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Clinicas, Universidade Federal do Paraná, Curitiba, Brazil, 19Core for Cell Technology, School of
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Purpose: Robust biomarkers that predict disease outcomes amongst COVID-

19 patients are necessary for both patient triage and resource prioritisation.

Numerous candidate biomarkers have been proposed for COVID-19. However,

at present, there is no consensus on the best diagnostic approach to predict

outcomes in infected patients. Moreover, it is not clear whether such tools

would apply to other potentially pandemic pathogens and therefore of use as

stockpile for future pandemic preparedness.

Methods: We conducted a multi-cohort observational study to investigate the

biology and the prognostic role of interferon alpha-inducible protein 27 (IFI27)

in COVID-19 patients.

Results: We show that IFI27 is expressed in the respiratory tract of COVID-19

patients and elevated IFI27 expression in the lower respiratory tract is

associated with the presence of a high viral load. We further demonstrate

that the systemic host response, as measured by blood IFI27 expression, is

associated with COVID-19 infection. For clinical outcome prediction (e.g.,

respiratory failure), IFI27 expression displays a high sensitivity (0.95) and

specificity (0.83), outperforming other known predictors of COVID-19

outcomes. Furthermore, IFI27 is upregulated in the blood of infected patients

in response to other respiratory viruses. For example, in the pandemic H1N1/09

influenza virus infection, IFI27-like genes were highly upregulated in the blood

samples of severely infected patients.

Conclusion: These data suggest that prognostic biomarkers targeting the

family of IFI27 genes could potentially supplement conventional diagnostic
frontiersin.org02
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tools in future virus pandemics, independent of whether such pandemics are

caused by a coronavirus, an influenza virus or another as yet-to-be discovered

respiratory virus.
KEYWORDS

biomarkers, IFI27, SARS-CoV-2, COVID-19, early predictor
Introduction

SARS-CoV-2 causes a broad range of clinical outcomes.

What determines whether an infected individual will progress

to severe COVID-19 is a complex interaction between host and

viral factors. Since the beginning of the COVID-19 pandemic,

there has been significant interest in developing robust

biomarkers to predict disease outcomes amongst COVID-19

patients. This facilitates patient triage and resource

prioritisation, both of which become particularly important

when healthcare centres are required to simultaneously treat

many COVID-19 patients. Numerous prognostic indicators

have been proposed for COVID-19. These include, but are not

limited to, patient demographics, co-morbidities, lung computed

tomography (CT) results, coagulation assays, alterations in white

blood cell counts and inflammatory response biomarkers such as

C-reactive protein and cytokines (1). Others have used machine

learning to predict disease outcomes (2, 3). Despite these

investigations, there is no consensus on the best approach for

predicting COVID-19 outcomes. Moreover, as there is no

indication as to whether such predictive tools would apply to

other potentially lethal viruses, and therefore could become part

of stockpile for future pandemic preparedness.

We have previously discovered that the transcription of the

interferon alpha-inducible protein 27 (IFI27) is a signature

marker of pandemic H1N1/09 influenza infection (4). IFI27

(also known as ISG12 or p27) is an interferon alpha (and to a

lesser extent interferon gamma) inducible gene of unknown

function, with the gene product residing in the nuclear

membrane of the cell (5). IFI27 expression is associated with

the outcomes of several different viral illnesses including

respiratory syncytial virus (RSV) infection and Enterovirus 71

(EV71) hand foot and mouth disease (6, 7). Preliminary

evidence suggests that IFI27 expression may be a useful

biomarker for COVID-19 diagnosis (8–11). In the respiratory

tract, IFI27 expression is significantly upregulated by SARS-

CoV-2 infection, more so than by other respiratory viruses (8, 9,

12). IFI27 is also upregulated in the peripheral blood of COVID-

19 patients (10, 11, 13) and may serve as a biomarker for pre-

symptomatic SARS-CoV-2 infection (14). These data are

consistent with observations that the induction of type I
03
interferons in the lower respiratory tract and systemically is

associated with immunopathology (15) whilst the induction of

type I interferons in the upper respiratory tract is associated with

virus control and not disease outcomes (12). However, others

have suggested that IFI27 expression is low in patients with

severe COVID (16, 17). Therefore, the usefulness of IFI27

expression as a prognostic biomarker for COVID-19 has yet to

be determined.

