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Background: Mounting evidence has demonstrated that an imbalance in
liquid—Lliquid phase separation (LLPS) can induce alteration in the
spatiotemporal coordination of biomolecular condensates, which plays a role
in carcinogenesis and cachexia. However, the role of LLPS in the occurrence
and progression of bladder cancer (BLCA) remains to be elucidated. Identifying
the role of LLPS in carcinogenesis may aid in cancer therapeutics.

Methods: A total of 1,351 BLCA samples from six cohorts were retrieved from
publicly available databases like The Cancer Genome Atlas, Gene Expression
Omnibus, and ArrayExpress. The samples were divided into three distinct
clusters, and their multi-dimensional heterogeneities were explored. The
LLPS patterns of all patients were determined based on the LLPS-related risk
score (LLPSRS), and its multifaceted landscape was depicted and
experimentally validated at the multi-omics level. Finally, a cytotoxicity-
related and LLPSRS-based classifier was established to predict the patient's
response to immune checkpoint blockade (ICB) treatment.

Results: Three LLPS-related subtypes were identified and validated. The
differences in prognosis, tumor microenvironment (TME) features, cancer
hallmarks, and certain signatures of the three LLPS-related subtypes were
validated. LLPSRS was calculated, which could be used as a prognostic
biomarker. A close correlation was observed between clinicopathological
features, genomic variations, biological mechanisms, immune infiltration in
TME, chemosensitivity, and LLPSRS. Furthermore, our classifier could
effectively predict immunotherapy response in patients with BLCA.
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Conclusions: Our study identified a novel categorization of BLCA patients
based on LLPS. The LLPSRS could predict the prognosis of patients and aid in
designing personalized medicine. Further, our binary classifier could effectively
predict patients’ sensitivity to immunotherapy.

KEYWORDS

immunotherapy, cytotoxicity, bladder cancer, liquid-liquid phase separation,
molecular subtypes, machine learning, tumor microenvironment

Introduction

Bladder cancer (BLCA) is an extremely complex disease, and
aberrations occur at the genetic, epigenetic, transcriptomic,
epitranscriptomic, proteomic, and phenotypic levels. In a
classical view, “hallmarks of cancer” is envisaged to empower
cancer malignancy (1). However, various studies showed that
intrinsically disordered regions (IDRs) could be the underlying
cause of cancer-associated cachexia (2-4). IDRs may undergo
liquid-liquid phase separation (LLPS) to form liquid droplets,
which affect multiple downstream pathways, including changes
in gene expression and histology (5). LLPS is a dynamic process
wherein the biomolecular condensates, like various proteins and
nucleic acids, turn into liquid aggregates without surrounding
membranes (6). A study has shown that LLPS could mediate the
spatiotemporal assembly of membraneless organelles, such as
stress granules (SGs) and processing bodies (P-bodies) (7).

Various studies have shown that LLPS plays a non-negligible
role in various pathological conditions like the occurrence and
progression of cancers (5). It has been well established that
genetic mutations and transcriptional dysregulation are the
underlying cause of cancers. Previous studies have shown that
LLPS could induce genetic mutation in cancers (8). For instance,
IDRs” LLPS in NUP98-HOXA9 promotes oncogenes’ activation
that induces mutations and carcinogenesis (8). EWS::FLII,
which suppressed nucleolar transcription by LLPS, was a
potential target to hinder carcinogenesis (9). Additionally,
LLPS plays an important role in regulating multiple pathways
associated with cancer, such as DNA damage repair, metabolic
rewiring, and immune response (10). Together, these studies
indicate the potential role of LLPS in cancers. This would aid in
enhancing our understanding of the underlying pathological
mechanism of cancers and developing anticancer therapies.

BLCA is the 11th most common cancer worldwide.
Approximately 550,000 new cases of BLCA are diagnosed, and
200,000 BLCA-related deaths occur annually (11). Histologically,
BLCA cases are categorized into non-muscle-invasive and muscle-
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invasive (12). Approximately 10% of BLCA cases, characterized by
abundant chromosomal alterations and metastasis, would spread
beyond the bladder, resulting in a 5-year overall survival (OS) rate
of only 5% to 30% (13). A comprehensive genetic analysis
performed by The Cancer Genome Atlas (TCGA) revealed
subtypes closer to native biological BLCA, confirming that the
pathogenesis of BLCA is more complex than the previous
understanding (12). Transcriptomic signatures of patients with
BLCA have been identified and used to construct models that can
predict the prognosis and response to immune checkpoint
blockade (ICB) in BLCA patients (14). However, the
performance of most prognostic models was not satisfactory in
clinical settings. Meanwhile, the only four targeted drugs available
nowadays harbored limited scope of application in BLCA (15).
Further, radiotherapy induces an immunosuppressive tumor
microenvironment (TME), which leads to cancer recurrence
(16, 17). Therefore, more personalized and effective biomarkers
are required for BLCA cases. Cachexia in patients with BLCA is
caused by several LLPS-related factors; however, previous studies
have only analyzed the association between single molecules
associated with LLPS and cancers rather than exploring the
interaction between multiple LLPS-related genes in cancers (8,
9). Therefore, it is necessary to study the correlation between
LLPS-related genes and heterogeneities in TME to analyze LLPS
patterns in BLCA. To address these concerns, in this study, we
have identified LLPS-relevant subtypes and evaluated LLPS-
related genes by analyzing data from 1,351 patients with
BLCA cases.

Materials and methods

Data sources and process

The overall workflow of our study is shown in Figure 1. The
data sources and workflow details are shown in the
Supplementary Material.
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FIGURE 1
Overview of the flow diagram for this study.
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Identification of liquid—liquid phase
separation-related subtypes

Based on several LLPS-related genes, the patients with BLCA
were classified into different subtypes using non-negative matrix
factorization (NMF). The patients were classified into three LLPS
clusters: C1, C2, and C3. The biological and clinicopathological
features of the three subtypes were investigated. The workflow is
summarized in the Supplementary Material.

