilized for all EBV-associated

malignancies. Many lytic inducers also have serious side effects,

therefore their translation into clinical use is challenging. Lastly,
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there is a concern that chemical induction of EBV could

promote viral dissemination (340, 341).

Over the years, scientists have identified several classes of

organic and chemical compounds that are able to induce the

EBV lytic cycle in latently infected cells. Protein kinase C (PKC)

activators (PMA), HDAC and DNAmethyl transferase (DNMT)

inhibitors, chemotherapeutic agents and anti-IgG are among the

known classes of lytic inducers. Interestingly, evidence suggests

that several distinct mechanisms of lytic induction may exist

because synergistic effects have been observed when different

lytic inducers are combined. For instance, treatment of BL and

GC cell lines with combinations of PMA and sodium butyrate or

valproic acid and cisplatin leads to significantly higher EBV lytic

reactivation compared to individual treatments. Large-scale

chemical library screens in GC and NPC cells have identified

two additional distinct compounds that could induce EBV

reactivation, one that resembles iron chelators and one that

activates the MAPK pathway (342). Different classes of lytic

inducers has been previously reviewed here (339). In this section,

we will briefly discuss HDAC inhibitors and iron chelators that

have been reported to induce the EBV lytic cycle via PKC-d and
HIF-1a pathways, respectively (343).

Histone deacetylase inhibitors
Of all the different inducers of the EBV lytic cycle, inhibitors

of histone deacetylase (HDACi) have been well studied. These

include sodium butyrate (NaB), valproic acid (VPA), suberoyl

anilide hydroxamic acid (SAHA or Vorinostat), and romidepsin.

Use of HDACi alone or in combination with GCV are currently

being tested for use in patients. For example, butyrate in

combination with GCV has shown promising results in

patients with refractory EBV+ lymphoid malignancies (344).
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However, the efficacy of this combination therapy has received

limited success in vivo due to the poor oral bioavailability and

short half-life of butyrate (345). A systematic study of HDACi

have ranked panobinostat, belinostat, butyrate, entinostat,

oxamflatin, apicidin, and largazole from highest to lowest in

their ability to induce EBV-TK and EBV-PK kinases, suggesting

that despite the structural diversity, most HDACi can function

as inducers of EBV lytic replication (346). Interestingly, despite

belonging to the same class, these HDACi might invoke different

mechanisms of action to induce EBV reactivation. For instance,

VPA antagonizes the ability of other HDACi to induce EBV lytic

reactivation (347).

Iron chelators
Iron is a nutrient that plays an important role is various

aspects of cell biology including growth and differentiation. It is

used by heme-containing proteins and serves as a cofactor for

many enzymatic activities. Desferioxamine is a widely used drug

to treat iron-overload. Desferrithiocin, an orally available iron

chelator, is a more potent substitute of Desferioxamine due to

higher bioavailability. Both these compounds adversely inhibit

proliferation of T cells, which can be rescued by the addition of

iron (in the form of ferrous chloride, FeCl2) (348). Iron chelators

induce the EBV lytic cycle in certain cancer cells by inhibiting

enzymatic activity of protein hydroxylases (349). A novel

compound, named C7, has been recently described and

reported to induce early, but not late, lytic proteins via

intracellular iron chelation, alleviating the concern about viral

dissemination (342, 350). However, C7 seems to direct only a

small proportion of cells into the lytic cycle. Moreover, due to

the abundance of iron in vivo and within the TME, delivery of

iron chelators into tumors remains challenging, suggesting that
FIGURE 4

Ltic induction or cytolytic virus activation therapy (CLVA). CLVA can make latently infected cells susceptible to antivirals ang immune recognition.
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further studies are needed to identify novel compounds and/or

overcome these limitations.
Small molecule inhibitors

Due to highly penetrant effects, small molecule inhibitors

have been of great interest in treating various cancers. In viral-

associated cancers, essential viral proteins are great targets

because inhibitors against them might have lower toxicity

against host cells. In EBV-associated cancers, since EBNA1 has

served as a promising target for virus-targeted therapies as it has

no cellular homologue and is constitutively expressed in all

EBV+ cancer cells. There are several ways by which EBNA1

can be functionally perturbed, and significant advances are

currently being made in the field of EBNA1 targeting

therapies. These include inhibiting DNA binding activity of

EBNA1 (351, 352), disrupting homodimerization (353),

blocking its interaction with key host cellular proteins, such as

USP7, CK2 or targeting its oncogenic partners, such as MDM2

(354). VK-2019 is a small molecule inhibitor that binds to

EBNA1 and disrupts its DNA binding activity. It is

administered orally and is currently undergoing phase 2

clinical trial (NCT03682055) for patients with advanced NPC.