Here, we use multiple patient cohorts to evaluate the role of

IFI27 expression in predicting COVID-19 disease progression.

We further examine the role of IFI27 expression for risk

stratification in infections caused by other respiratory viruses,

namely influenza virus, another virus of pandemic potential.
Materials and methods

Patient cohorts

Since IFI27 is expressed in humans to varying degrees

depending on the severity of COVID-19 infection, we

assembled multiple patient cohorts (Cohort 1 - 8) to capture

the full spectrum of clinical severity (‘Mild’, ‘Moderate’, ‘Severe’

as per definitions below). To ensure that population

heterogeneity was adequately represented in the study, we

recruited study participants across different countries (Brazil,

Iran, Chile, Australia, Singapore, and the U.S.A.). To fully

understand IFI27 expression in different tissue compartments,

we systematically evaluated samples of different tissues including

lung, upper respiratory tract, and blood. A summary of the

relevant cohort characteristics and sampling methods is

provided in Table 1.
Definition of severity

We adopted a simplified version of the CDC definition

of COVID-19 disease severity (17). In this simplified

definition, COVID disease was defined as the presence of

suspected COVID-19 symptoms (e.g., fever, sore throat)

(Supplementary Table 1), together with a positive SARS-CoV-
frontiersin.org
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2 detection using virus nucleic acid amplification assay (qPCR).

‘Mild’ disease was defined as the presence of COVID-19 disease

(as confirmed by the admitting clinician) in a patient who did

not require hospitalization. ‘Moderate’ disease was defined as the

presence of COVID-19 disease in a patient who required

hospitalization. ‘Severe’ disease was defined as the presence of

COVID-19 disease in a patient who required mechanical

ventilation (in an intensive care unit).
Study design

We deployed both retrospective and prospective studies to

understand the biology of IFI27 and to evaluate the clinical

utility of the IFI27 biomarker. Cohort 1 (Brazil) was a case-

control study in which the biological role of IFI27 expression in

SARS-CoV-2-induced acute lung injury was examined. Cohorts

2-6 (Iran, Chile, Australia, and the U.S.A.) were cross-sectional

studies. We used these studies to compare IFI27 expression

across different tissue compartments (plasma, airways, and

blood), to determine the most suitable sampling route for

IFI27 measurement. Cohorts 7 and 8 (Australia, Singapore,

and Iran) were prospective cohorts used to validate the

prognostic performance of the IFI27 gene-expression

biomarker in a real-world setting. Table 1 provides a summary

of all cohorts included in this study. Additional details on patient

recruitment, experiments performed, and data collection are also

provided in the Supplementary Methods.
Outcome measure

Cohort 7 (Australia & Singapore) was a prospective validation

study of IFI27 in predicting COVID-19 outcomes. As the sample

size was small (n=44), a composite outcome was used to evaluate

IFI27 prediction performance. The composite outcome in a

COVID-19 patient was defined as, during the 28-day study

period, the first occurrence of: (1) any complication as defined

by the International Severe Acute Respiratory and Emerging

Infection Consortium (ISARIC), such as viral pneumonia, acute

respiratory distress syndrome (ARDS) or bacterial pneumonia

(Supplementary Table 1); or (2) prolonged virus shedding; or (3)

ICU admission; or (4) hospital stay > 7 days. A patient with an

‘adverse’ outcome was one in whom a composite outcome

occurred within the 28-day study period and a patient with ‘no

adverse’ outcome was one in whom a composite outcome had not

occurred during the 28-day study period.
Predictive performance

We assessed IFI27 predictive performance using the

established methods of Metz and Zhou, as implemented in the
Frontiers in Immunology 04
NCSS statistical software (Utah, U.S.A) (18). Sensitivity,