Construction and evaluation of liquid—
liquid phase separation-related risk score

Based on previous studies, the individual LLPS patterns were
identified. Stepwise multivariate Cox regression analysis was
performed to create a scoring system called LLPS-related risk
score (LLPSRS) (18). The LLPSRS formula is as follows:

LLPSRS = >, Coef; x (LLPS genes);

The performance of the LLPSRS formula was further
evaluated to predict the clinical outcomes of BLCA patients.
The robustness and versatility of the LLPSRS formula were also
validated. The details of the methodology are described in the
Supplementary Material.

Establishment of an artificial
neural network

An artificial neural network (ANN) was established using a
binary classifier to identify patients who might benefit from ICB.
The formula for calculating classification score using the ANN
model is as follows:

neuraHF = 3" | (Neural Network Weight); x (Gene Expression);

The details of the procedure are described in the
Supplementary Material.

Statistical analysis

All statistical analyses were conducted using R (https://www.
r-project.org/). The Wilcoxon test was used to compare two
groups, and the Kruskal-Wallis test was used to compare more
than two groups. The statistical details and experimental
methods are summarized in the Supplementary Material.
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Results

Identification of liquid—liquid phase
separation-related molecular subtypes in
bladder cancer

Figure 1 shows a flow diagram that systematically describes our
study. A total of 3,633 LLPS-related genes were identified from
TCGA-BLCA cohort and extracted from the data resource of LLPS
(DrLLPS) (19) of which a total of 586 prognostic genes were
identified using univariate Cox regression analysis (p< 0.01). To
determine the impact of these genes on BLCA, the Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were performed. These genes
enriched processes associated with the extracellular matrix,
immunoreaction, transcription, proliferation, and metabolism
(Figure 2A). The patients from TCGA-BLCA cohort were
categorized into three LLPS clusters based on the expression of
586 genes using NMF (Supplementary Figures 1A, B, Figure 2B).
Principal component analysis (PCA) was further used to validate
the differential expression of 586 genes in three clusters, and the
clusters’ similar consistency could be distinguished (Figure 2C). The
Kaplan-Meier (KM) survival curve revealed significant differences
in the prognoses of patients among three clusters (log-rank test, p<
0.0001). The clinical outcomes of patients in C2 were significantly
better compared to those in C1 and C3 (Figure 2D, Supplementary
Table 2). To determine the reproducibility of LLPS clusters, three
external BLCA cohorts were integrated into a meta-BLCA cohort,
and three distinct clusters were identified as anticipated
(Supplementary Figures 1C-E). A significant difference was
observed in the prognoses of patients among the three clusters
(p< 0.001); the prognoses of patients in C2 were the best, thereby
confirming that three robust LLPS clusters exist in BLCA
(Supplementary Figure 1F).

Identification of tumor
microenvironment characteristics and
biological features in liquid—liquid phase
separation clusters

Various studies have demonstrated LLPS’s correlation with
dysregulation in the TME remodeling and signaling pathways.
Hence, the characteristics of TME were analyzed in three LLPS
clusters. A decrease in levels of most tumor-infiltrating immune
cells (TICs) like CD4"T, CD8'T, NK, dendritic cells, and
macrophages was observed in cluster C2 (Figure 2E). In
tracking tumor immunophenotype (TIP), a significant increase
in antitumor immune responses was observed in Cl and C3
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compared to C2; however, these results were inconsistent with
survival outcomes (Figure 2F). Next, the representative hallmark
gene sets of the three clusters were visualized. The hallmarks of
C1 enriched oncogenic signaling pathways like the PI3K-AKT-
mTOR, P53, mTORCI, and MYC signaling pathways. The
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hallmarks of C3 enriched the stromal signatures like
epithelial-mesenchymal transition (EMT) and angiogenesis.
However, the downregulation of hallmarks associated with
immune responses like IL6-JAK-STAT3 or NF-kB-TNFo
signaling pathways was observed in C2 (Figure 2G). A
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previous study has shown that TME can be divided into three
immunophenotypes: inflamed, excluded, and desert (20).
Despite the abundance of TIICs in excluded TME, the TIICs
only surrounded the parenchyma. No TIICs were observed in
the parenchyma, which indicates that the stromal barrier
surrounding the tumor inhibited the cytotoxic effects of TIICs
in the TME. Since interstitial activation could suppress the effect
of TIICs, the differential enrichment of 12 BLCA signatures (21)
was explored among three LLPS clusters (Supplementary
Figure 1G). As expected, C1 was of basal subtype featured by
heightened IFN response, mitochondrial dysfunction, etc.,
which indicates damage caused by inflammation and cancer
development. C3 was featured by the presence of EMT, etc.,
indicating fibrosis and muscle invasion. Meanwhile, cluster C2
was of a luminal subtype with Ta stage and high differentiation
grade; low infiltration of TIIC could likely be due to small tumor
size. Further, the enrichment of processes associated with
stromal activation, mismatch repair, and immune response-
relevant (SA-MR-IR) signatures was determined in the three
LLPS clusters (Supplementary Figure 1H). The processes
enriched in patients in Cl were mismatch repair, including
homologous recombination, base excision, and repair. C3 was
characterized by stromal activation, including angiogenesis,
Pan-F-TBRS, and EMT. Downregulation in processes related
to an immune response, like CD8'T effector and immune
checkpoint, was observed in cluster C2. These results
suggested that the TME of three LLPS clusters had distinct
immunophenotypes and enriched different oncogenic processes.
Together, these results indicated that LLPS played an
indispensable role in BLCA. Further, 19 oncogenic pathways’
enrichment was analyzed among LLPS clusters (Supplementary
Figure 11I) (14). As expected, the pathways enriched in C1 were
associated with the cell cycle, including activated MYC and PI3K
signaling pathways. The WNT signaling pathway was enriched
in C3, confirming the increased EMT, metastasis, and muscle
invasion. Interestingly, the Hippo, NOTCH, and RAS pathways
were inhibited in C2. Thus, the unique TME characteristics of
three LLPS clusters were analyzed.