Further studies are needed to identify specific inhibitors of other

latent EBV proteins, including LMP1, or viral genes that are

essential for EBV transformation.
Prophylactic EBV vaccines

To our knowledge, there are currently no FDA-approved

vaccines for EBV. Since EBV is a causative agent for a range of

diseases a prophylactic or preventative vaccine would be the

most beneficial and cost-effective therapeutic approach to

manage EBV-associated IM, malignancies and autoimmune

diseases. The rationale for prophylactic vaccination is to

prevent EBV infecting its target cells by inducing an antibody

response. Below we will briefly discuss strategies for developing

prophylactic vaccines against EBV.

Considering that EBV requires multiple envelope proteins to

enter target cells, these serve as excellent candidates for

developing recombinant envelope protein vaccines. EBV

glycoprotein gp350 (BLLF1), is the most abundant envelope

protein, and initial studies on EBV vaccine development

primarily focused on gp350 (355, 356). However, a large-scale

clinical trial using soluble gp350 failed in preventing infection,

albeit reducing the development of IM after EBV infection (357).

In addition, gp350 vaccine candidates only protect B cells but no

other EBV target cells (e.g. epithelial cells) from infection. EBV

glycoproteins gH/gL and gp42 bind to HLA-DR on B cells and

integrins and ephrin receptor A2 on epithelial cells, respectively,

and facilitate EBV fusion to the cell membrane (70, 358–360).
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Since, these viral glycoproteins are integral components of the

core viral fusion machinery, they also serve as excellent

candidates for prophylactic vaccine development (299). To this

end, in 2019, Bu et al. developed an EBV gH/gL/gp42 based

nanoparticle vaccine. This vaccine inhibits EBV infection of both

epithelial and B cells by eliciting an antibody response that

targets the virus membrane-fusion proteins in mice and non-

human primates-macaques (356). This year, a novel EBV gp350-

ferritin nanoparticle vaccine was developed by researchers in

NIAID/NIH that has entered the Phase I clinical trial to

determine its safety and immunogenicity in humans

(NCT04645147). Taken together, these studies suggest that

targeting multiple EBV glycoproteins - gH/gL, gB and gp350 -

together could synergistically induce highly effective EBV

neutralizing activity. Additionally, evidence suggests that these

viral glycoproteins can also induce T cell immune responses to

further enhance vaccine efficacy by recruiting T cells to either kill

or inhibit transformation of recently infected cells if neutralizing

antibodies are ineffective, for example due to variations in EBV

protein sequences (361, 362).

Recombinant viral vectors are also commonly used to

develop therapeutic vaccines. Essentially, these are live viruses

that are engineered to express specific proteins that help elicit an

immune response. Such vaccines can infect target cells and

induce a CD8+ T cell response, enhance the anti-inflammatory

response by serving as adjuvants themselves and have high gene

transduction efficiency (363). The first EBV vaccine was

developed in 1995 and tested in humans. This was a live

recombinant vaccinia-based virus, expressing EBV envelope

protein BLLF1/gp350 (364). However, this vaccine was

discontinued due to adverse effects. In 2004, Taylor et al.

developed a chimeric antigen construct using a modified

vaccinia virus “Ankara” (MVA) vector that encoded the C-

terminal portion of EBNA1 and entire LMP2 (MVA-EL). Upon

transduction, the EL protein can be processed by HLA I and II,

resulting in CD8+ and CD4+ T cell responses (365). Since these

two EBV latent proteins are expressed in NPC, MVA-EL was

tested for safety and immunogenicity as a therapeutic vaccine for

patients with EBV+ NPCs in phase I clinical trials

(NCT01147991). Indeed, this vaccine was well tolerated and

induced EBV-antigen specific T cell responses in 8/14 patients in

UK and 15/18 patients in Hong Kong (366). Further studies are

needed to determine its translation to the clinical setting for

treatment, either alone or in combination with other modalities

including T cell therapies. In 2012, another group developed and

evaluated the ability of a recombinant adenoviral vector-based

vaccine (AdE1-LMPpoly) to induce EBV-specific T cell

responses in recurrent or metastatic NPC in a phase I clinical

trial (ACTRN12609000675224). Encouragingly, EBV-specific T

cells were expanded in 16/24 NPC patients and infusion of

AdE1-LMPpoly–generated T cells was tolerated and prolonged

survival by 2.3-fold. A phase II randomized clinical trial is

necessary to confirm these observat ions (367) . A
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comprehensive list of current vaccines is available here

(368, 369).