specificity, positive likelihood ratio and negative likelihood

ratio were calculated using the previously established cut-off

value for IFI27 (74) (4). For all performance metrics, 95%

confidence intervals were calculated based on the Exact

(Clopper-Pearson) method (19). For assessing predictive

performance, a previously validated cut-off threshold for IFI27

expression (fold-change of 74) was used (4). For grouping ‘mild’,

‘moderate’ and ‘severe’ COVID-19 patients, clinical criteria (see

‘Definition of severity’) were used for this purpose.
Primary cell culture

Primary nasal epithelial cells were grown and infected with

SARS-CoV-2 according to the Supplementary Methods.
Experiments

cDNA synthesis and qPCR
Total RNA was reverse transcribed using a Qscript cDNA

SuperMix (QuantaBio). Amplification of IFI27 was performed

using TaqMan gene expression Master Mix on a CFX384 system.

Alternatively, RNA was extracted using Nucleozole reagent

according to the manufacturer’s instructions, DNA was removed

byDNase I (ThermoFisher Scientific) treatmentand1µgDNA-free

RNA was reverse transcribed into cDNA using the High-Capacity

cDNA Reverse Transcription Kit (Applied Biosystems) on a

Mastercycler Thermocycler (Eppendorf, Hamburg, Germany)

according to the manufacturer’s instructions using random

primers. Real-time PCR was performed on generated cDNA with

SYBER Green (IFI27 FW: FW: ACCTCATCAGCAGT

GACCAGT; RV: ACATCATCTTGGCTGCTATGG or IFI27

FW: CGTCCTCCATAGCAGCCAAGAT; RV: ACCCAAT

GGAGCCCAGGAT GAA). GAPDH (FW: GTCTCCTCT

GACTTCAACAGCG; RV: ACCACCCTGTTGCTGTA

GCCAA) or HPRT (FW: TCAGGCAGTATAATCCAAAGA

TGGT; RV: AGTCTGGCTTAT ATCCAACACTTCG) was used

as the endogenous control. The delta-ct method was used to

calculate the fold change in gene expression.

ELISA
Plasma samples, collected from COVID-19 patients were

analysed in duplicate using the IFI27 ELISA kit (Aviva Systems

Biology, USA). Plasma IFI27 (pg/ml) was log2 transformed and

median centred to evaluate the relationships to clinical outcomes

of COVID-19.

RNAscope
RNAscope® probes (Advanced Cell Diagnostics, USA)

targeting SARS-CoV-2 spike mRNA were used according to

manufacturer’s instructions for automation on the Leica Bond
frontiersin.org
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TABLE 1 Overview of cohorts included in the study.

Pathogen Time of sampling SARS-
Gender
(males/
females)

Age
(Mean
years)

Tissue
type

Experiment
performed

IFI27 mea-
surement

Clinical setting
Disease
severity@

Admission
to hospital

(%)

Death
(%)

2/2 74.5 Lung
RNAscope
& Spatial
transcriptomics

10X
Genomics
Visium

Hospital Severe
4

(100%)
4

(100%)

92/45 46
Nasal
Swabs

qPCR# qPCR Hospital
Moderate
Severe

130 (100%) NA

30/30 55
Nasal
Swabs

qPCR qPCR
Outpatient and
hospital

Mild
Moderate
Severe

38 (63%)
4

(6.7%)

83/44 54 Plasma ELISA# ELISA Hospital
Moderate
Severe

127 (100%)
16

(12.5%)

18/10 60 Plasma ELISA ELISA Hospital
Mild
Moderate
Severe

19 (68%)
4

(14%)

7/9 53 Blood qPCR qPCR Hospital
Asymptomatic,
Mild
Moderate

12 (75%)
4

(25%)

18/26 49 Blood qPCR qPCR
Community,
outpatient, and
hospital

Mild
Moderate
Severe

24 (55%) 0 (0%)

26/24 42 Blood qPCR qPCR Hospital
Mild,
Moderate,
Severe

30 (67%) 0(0%)

linician) in a patient who does not require hospitalization. ‘Moderate’ disease is defined as the presence of COVID-19 disease in a patient
COVID-19 disease in a patient who requires both hospitalizations and mechanical ventilation (usually in intensive care unit). # qPCR