Comprehensive analysis of differentially
expressed genes among liquid—-liquid
phase separation clusters of

bladder cancer

To unravel the potential biological behavior of three LLPS
clusters, a total of 470 differentially expressed genes (DEGs) were
identified and annotated (Supplementary Figure 2A). These DEGs
significantly enriched the pathways associated with metabolism
reprogramming, dyssecretosis, increase in cell-autonomous
proliferation, alteration biosynthesis, extracellular matrix, and
immunoediting (Figures 3A-D). To explore a more accurate
classification of BLCA subtypes and uncover underlying
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mechanisms, TCGA-BLCA cohort was classified into three
clusters based on differential expression of 197 prognosis-related
genes (p< 0.01) using NMF (Supplementary Figures 2B, C,
Figure 3E). The patients were classified into three clusters:
DEG-CI, C2, and C3. A total of 99 patients with BLCA were
classified in C1, 175 patients with BLCA were grouped in C2, and
108 patients with BLCA were classified in C3 (Figure 3E). PCA
was used to validate the expression patterns of 197 DEGs in three
DEG clusters, and similar consistency was distinguished
(Figure 3F). Additionally, the KM curve showed significant
differences in the prognoses of patients among three DEG
clusters (log-rank test, p< 0.0001). The OS of patients in DEG-
C2 was significantly better compared to that of patients in DEG-
Cl1 and C3 (Figure 3G). Most patients in LLPS-C2 were classified
in DEG-C2 (166/181 = 91.72%), 81.30% of patients in LLPS-C1
(100/123) were reassigned to DEG-C3, and 87.18% of patients in
LLPS-C3 (68/78) were included in DEG-CI. Eventually, the TME
characteristics of three DEG clusters were analyzed, and the
results were similar to our previous results (Figures 3H-J,
Supplementary Figures 2D-F, Supplementary Table 3).

Establishment and evaluation of liquid—
liquid phase separation-related risk score

Given the heterogeneity and complexity of LLPS, the LLPSRS
was calculated to quantify LLPS-related clusters and predict
patients” prognoses. In the training cohort, 424 prognosis-related
genes were identified. Univariate and least absolute shrinkage and
selection operator Cox regression analyses identified 60 genes as
candidate genes (Supplementary Figures 3A, B). Next, stepwise
multivariate Cox proportional regression analysis was used to
screen for 29 robust genes to calculate LLPSRS (Figure 4A,
Supplementary Table 4). In the training cohort, patients were
classified into the high- (n = 135) and low-risk (n = 135)
subgroups based on median LLPSRS as a cutoff value. The
patients in the validation cohort were also divided based on these
criteria. The difference in the distribution of subtypes, risk, and OS
was calculated, and the results revealed significant differences in
LLPSRS among LLPS or DEG clusters (p< 0.0001, Figures 4B-D).
The LLPSRS of patients in C2 was lower compared to that of
patients in C1 and C3, thus suggesting that LLPSRS may be useful
in predicting BLCA subtypes.

Subsequently, the ability of LLPSRS to predict the prognosis
was determined. In training, TCGA-BLCA, validation, and
several external cohorts, the prognoses of patients with high
LLPSRS were poor (Figures 4E-H, Supplementary Figure 3F-I).
The area under the receiver operating characteristic (ROC) curve
(AUC) was used to validate the performance of LLPSRS to
predict the OS of patients with BLCA (Figures 41, J). In TCGA-
BLCA cohort and training and validation cohorts, a decrease in
the expression of 14 genes that conferred protection was
observed, while 15 risk-associated genes were upregulated as
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FIGURE 4

Establishment and evaluation of LLPSRS. (A) Forest plot of hazard ratios with 95% Cl for 29 RSGs by univariate Cox. (B) Sankey diagram showing
the changes of LLPS, DEG clusters, risk, and OS in TCGA-BLCA cohort. (C, D) Comparison of LLPSRS among LLPS and DEG clusters. (E-=H) KM
curves of LLPSRS in the training, TCGA-BLCA, validation, and GSE188715 cohorts. (I) Time-dependent ROC-AUC values plotted for different
durations of survival for LLPSRS in the training, TCGA-BLCA, and validation sets. (J) ROC curves of LLPSRS in GSE188715 cohort. (K—=M) Time-
dependent C-index, ROC-AUC, and DCA showing a measure of LLPSRS with six prognostic signatures with the survival of patients in TCGA-
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Frontiers in Immunology

08

frontiersin.org


https://doi.org/10.3389/fimmu.2022.1059568
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Sun et al.

LLPSRS increased (Supplementary Figures 3C-E). In summary,
these results determined the utility and robustness of LLPSRS in
predicting the clinical outcomes of patients with BLCA. In other
publicly available cohorts, most patients with BLCA were
Caucasians or Africans, whereas patients with BLCA in
GSE188715 were Chinese; therefore, LLPSRS could be used to
predict patients’ prognoses from different ethnicities. Moreover,
compared to the performance of the previously published six
prognostic models (14, 18, 22-25), the performance of our
model was better on several appraisal algorithms. In TCGA-
BLCA cohort, our model showed the highest net benefit,
concordance index, and AUC, thus confirming that the
adaptability of our model was better compared to that of the
previously published six models (Figures 4K-M, Supplementary
Figure 3]). Since our retrospective study was currently restricted
to retrospective studies, the differential expression of seven core
genes from 29 LLPSRS-related genes (RSGs) was verified in vitro
(Figure 5A, Supplementary Figure 4A). qRT-PCR was used to
study the differential expression of these genes between one
bladder and two BLCA cell lines. The results revealed a
significant increase in the expression of five genes in BLCA
cell lines, consistent with results via TCGA-BLCA cohort;
however, no difference in the expression of the other two
genes was observed.

Since LLPSRS was related to the advanced stage of cancer,
the performance of LLPSRS was compared with
clinicopathological features in predicting patients’ OS. The
univariate and multivariate Cox regression analyses were
performed on TCGA-BLCA cohort, and the results showed
that the hazard ratios of LLPSRS were 1.70 and 1.69 (p<
0.0001), respectively. This indicates that the performance of
LLPSRS to predict prognosis was robust (Figure 5B,
Supplementary Figure 4B). Moreover, the AUC and decision
curve analysis (DCA) results confirmed the highest efficacy of
LLPSRS over other clinical parameters (Figure 5C,
Supplementary Figure 4C-G). Furthermore, to compensate for
bias caused by differences in clinicopathological features,
univariate Cox analysis was performed on subgroups with
different clinicopathological features. It demonstrated that
LLPSRS was an independent prognostic factor after
adjustment (Figure 5D). The molecular subtypes aid in
designing personalized treatment (26). Further, an association
between several BLCA subtypes (21) and LLPSRS exists. Hence,
the differences in the clinical landscape between the two
subgroups in TCGA-BLCA cohort were explored (Figure 5E).
The patients in the high-risk subgroup had a basal subtype
characterized by high malignancy, whereas the patients in the
low-risk subgroup had a more differentiated luminal subtype,
and their clinical outcomes were better (chi-squared test, p<
0.05). Furthermore, the clinicopathological features of patients
in the low-risk subgroup were similar to those in C2. Therefore,
these results indicated that the LLPSRS could be used as a
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biomarker for predicting heterogeneity and designing
personalized therapy for patients with BLCA.