In addition to the EBV envelope protein-based vaccine and

recombinant viral vectors, development of viral like particle

(VLP) vaccines is another area of active research. The design

of such viral particles is based on the rationale that a non-

infectious version of EBV will elicit an EBV-specific innate and

adaptive immune response in a safe and effective manner (370).

Mechanistically, VLPs are phagocytosed and processed by DCs.

DCs then activate CD8+ and CD4+ T cells by presenting viral

antigens on HLA class I and II, respectively (371). While CD8+ T

cells mount a cytotoxic response, CD4+ T cells elicit an anti-

tumor response via Th1 and Th2 type responses that produce

pro-inflammatory cytokines (e.g. IFN-g, TNF-a, and IL-4, IL-10,
respectively) (371). The status of VLP developments against

oncoviruses and their biological and chemical characterization

has been recently reviewed (372). In 2015, a novel EBV vaccine

based on the Newcastle disease virus (NDV) VLP platform was

developed, consisting of EBVgp350/220 ectodomain fusion

protein that structurally mimicked EBV. This VLP elicited a

long-lasting neutralizing antibody response in mice, but the

responses were comparable to soluble gp350/220 (373). Thus,

a more immunogenic VLP was developed that incorporated

additional EBV glycoproteins and latent antigens – EBNA1 and

LMP2. Immunization with gH/gL-EBNA1 and gB/LMP2 VLPs

produced high neutralizing antibody titers in vitro and EBV-

specific T cell responses in vaccinated BALB/c mice (374). DNA-

free VLPs/LPs typically consists of EBV structural proteins that

are weakly immunogenic towards CD8+ T cells. As a result,

humoral and cell-mediated immune responses that recognize

these structural proteins offer limited to no protection against

latently infected cells. Another strategy is to use EBV particles

themselves for VLP vaccines. The first EBV VLP was created by

removing the terminal repeats that result in production of large

amounts of defective viral particles without the viral DNA that

could bind to both B and epithelial cells (375, 376). In

subsequent studies, more viral packaging proteins (BFLF1,

BFRF1, BBRF1) and viral oncogenes (EBNA2, 3A, 3B and 3C,

LMP1 and BZLF1) were deleted to improve the safety profile of

these VLPs, while maintaining immunogenic potential (377,

378). In 2018, a more immunogenic EBV VLP was created by

fusing EBNA1 and EBNA3C to the EBV tegument protein

BNRF1. As a result, only 14% of mice vaccinated with

modified VLPs had detectable viral load in the peripheral

blood compared to 100% of the control PBS-vaccinated mice

(379). While, VLP-based therapeutics are being developed and

evaluated in early clinical trials, none have yet reached the phase

III efficacy clinical trial stage. This is attributed to two major

limitations. First, they suffer from production efficiency and

scalability, which is partly because of the use of mammalian cells

that lead to low viral titers and the presence of contaminants

from human producer cell lines. Second, they offer low

immunogenicity as epitope-based vaccines. This necessitates
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the need to co-administer an adjuvant or design better antigen

delivery systems. Nonetheless, there are some promising

ongoing studies on EBV-derived VLP vaccines to prevent

EBV+ cancers.

With the success of mRNA vaccines against SARS-CoV2,

researchers have developed an EBV mRNA vaccine based on the

same platform. Moderna has recently launched phase I clinical

trial of its EBV mRNA vaccine (mRNA-1189) that have shown

high EBV neutralizing antibody titers in mice (NCT05164094).