Sh
o
jae

ie
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
2
.10

6
0
4
3
8

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
5

Country Year
Study
design

identified CoV-2
patients
recruited

Healthy
controls

Cohort
1

Brazil 2020
Case-
control
study

SARS-
CoV-2

Autopsy sample
4 0

Cohort
2

Chile 2020
Cross-
sectional
study

SARS-
CoV-2

Presentation to hospital
(<1 week post symptom
onset)

137 0

Cohort
3

U.S.A. 2020
Cross-
sectional
study

SARS-
CoV-2

Presentation to hospital
(<1 week post symptom
onset)

60 0

Cohort
4

Chile 2020
Cross-
sectional
study

SARS-
CoV-2

Presentation to hospital
(<1 week post symptom
onset)

127 0

Cohort
5

Brazil 2020
Cross-
sectional
study

SARS-
CoV-2

Presentation to hospital
(<1 week post symptom
onset)

28 6

Cohort
6

Iran 2020
Cross-
sectional
study

SARS-
CoV-2

Presentation to hospital
(<1 week post symptom
onset)

16 6

Cohort
7

Australia
&
Singapore

2020
Prospective
cohort

SARS-
CoV-2

Presentation to hospital
(<15 days post symptom
onset)

44 14

Cohort
8

Iran 2021
Prospective
cohort

SARS-
CoV-2
(Delta)

Presentation to hospital
(<1 week post symptom
onset)

45 5

@ For disease severity, ‘Mild’ disease is defined as the presence of COVID-19 disease (as confirmed by the admitted c
who requires hospitalization but does not need mechanical ventilation. ‘Severe’ disease is defined as the presence of
denotes ‘quantitative polymerase chain reaction’. ELISA denotes ‘enzyme-linked immunosorbent assay’.
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RX of formalin-fixed paraffin embedded (FFPE) rapid autopsy

lung tissues from COVID-19 patients and controls. Fluorescent

images were acquired with Nanostring Mars prototype DSP

at 20x.
Spatial transcriptomics
FFPE samples were sectioned at 7µm thickness using a

microtome and the section was transferred to a water bath at

41°C. The floating section was adhered to the Visium Spatial

Gene Expression Slide (10x Genomics, USA) and processed as

per manufacturer recommendations.
Microarray
The microarray data of GSE101702, which included 107

influenza patients (n=63 moderate and n=44 severe) and 52

healthy controls, was analysed. The clinical characteristics and

additional detail of the dataset are previously described (20). We

identified the differentially expressed genes (DEGs) by the R package

‘limma’ (21) between moderate influenza and severe influenza

samples. Genes with 1 log2fold change with adjusted P value < 0.05

(0.05 FDR) value were considered significant. Full details on the

above methods are also provided in Supplementary Methods.
Statistical analysis

Data were tested for normality using the Anderson-Darling

test. Where data were normally distributed, they were analysed

using an unpaired two-tailed student’s t-test or a one-way ANOVA

with a Holm-Š ı́ dák’s multiple comparisons test. Where data were

not normally distributed, they were analysed using the Mann-

Whitney U test or a Kruskal-Wallis test with Dunn’s multiple

comparison test. The significance was set at p<0.05. All statistical

analyses were performed using Prism version 9.0.
Results

The findings of this study included expression data (gene/

protein) generated across eight cohorts across six countries

(Australia, U.S.A., Chile, Brazil, Iran, and Singapore). There

was one case-control study (Cohort 1), two prospective studies

(Cohort 7 and Cohort 8) and five cross-sectional studies

(Cohorts 2-6). Patients included in the studies had different

disease severities (mild, moderate, and severe). Cohort 8 (Iran)

included COVID-19 patients recruited in 2021, who were

infected during the Delta wave of the pandemic in Iran. Other

COVID-19 cohorts recruited patients in early 2020 (Cohorts 1-

7). Several platforms were used to measure IFI27 gene expression

including PCR, microarray, and spatial transcriptomics. Table 1

provides full details of the IFI27 measurement methods and

tissue sampling approaches in each cohort.
Frontiers in Immunology 06
We first investigated whether IFI27 expression could be

detected in COVID-19 patients by assessing gene expression in

the lower respiratory tract of deceased COVID-19 patients

(Cohort 1; Brazil; n=4). The virus load in the lung was

assessed by RNAscope®, which had the sensitivity to detect

single molecules in a cell. The distribution of virus load was

quantified by STRISH, a robust image processing pipeline (22).