Depicting the landscape of genomic
variations and epigenetic alternations

To determine the underlying genomic alterations caused by
LLPSRS, the genomic variations between the two subgroups
were explored. The copy number variations (CNVs) in RSGs on
chromosomes were analyzed and visualized. The results showed
significant amplifications in 16 RSGs, whereas five RSGs
harbored deletions (Figure 5F, Supplementary Figure 4H).
Furthermore, the mutation landscape of the top 20 mutated
RSGs is shown in Figures 5G, H. The patients in the high-risk
subgroup had distinct mutation patterns, the top three mutated
genes were observed in patients from the same subgroup, and
there was a difference in the abundance of other mutated genes
in the patients from the two subgroups. Moreover, as potential
indices for ICB response and neoantigens epitopes, tumor
mutational burden (TMB) and purity data were obtained. A
negative correlation was observed between TMB, tumor purity,
and the LLPSRS (Supplementary Figures 4I, J, p< 0.05). In
addition, the interconnection and mutation landscape of RSGs
were visualized (Supplementary Figures 4K, L). In addition to
genomic mutations, epigenetic aberrations play an important
role in oncogenesis. Changes in DNA methylation pattern,
which plays an important role in pre-transcriptional
modification, were next explored. Previous studies have shown
that the prognoses of patients with DNA hypomethylation were
poor, whereas patients with DNA hypermethylation may
experience cachexia (27, 28). A total of 26,583 differentially
methylated CpG islands (DMCGs) were identified (Figure 5I).
The methylation levels in patients in the high-risk subgroup
were higher, which confirms our hypothesis. Furthermore, 240
genes were identified as DNA methylation driver genes (MET-
DGs). These genes enriched pathways associated with
biosynthesis disorders, cancer, and cell proliferation pathways,
which indicates that these genes are involved in activating
various oncogenic pathways (Supplementary Figure 5A). The
top 35 MET-DGs were visualized, and the results revealed that
the LLPSRS was characterized by the hypermethylation of tumor
suppressor genes (Supplementary Figure 5B).

Of these 29 RSGs, NSUN5 is an RNA methyltransferase
responsible for 5-methylcytidine (m>C) modification, whereas
DHX16 and HNRNPH3 regulate alternative splicing (AS)
during pre-mRNA splicing. Knockdown of NSUN5 expression
reduces cell proliferation (29), DHX16 is a biomarker for
immune-related adverse events (irAEs) (30), and HNRNPH3
directly alters the mRNA splicing of proto-oncogene MSTIR
(31). Since RNA editing and AS are key regulators of
carcinogenesis, the correlation between the LLPSRS and post-
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transcriptional regulation was explored. The expression of 95
RNA-editing regulators in different subgroups was analyzed, and
the results revealed differential expression in most RNA-editing
regulators between two subgroups (Supplementary Figures 5C-
E). Next, a correlation was observed between 786 out of 1,416
DEGs and 71 RNA-editing regulators. These genes were
annotated as hormone secretion, cell division, metabolic
rewiring, and immunosuppressive TME (|R| > 0.3, p< 0.0001,
Supplementary Figures 5F, G). A network was constructed using
21 RNA-editing regulators and LLPSRS to demonstrate their
correlation and prognostic roles. Interestingly, a correlation was
observed between LLPSRS and most regulators (Figure 5],
univariate Cox regression analysis, p< 0.05). In addition to the
correlation between LLPSRS and m°C regulators, a correlation
between LLPSRS and other regulators was also observed. This
indicates that diverse crosstalk between LLPSRS and RNA-
editing regulators plays a crucial role at the epitranscriptomic
level in BLCA. Moreover, 483 AS events were observed in 161
DEGs. These genes enriched pathways associated with
carcinogenesis and immunogenicity, thus implying that
LLPSRS may regulate these pathways by AS of DEG
(Figure 5K, Supplementary Figure 5H). Correlation networks
were constructed between 37 AS events and 22 splicing factors
(Supplementary Figure 5I). Taken together, our results
demonstrated that the LLPS-mediated epigenetic alterations
played an important role in the progression of BLCA.

Guidance of liquid—liquid phase
separation-related risk score on
potentially relevant biological mechanisms

The GO and KEGG pathway enrichment analyses were
performed using DEGs to decipher LLPSRS-relevant biological
mechanisms using KOBAS-i (32). The correlation between the
LLPSRS, SA-MR-IR, and oncogene signatures was further explored.
The LLPSRS was associated with metabolic rewiring, cell-
autonomous hyperproliferation, immunoediting, and biosynthesis
derangements, thus indicating that LLPSRS played an important
role in carcinogenesis (Figures 6A-E). Higher LLPSRS reveals
persistent stromal activation and transcriptional dysregulation,
thus implying tumor cell-autonomous proliferation and excluded
immunophenotype (Figure 6F). Meanwhile, a positive correlation
was observed between LLPSRS and a decrease in the expression of
tumor suppressor genes, as well as an increase in oncogenes’
expression like PI3K, RAS, and TGF-f, thereby suggesting a
higher degree of malignancy. As expected, the gene set
enrichment analysis results revealed that hallmarks of cancers like
angiogenesis, EMT, and the TGF-f and WNT signaling pathways
were upregulated in the patients in the high-risk subgroup. This
indicates the frequent occurrence of cachexia-relevant signatures
and an increase in the activation of oncogenes (Figure 6G).
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Correlation between liquid—liquid phase
separation-related risk score and intrinsic
as well as extrinsic immunoediting