This investigational vaccine targets EBV glycoproteins - gp350,

gB, gH/gL and gp42 - and is hypothesized to prevent IM and

EBV infection. Despite the potential challenges with mRNA-

based approach for an asymptomatic virus like EBV (299),

results from these trials will help in developing effective

preventative treatment approaches for EBV infections and

related disorders.
Preclinical models to study
EBV biology

There are several malignancies that associated with EBV

infection. Despite decades of research in this field, the precise

role of this virus in the tumorigenic process and immunoevasion

is not fully understood. While EBV+ cell lines, including LCLs,

serve as a good model system to study EBV-host biology in vitro,

mouse models help investigate and understand EBV-specific

biology in vivo. Since the g-herpesvirus have co-evolved along

with their hosts, i.e. humans and monkeys, there is a lack of

suitable counterparts in rodents (380). Unfortunately, the

murine g-herpesvirus 68 (MHV-68) lacks EBV’s transforming

ability and thus fails to recapitulate EBV-induced tumorigenesis

(380). Consistently, major differences in molecular mechanisms,

tumorigenesis, cellular tropism, and immune responses between

MHV-68 and EBV infections have been observed (381). As such,

murine models used to study EBV-associated malignancies are

typically immunodeficient. Transferring human peripheral

blood mononuclear cells (PBMCs) from EBV-seropositive

human donors into immunodeficient mice can generate

PBMC-derived EBV+ B cell tumors (382). Zhang et al. further

developed a genetically engineered mouse model to study EBV-

driven lymphomas found in immunosuppressed patients (383),

underscoring the relevance of immunodeficient murine models

for the study of EBV disease (382). However, since these mice are

immunocompromised, they are unable to induce a host immune

response. Transferring human PBMCs to overcome this barrier

often leads to severe xeno-graft versus host disease (GVHD) in

these mice, limiting the duration of the study (384). Recognizing

these limitations, the field has shifted to developing and using

lymphocyte-deficient mice which have the potential to be

reconstituted with human immune components (385). These

mice are valuable resources to investigate human specific viral

infections, as well as develop and test therapeutic vaccines (386).
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A more comprehensive review of murine models for EBV-

associated tumorigenesis can be found elsewhere (386, 387).

Despite being an excellent model system for EBV-associated

lymphomas, these mice are not suitable to study EBV+ epithelial

cancers since the mice lack human epithelial cells. In these cases,

nonhuman primate animal models might be of justified use.

These have been reviewed by others (388).
High-throughput approaches to
study EBV-associated cancers

With the advent of massively parallel sequencing

technologies, researchers have been able to better characterize

the complexity of interactions between host and viral genes and

identify novel genomic and epigenomic alterations within EBV-

infected cancer cells that are druggable. Specifically, these

technologies enable the capture of all the genetic material

inside host cells, which can then be used to simultaneously

study the biology of both host cells and infecting viruses (180,

389–392). These studies specifically overcome a limitation of

laborious traditional EBV genetic studies where only individual

viral or host genes are studied in isolation outside of the tumor

context. In this section, we will discuss some of the sequencing

approaches that are used to explore the genetic, transcriptomic

and epigenomic landscapes in the context of EBV-

associated malignancies.
Whole genome sequencing

The investigation of EBV genome sequences is important

due to their association with several human malignancies (165).

Prior to 2013, GenBank had whole genome sequences from less

than 10 strains of EBV (393). Conventional sequencing

techniques were inefficient, expensive and could help

investigate only a few viral genes at a time. They typically

involved digestion of genomic DNA via restriction enzymes,

cloning and Sanger sequencing. Moreover, the large size of the

EBV genome (~172kbp) added to the cost and time. Whole

genome sequencing (WGS) technologies marked a new era of

EBV genome sequencing and could be performed with or

without EBV enrichment (180, 394). The WGS approach is

quite sensitive to detecting viral derived sequences as well as

integrated viral regions within the host genomes. As such, WGS

has not only helped identify distinct EBV variants, mutations

and oncogenes but has also allowed for a comprehensive survey

of EBV integration in a wide variety of human malignancies as

reviewed here (395, 396). Additionally, WGS of EBV-associated
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tumors have been extremely informative in identifying a range of

distinct host variations that promote cancer (65, 186, 214, 217).
RNA sequencing

The use of high-throughput sequencing technologies to study

the transcriptomic landscapes of disease have become a common

practice. The general workflow for such techniques begins with

bulk RNA extraction from the biospecimens under investigation,

followed by RNA selection (mRNA or ribosomal-free RNA),

cDNA synthesis, library preparation and sequencing. In the case

of viral-associated malignancies, such techniques have provided

key insights into cellular genes and pathways that are affected by

virus (397, 398). Additionally, since these sequencing technologies

are agnostic of the origin of the RNA within the cells, they capture

genetic materials of both host and infecting viruses (391, 392,

399). As such, transcriptomics studies of EBV-associated

malignancies have revealed important aspects of EBV biology

including expression program and its interactions with the host to

promote disease (180, 390, 400, 401). For example, a large-scale

transcriptomic study of EBV-associated cancers classified EBV+

cancer types into molecular sub-types according to activation or

repression of interferon signatures which was correlated with

expression of several immune checkpoint genes such as PD-L1

and IDO1 (180).

Of note, the heterogeneity of cells within the biospecimens,

specifically tumors and their microenvironments, present a

challenge for interpreting bulk transcriptomics data. For

example, a change in expression of a gene or activation of a

pathway could reflect either a change in tumor cells and/or a

change in the cellularity of the TME, for example by immune cell

infiltration. Recent computational tools that can deconvolute the

composition of cells from bulk data have provided some remedy

for this issue (402–404). Nevertheless, the accuracy of these tools

remains limited, and they have not yet widely applied to study

TME in EBV-associated malignancies. The advent of single-cell

RNA-sequencing (scRNA-seq) has overcome this challenge and

has revolutionized the field of transcriptomics and helped

scientists map and generate individual cell atlases (405).