As discussed previously, LLPSRS-related mechanisms play an
important role in regulating immune responses; hence, the
correlation between LLPSRS and intrinsic as well as extrinsic
immunoediting was analyzed. A negative correlation was observed
between LLPSRS and MHC receptors. A positive correlation was
observed between LLPSRS and immunosuppressive checkpoints,
thus indicating an increase in immune evasion by tumor cells and
a decrease in immunogenicity. Interestingly, a correlation was
observed between low LLPSRS and some ICB-related genes like
(CTLA4, LAG3, PDCDL], etc.), thus indicating higher sensitivity of
patients to ICB (Figure 6H). Apart from the chemokines and their
receptors, a positive correlation was observed between the
protooncogenes and LLPSRS. A negative correlation was observed
between other tumor suppressors and LLPSRS. On the contrary, a
negative correlation was observed between several immune inhibitors,
immune stimulators, and LLPSRS (Figure 6I). Considering the
multiple complex roles of immunomodulators, the association
between immunomodulators and LLPSRS was insufficient to
elucidate overall immunological features. The extrinsic
immunoediting indicated by TIICs was equally important since
they revealed a functional repertoire of antitumor immunity. A
correlation between the LLPSRS and TIICs was observed. Increased
levels of antitumor TIICs, like CD4"T and CD8'T, were observed,
whereas the levels of pro-tumor TIICs like Treg and Th2 were low in
patients in the low-risk subgroup (Figure 6]). As expected, a positive
correlation was observed between myeloid cells, stromal cells, and
LLPSRS, thereby indicating an increase in damage caused by
inflammation and interstitial activation (Figure 6K). Together, these
results suggested that LLPSRS played an important role in
immunoediting, which indicated that patients with lower LLPSRS
had higher immunogenicity and sensitivity to ICB.

Liquid—liquid phase separation-related
risk score was a promising biomarker
for predicting the efficacy of

adjuvant treatments

The correlation between LLPSRS and anticancer drug
regimens was next determined, which could aid in designing
precision medicine at the pharmacogenomics level. First, the
immunophenoscore of patients in the low-risk group was high,
regardless of the status of indicators, which suggests better
efficacy of ICB (Figure 7A). As expected, the Tumor Immune
Dysfunction and Exclusion analysis revealed that the patients
who responded to ICB treatment had higher LLPSRS. This
indicates that LLPSRS could predict the efficacy of ICB
treatment (Figure 7B). Furthermore, the association between
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magenta; monocyte, orange) and stromal cells (neutrophil, green; mast cell, yellow green; eosinophil, dark green; CAF, blue; mesenchymal cell,
purple; vascular cell, red). LLPSRS, liquid—liquid phase separation-related risk score; DEG, differentially expressed gene; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.

LLPSRS and gene signatures of adjuvant treatments was
explored (Figure 7C). A negative correlation was observed
between LLPSRS and oncogenic pathways, and a positive
correlation was observed between the predicted EGFR
pathway, radiotherapy, and irAEs. Therefore, patients with
higher LLPSRS were sensitive to EGFR-targeted therapies and
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radiotherapy, whereas the patients with low LLPSRS were
sensitive to oncogenes’ blockades. Additionally, an inverse
correlation was observed between LLPSRS and Ta stage,
luminal, and urothelial differentiation. The patients in the
high-risk subgroup were characterized by immune evasion and
dysfunction, and neuronal and basal differentiation, thereby
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indicating that patients in the high-risk group could benefit
from neoadjuvant chemotherapy, whereas ICB might
induce hyperprogression.

Although adjuvant treatment was a major breakthrough in
cancer therapeutics, chemotherapy is still an indispensable part of
BLCA treatment. To determine the use of LLPSRS in determining
BLCA treatment, data on experimentally or clinically used drugs
in BLCA were retrieved from the Genomics of Drug Sensitivity in
Cancer database, and their efficacy was determined.
Chemotherapeutic drugs like dasatinib and TWP-2 were more
suitable for the patients in the high-risk group (Figure 7D-G),
whereas the other eight chemotherapeutic drugs were more
suitable for the patients in the low-risk group (Supplementary
Figures 6A-H). To provide more avenues for LLPSRS-based
therapies, the Cancer Therapeutics Response Portal (CTRP) and
Profiling Relative Inhibition Simultaneously in Mixtures (PRISM)
were used to analyze LLPSRS’s correlation with chemotherapeutic
agents. Five CTRP (e.g,, dasatinib and fluvastatin) and five PRISM
drugs (e.g., epothilone-b and tosedostat) were more suitable for
the treatment of patients in the high-risk group (Figure 7H),
whereas four CTRP (e.g., apicidin and brefeldin A) and nine
PRISM drugs (e.g., poziotinib and RITA; Supplementary
Figure 6I) were more suitable for the treatment of patients in
the low-risk group. Further, the data obtained from the CellMiner
(33) were analyzed, and 20 negative and 12 positive LLPSRS-
related drugs were identified. Therefore, all patients with different
LLPSRSs may respond to different chemotherapeutic drugs
(Figure 71, Supplementary Figure 6]).

Utility and robustness of liquid—-liquid
phase separation-related risk score for
predicting immunotherapeutic benefits

Immunotherapy was regarded as an epoch-making
breakthrough. LLPSRS’s correlation with the immunosuppressive
milieu and TMB was observed, so LLPSRS could likely play a role in
predicting patients’ response to ICB. We analyzed the association
between LLPSRS and sensitivity to ICB in the IMvigor210 cohort.
The patients in the low-risk subgroup had a longer life span and
demonstrated prolonged survival as compared to those in the high-
risk subgroup (log-rank test, p< 0.0001, Figures 8A, B). We also
discovered that the progressive disease subgroup, in which TIICs
exerted a faint effect, had the highest LLPSRS (Kruskal-Wallis test,
p< 0.01, Figure 8C). Together, these results show a positive
correlation between LLPSRS and irAEs, thus suggesting that
patients with lower LLPSRS may respond better to ICB.

PD-L1 expression is an important biomarker for ICB
responsiveness. Hence, we analyzed the correlation between TC
(PD-L1 located on tumor cells), IC (PD-L1 located on immune
cells), immunophenotype (desert, inflamed, and excluded), and
LLPSRS. In the patients in the low-risk subgroup, TC2+ was the
most abundant TC, thus indicating that the patients had higher
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sensitivity to ICB treatment (chi-squared test, p< 0.05, Figure 8D).
Next, the patients in the IC2 subgroup or immune-inflamed type
had the lowest LLPSRS (Kruskal-Wallis test, p< 0.01, p< 0.05,
respectively, Figures 8E, F). A significant difference was observed in
TMB between the high- and low-risk subgroups (Wilcoxon test, p<
0.001, Figure 8G). Further, the predictive ability of the combined
TMB and LLPSRS was better as compared to LLPSRS and TMB
alone (Supplementary Figure 7A). Therefore, for those patients
treated with ICB, LLPSRS could effectively predict individual
responses and immunosuppressive properties.

The outcomes of patients treated with ICB were better;
however, not all patients experienced durable response to ICB
treatment. Hence, there is an urgent need to identify eligible
patients. Further, a diagnostic model was created based on
LLPSRS and cytotoxicity using ANN. Weighted Gene Co-
expression Network Analysis (WGCNA) was used to predict
the patient’s response to ICB and determine its relevance with
LLPSRS. WGCNA was used to extract eigengenes from 1,758
DEGs between the complete response/partial response (CR/
PR) and stable disease/progressive disease (SD/PD) subgroups,
the optimal fitting degree was R* = 0.85, and soft-thresholding
was B = 3 (Supplementary Figures 7B-F). After the modules
were merged with a disparity coefficient< 0.45 and overall gene
counts< 30, the DEGs were divided into six modules
(Figure 8H). Given that the correlation between clinical
characteristics and module eigengenes (MEs) exists, a
correlation was observed between MEbrown, (the main
module) and LLPSRS, binary response, OS time, OS, and
cytotoxicity (Figure 8I, Spearman’s rank test, p< 0.001).
Eventually, in the MEbrown module, gene significance’s
associations with module membership were analyzed, and the
results of LLPSRS (rho = 0.79, p< 0.0001) and cytotoxicity (rho
=0.86, p< 0.0001) were significant (Supplementary Figures 7G,
H); thus, 122 genes were regarded as eigengenes. The
eigengenes enriched immune responses such as cytotoxicity,
immunogenicity, PD-L1/PD-1 checkpoints, chemotaxis, T-cell
differentiation, and interferon response, thereby confirming
the successful extraction of eigengenes (Figure 8]).

To build a classifier for identifying ICB-sensitive patients, a
combined prediction model was constructed using random forest
(RF) and ANN algorithms based on eigengenes. Since the number
of patients with BLCA treated with ICB was few, all samples from
the IMvigor210 cohort were randomly split. In the training cohort,
eigengenes were incorporated into the RF classifier, and 180 trees
were selected as the parameter (Figure 8K). Next, the variable
importance was measured, and the top 30 genes were selected
(Supplementary Figure 7I). Based on these genes, an ANN model
was created using the training cohort, which consisted of three
layers: input (expression of 30 genes), hidden (scores and weights of
genes), and output layer (SD/PD or CR/PR results) (Figure 8L).
Finally, the ROC-AUC values for the ANN model in training,
validation, and IMvigor210 cohorts were 1.000, 0.839, and 0.834,
respectively. The accuracy of the model in predicting the response
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to ICB treatment in the training, validation, and IMvigor210
cohorts was 1.000, 0.750, and 0.720, respectively. Together, these
results show the robustness and utility in predicting response to ICB
treatment in patients with BLCA (Figure 8M).

Discussion

LLPS plays an indispensable role in regulating the hallmarks of
cancer. However, the different functions of LLPS in cancer are still
unclear. Studies have shown that LLPS could aid in deciphering the
heterogeneity of TME (34), exploring genomic alterations and
transcriptional aberrations (35), and the impact of drug
distribution into condensate (36). LLPS plays multiple roles in
carcinogenesis; therefore, identifying LLPS-related biomarkers
could offer important insights into defining tumor subtypes and
evaluating the prognoses of patients. However, few studies have
used LLPS in predicting the clinical outcomes of patients with
BLCA. In this study, we have exclusively focused on BLCA and
explored LLPS-related patterns to enhance our understanding of the
role of LLPS in BLCA pathogenesis. We identified three LLPS-
related subtypes of BLCA and distinct features, including cancer
hallmarks and clinicopathological phenotypes. Based on individual
heterogeneity, we calculated LLPSRS for integrative assessments.
Further, we determined the correlation between LLPSRS and
patient prognosis, genomic variations, epigenetic alterations, TME
characteristics, and pharmacogenomics. Our results showed an
inverse correlation between LLPSRS and the efficacy of ICB. We
also constructed an LLPSRS-related eigengenes-based classifier
using the RF and ANN algorithms to predict the patient’s
sensitivity to ICB treatment.

Various studies have shown the involvement of LLPS in
carcinogenesis and metastasis (37). Estrogen triggers MYC to
form condensates in an LLPS-mediated manner, which increases
VEGE expression and promotes angiogenesis (38). Purinosomes
(39) and glucosomes (40) are liquid-like condensates, whereas the
LLPS of glycogen can induce tumorigenesis (41). Moreover, the
LLPS of transcriptional coactivators like YAP/TAZ plays a role in
EMT and cancer aggressiveness (42, 43). In this study, we identified
three LLPS clusters using NMF. The prognoses of patients in C2
were favorable. These patients had immunosuppressive TME, and
the expression of oncogenes was low. The discrepancies in these
results could be due to the small size of the tumor and the
limitations of algorithms, which emphasize absolute quantity
rather than relative quality. Compared to patients in C2, the
prognoses of patients in C1 and C3 were poor, and they had
dysregulated immune responses. Studies have demonstrated that
the levels of TIICs play a vital role in mediating immune responses;
however, the dense stroma prevents the entry of TIICs in tumors.
As expected, the pathways enriched by C3 were associated with
EMT and stromal activation, suggesting that patients had excluded
immunophenotype and activated invasion-metastasis pathway.
Meanwhile, the patients in CI had basal subtypes and enriched
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the mismatch repair, MYC, and PI3K signaling pathways, which
indicates an increase in cell proliferation and expression of
oncogenes. Together, our results suggest crosstalk between LLPS
and genes’ expression associated with TME features, which
mediated BLCA’s prognosis and progression.