Specifically, scRNA-seq has enabled the study of host-

pathogen interaction in viral-associated diseases as well as

cellular heterogeneity (406, 407). scRNA-seq is rapidly being

adopted to study EBV-associated malignancies. For example,

recent studies have revealed the landscape of both tumor and

infiltrating immune cells in NPCs that are associated with

prognosis (234, 235, 408). Additionally, scRNA-seq are now

used to delineate rare cell subpopulations such as cancer stem

cells, cell-cell interactions via receptor-ligand analyses, cell

differentiation via trajectory and time-resolution analyses
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(409). Additional steps also allow TCR, BCR and cell-surface

protein expression (CITE-seq) sequencings at the single cell level

to supplement scRNA-seq for the study of the diversity of

immune cells. Given these technologies, it is exciting to get

detailed understanding of how EBV affects these aspects of

biology across various diseases and conditions, such as

response to therapeutic treatments. It is important to point out

that the detection of lowly expressed genes in scRNA-seq is

challenging and faces a frequent “drop-out” where it might be

only sporadically detected across different cells. This could be an

issue for detecting EBV genes in malignancies associated with

latency where most EBV genes are expressed at low levels.
Other sequencing technologies

Transcriptional regulation, epigenetic changes and

physical interactions are paramount to EBV biology and

understanding EBV-associated diseases. Appending high-

throughput sequencing to traditional lab techniques such as

chromatin immunoprecipitation (ChIP) has enabled genome-

wide detection of transcription factor (TF) bindings and

epigenetic changes, such as histone modifications and DNA

methylations. For instance, ChIP-seq of EBV TFs has revealed

many binding sites across the host genome, which has

implications for pathogenic mechanisms (410). Conversely,

many cellular TFs can also bind the EBV genome (390). ChIP-

seq analysis of EBV infected GC and NPC cell lines reveal a

redistribution of characteristic histone marks such as

H3K4me1/3 and H3K27ac (411). Of note, one of the

limitations of these technologies is their requirement for

millions of cells, however, recent technologies such as

CUT&RUN/Tag sequencing have resolved this issue.

Additional adjustments to high-throughput sequencing

technologies by ligating proximal chromatin regions (e.g.,

Hi-C) has enabled to study physical interactions between

genomic loci. This technology has enabled the study of

interactions between EBV episomes and host genomes that

are consequential to host gene regulation (412, 413). There has

been a large number of additional assays deployed to study

specific aspects of EBV biology genome wide (414, 415). For

example, assay for transposase-accessible chromatin using

sequencing (ATAC-seq) has been developed to study

chromatin accessibility and has been extensively used to

study how EBV infection affects chromatin accessibility. It is

important to note that most of these assays utilize bulk sample

processing and therefore observations in heterogeneous cell

populations should be carefully interpreted, as discussed

above for bulk RNA-seq. Recently, the limits of some of

these technologies have been pushed to the single cell level

and integrated into scRNA-seq platforms to enable

multiomics based investigation of EBV infection (409).
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Concluding marks

As the above studies demonstrate, EBV is a causative agent

and/or associated with a plethora of diseases including cancer

and autoimmunity. Despite decades of research, the underlying

mechanisms governing how the interactions between EBV and

host cells promote carcinogenesis are incompletely defined. As a

result, effective and individualized treatments for EBV-

associated diseases still remain either non-specific or lacking.

Nevertheless, it is also obvious that EBV is heavily regulated by a

variety of factors, and it extensively regulates cellular processes

and the microenvironment. High-throughput methods are ideal

for revealing complex networks of tissue and disease

associations. As discussed, these technologies have their own

limitations. Utilizing orthogonal and multiomics technologies

can typically overcome some of these limitations. For example,

one of the limitations of single-cell transcriptomics is the loss of

spatial information during the tissue dissociation, which are

important for understanding disease biology. Recent high

resolution (down to the sub-cel lular level) spatial

transcriptomics methods can help overcome such issues,

however, due to their recent development, they have not yet

been employed to study EBV-associated diseases. Additional

factors such as the microbiome might also be relevant to EBV-

disease biology (416) and should be considered in designing

tools and models. Rigorous computational modeling is also

needed to accurately identify shared or tissue-specific

signatures across EBV-associated diseases. Lastly, as discussed

above, better animal models and drug delivery systems are

needed in order to translate laboratory findings.
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