Given the subtypes’ multifaceted heterogeneities, we translated
these qualitative clusters into quantitative LLPSRS to conduct
integrative assessments of individual LLPS patterns in patients
with BLCA. Of the 29 RSGs, EGF and SUPT6H maintain the
functional integrity of biomolecular condensates as regulators.
HNRNPH3 is a scaffold and plays an important role during
condensate formation. LLPS of EGF alters SMAD3
phosphorylation to enhance EMT and stemness of cells (44),
whereas SUPT6H influences the assembly of SGs and P-bodies
(45). In addition, HNRNPH3 represents LLPS driving forces (46).
Other RSGs are clients that bind to scaffolds and condensates,
including P-bodies, SGs, nucleolus, and postsynaptic density.

Studies showed that genetic mutations or epigenetic alterations
play a role in the occurrence and development of cancer
pathogenesis and cachexia. The influence of LLPS on genetic
mutations or epigenetic alterations would aid in enhancing our
understanding of carcinogenesis. For example, ubiquitin-tagged p62
cannot be degraded due to the mutant’s LLPS, which leads to Paget
disease (47). SPOP mutants inhibit LLPS of substrates (48), and
SHP2 mutants recruit wild-type SHP2 to condensates, which
triggers carcinogenesis (49). YTHDCI is an m°A reader and
undergoes LLPS, which destabilizes mRNA and promotes
tumorigenesis (50). IDRs in chromatins and enzymes undergo
LLPS, leading to chromatin compartmentalization (51). In this
study, the patients with high LLPSRS had distinct mutation
patterns. Interestingly, an inverse correlation was observed
between LLPSRS and TMB. However, a correlation between LLPS
epigenetic aberrations was observed, thereby implying
hyperprogression on treatment with ICB. Higher LLPSRS was
associated with DNA hypermethylation and various RNA-editing
regulators, which indicates that LLPS plays an important role in
epigenetic regulation. Furthermore, AS of several DEGs led to
refractory cachexia between the two subgroups. Our results show
a correlation between epigenetic alterations and LLPSRS, which
results in discrepancies in clinical outcomes.

Due to the target-independent physicochemical features, the
chemotherapeutic drugs can be selectively distributed among
distinct condensates, which reduces the efficacy of the drugs (52).
For undruggable proteins, mediating their condensates offered
intriguing avenues for antineoplastics. LLPS in LINP1 inhibits
DNA repair and induces chemoresistance (53). An inhibition in
MED1 expression could enhance the accumulation of its
condensates on MYC genes, which increases the efficacy of
tamoxifen (52). Furthermore, SHP2 allosteric inhibitors can
disrupt condensates of SHP2 mutants (49), and NCOA1 LLPS
can be attenuated by Elvitegravir (54). Further, the correlation
between LLPSRS and the signatures of adjuvant therapies was
investigated, which could aid in designing personalized treatment
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for patients with BLCA. The patients with high LLPSRS were
sensitive to EGFR-targeted therapies, radiotherapy, and
neoadjuvant chemotherapy. Patients with low LLPSRS may
benefit from therapies targeting oncogenic pathways (like the
FGFR3 and WNT signaling pathways) and ICB therapy. Further,
LLPSRS was used to determine the efficacy of anticancer drugs by
predicting chemosensitivity. Together, these results indicate the
potential role of LLPSRS in predicting personalized treatment at
the pharmacogenomics level; however, additional studies are
required to study the underlying mechanism.

Various studies have divided TME into three
immunophenotypes such as inflamed, excluded, and desert;
however, spatiotemporal regulation of TME immunophenotypes
is still unclear. A study has shown that YAP’s LLPS causes ICB
hyperprogression induced by IFN-y (55); therefore, the further
correlation between LLPSRS and TME should be explored. A
study has shown that LLPS of cGAS can activate innate immune
responses and cGAMP production (56). However, STING forms
spherical condensate to inhibit cGAMP signaling, which triggers
innate immune responses (57). This indicates that LLPS plays a
dual role in the cGAS-STING pathway. LLPS of NLRP6 promotes
the secretion of IL-1 and IL-18 and induces pyroptosis (58).
LLPS is involved in both innate and adaptive immune responses.
T-cell receptor stimulators undergo LLPS; however, CD45 is
excluded from condensates to ensure T-cell activation (59). In
this study, the patients with lower LLPSRS had strong immune
responses; hence, they were more likely to benefit from ICB
treatment. By the IMvigor210 cohort, we directly attested that
they responded better to ICB, and LLPSRS was a robust metric for
evaluating individual responses. Only a few patients respond to
ICB treatment, which prolonged their survival; therefore, LLPSRS
could be used to identify patients with BLCA who could benefit
from ICB. A total of 122 LLPSRS-relevant eigengenes were
screened using WGCNA, and a prediction n classifier was
constructed using the RF and ANN algorithms. The classifier
was robust and could effectively predict the response of patients to
ICB therapy.

However, our study has a few limitations. Firstly, we
analyzed cross-sectional and retrospective data; hence,
additional studies with prospective multi-center cohorts are
required to validate our findings. Next, we explored the role of
LLPS-related genes at the macroscopic level; however, these
genes are involved in functions that are independent of LLPS.
Hence, these LLPS-related genes are insufficient to determine the
crosstalk between LLPS patterns and other characteristics. In
this study, we explored the heterogeneity in TME and quantified
LLPS patterns. However, we did not explore the intratumor
heterogeneity in a single patient. We divided the patients into
clusters based on the median LLPSRS as the cutoff value;
however, we performed correlation analyses to reduce the bias.
Since the number of patients with BLCA treated with ICB was
few, we carried out no extra external validations. However, we
carried out internal validations to compensate for this
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shortcoming. Furthermore, we used qRT-PCR to evaluate
LLPSRS in clinical practice; hence, follow-up studies are
required for designing genetic testing kits. Among RSGs,
HNRNPH3 and NSUN5 play an important role in BLCA
based on in vitro results; hence, we further analyzed them.
Nevertheless, our results shed light on different subtypes of
BLCA, which could aid in designing personalized treatment
and provide insights into guidelines for clinical application.

Conclusions

Our results revealed the underlying heterogeneity of tumors
and the impact of LLPS on the biological functions of BLCA at
the multi-omics level. We categorized the patients with BLCA
into three subtypes. These patients had different prognoses,
TME characteristics, cancer hallmarks, etc. We also calculated
the LLPSRS using various algorithms, which could identify
intricate LLPS patterns and develop their robustness from
multifaceted dimensions. Encouragingly, in the era where ICB
sheds new light on anticancer treatment, our binary classifier
could effectively predict patients’ response to ICB, which would
aid in designing personalized therapeutic strategies for patients.
Our results aid in uncovering the complexities of LLPS. We
developed algorithms to categorize patients with BLCA based on
LLPS patterns, which will aid in developing personalized
therapeutic strategies and shed light on personalized
precision medicine.
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SUPPLEMENTARY FIGURE 1

(A, B) Consensus map of NMF based on 586 prognostic LLPS-related genes
when k = 2/3/4/5; and NMF rank survey helped us to choose the appropriate
rank value. (C—E) Consensus map of NMF when k = 2/3/4/5 in Meta-BLCA
samples; and NMF rank survey helped us to choose the appropriate rank
value. (F) KM curve exhibited significantly different OS among 3 LLPS clusters
in Meta-BLCA cohort. (log-rank test, P< 0.001, samples that OS time > 4000
days were deleted). (G-I) Differences in 12 BLCA, 20 SA-MR-IR, and 19
oncogene signatures among LLPS clusters. The line in the box represented
the median value and the asterisk represented the P value ("*" P< 0.05; "**" P<
0.01;, ™**" P< 0.001; "****" P< 0.0001), while the statistical analyses were
performed by the Kruskal-Wallis test.

SUPPLEMENTARY FIGURE 2

(A) Venn diagrams showed overlaps of 470 DEGs (|log2FC| > 1, P< 0.01)
among the three LLPS clusters. (B, C) Consensus map of NMF based on
197 prognostic LLPS-related DEGs when k = 2/3/4/5; and NMF rank
survey helped us to choose the appropriate rank value. (D-F)
Differences in 12 BLCA, 20 SA-MR-IR, and 19 oncogene signatures
among three DEG clusters. The line in the box represented the median
value and the asterisk represented the P value ("*" P< 0.05; “**" P< 0.01;
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"FEXT P< 0.001; "****" P< 0.0001), while the statistical analyses were
performed by the Kruskal-Wallis test.

SUPPLEMENTARY FIGURE 3

(A, B) The relation between lambda values and variable coefficients or
partial likelihood deviance in the LASSO regression. (C—E) Patients were
divided into high- and low-risk subgroup in the training set, TCGA-BLCA
cohort, and validation set; survival status of patients in two subgroups;
heatmap of 29 RSGs. (F—1) KM curves for LLPSRS in the external validation
sets (Meta-BLCA, GSE13507, GSE31684, E-MTAB-4321 cohorts). (I-N)
Comparison of LLPSRS with other six prognostic signatures in terms of
DCA, C-index and ROC-AUC values at 1, 3, 5 and 7 years.

SUPPLEMENTARY FIGURE 4

(A) A histogram of differential transcript levels of NSUN5, DAD1, XPOS5,
HMG20B and DHX16 in BLCA and normal urothelial cell lines. (B, C)
Univariate Cox analysis and Net reduction analysis of LLPSRS and 7 clinical
traits for the prognostic prediction in the TCGA-BLCA cohort. (D-G) The
ROC curves for LLPSRS and seven clinical traits at 1, 3, 5 and 7 years. (H)
The CNV variation frequency of 29 RSGs in the TCGA-BLCA cohort. The
height of the column represented the alteration frequency, and the
deletion was referred to as green dot while the amplification was
referred to as red dot. (I, J) LLPSRS were inversely correlated with TMB
and purity in the TCGA-BLCA cohort. (K, L) The multi-omics mutation and
interconnection landscape of 29 RSGs.

SUPPLEMENTARY FIGURE 5

(A) KEGG annotation of 240 DNA methylation-relevant driver genes. The
different colors represented the different terms or pathways. (B) Heatmap
showed the DNA methylation levels of top 35 hypermethylated or
hypomethylated genes. (C—E) Differential expression of RNA modification
regulators between high- and low- risk subgroups. Color code of the
regulators indicated corresponding modification type. (F) Network diagram
showed that 786 of DEGs were discovered to have co-expression relations
with 71 RNA editing regulators with [Pearson’s r| > 0.3 and p< 0.0001 as the
threshold. (G) KEGG annotation of 786 RNA editing-relevant DEGs. The
different colors represented the different terms or pathways. (H) KEGG
annotation of 161 DEGs with AS. The different colors represented the
different terms or pathways. (I) The splicing regulatory network between the
prognostic AS events of DEGs and relevant splicing factors.

SUPPLEMENTARY FIGURE 6

(A—H) Paclitaxel, Gemcitabine, AZD4547, 5-Fluorouracil, Dactinomycin,
Epirubicin, Oxaliplatin, Lapatinib showed lower IC50 value in low-risk
subgroup via GDSC. (I) 4 CTRP-related and 9 PRISM-related compounds
were identified by correlation between LLPSRS and AUC value. (3) 20
Cellminer-related potential drugs for patients with lower LLPSRS were
identified by correlation between LLPSRS and G150 value. The line in the
box represented the median value and the asterisk represented the P
value ("™*" P< 0.05; "**" P< 0.01; "***" P< 0.001; "****" P< 0.0001), while the
statistical analyses were performed by the Mann-Whitney and Spearman
correlation test.

SUPPLEMENTARY FIGURE 7

(A) ROC curve of LLPSRS in patients treated with anti-PD-L1 immunotherapy.
The combination of TMB and LLPSRS improved predictive power compared
with that of TMB or LLPSRS alone. (B) Euclidean distance between samples
were calculated by the “dist” function. (C) Relation between the scale
independence (R?) and mean connectivity with the soft threshold (B). (D)
Eigengene adjacency heatmap. (E) Network heatmap plot. (F, G) Scatter plot
of module eigengenes in the brown module. (H) Results of the Gini coefficient
method in RF classifier. The X-axis indicated the genetic variable, and the Y-
axis represented the importance index.
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