The average measurements of SARS-CoV-2 spike mRNA

(nCoV2019) per grid (tissue region) of neighbouring cells were

visualized by STRISH using a tissue heatmap (Figure 1A).

Adjacent tissue sections from the same samples were then

processed by the Visium® spatial transcriptomic method using

polyA-capture (Figure 1B). Based on comparison of RNAscope

and Visium analyses, we discovered that areas of high viral load

in the lung, as detected by RNAscope, also had high levels of

IFI27 gene expression (Figures 1C, D). The correlation between

high viral load and increased IFI27 gene expression was

independently replicated by an additional Visium® spatial

dataset, here generated using a probe hybridization protocol

(data not shown). Together, these data indicate that IFI27

expression can be detected in the lower respiratory tract

during SARS-CoV-2 infection. This finding was validated by

several recently published studies (8, 23, 24), which confirmed

the upregulation of IFI27 expression in infected lung tissue of

COVID-19 patients (Figure 1E).

The above data indicated that IFI27 gene expression may

reflect local disease activity in infected lung tissue. However,

lower respiratory tract is not readily accessible or available for

prognostic testing. Accordingly, we sought to establish if IFI27

expression could be detected in the upper respiratory tract

during SARS-CoV-2 infection (Figure 2). To model the human

upper respiratory tract primary nasal epithelial cells from

healthy donors were differentiated at an air liquid interface, as

described previously (25). Cells were infected with SARS-CoV-2

(QLD02) and IFI27 expression was assessed 72 hours post-

infection. At 72 hours post-infection IFI27 expression was

upregulated in infected nasal epithelial cells (Figure 2A).

However, the difference in relative expression between infected

and uninfected cells (i.e., the dynamic range of expression) was

only moderate between infected and uninfected cells (a feature

which is suboptimal for a prognostic biomarker). Nevertheless,

we further assessed the prognostic potential of IFI27 expression

in nasopharyngeal swabs of COVID-19 patients (Cohort 2;

Chile). Here, no significant association was observed between

nasopharyngeal IFI27 gene expression and virus RNA

(Figure 2B). Further analysis in another cohort (Cohort 3;

USA) showed a similar finding; there was no significant

difference in IFI27 gene expression between mild, moderate,

and severe disease (Figure 2C). Since these findings suggested

that upper airway IFI27 expression levels do not have a strong

prognostic value (and a limited dynamic range) we sought an

alternative sampling route to measure IFI27 expression in

COVID-19 patients.
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FIGURE 1

Lower airway IFI27 gene expression in COVID-19 patients A In Cohort 1, spatial expression heatmap of normalised COVID-19 RNAscope signal
was determined using STRISH analysis. The heatmap colour shows average RNAscope signal per cell per rectangle area that contains a similar
number of cells (fewer than 100 cells per rectangle). Red boxes indicate areas of overexposure in the original RNAscope microscopy, which
were excluded from the analysis. B Quality metrics of four multiplexed Visium samples, indicating the number of genes and reads per spot with
summary statistics. C Normalised expression of IFI27 across four samples measured in the same Visium experimental slide (poly-A protocol)
(blue as low and yellow- red as high). D Binned values of normalised expression of IFI27 across Visium samples. E Upset plot describing the
overlapping gene sets across 5 studies. The size of the gene set varies across the studies with a small number of common genes including IFI27
shared across all studies (18-20).
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The spread of SARS-CoV-2 infection to the lower airway is

often associated with a systemic host response, and blood

provides an easily accessible clinical sample to assess this

response. Thus, we proceeded to measure IFI27 expression

levels in peripheral blood of COVID-19 patients (Cohort 6;

Iran). We found that blood IFI27 was higher in infected patients

(compared to asymptomatic or uninfected individuals).

Furthermore, there was a trend of increasing IFI27 gene

expression in patients with a worsening disease, although this

trend was not statistically significant (Supplementary

Figure 1A). When protein expression of IFI27 was measured,

there were no elevation in COVID-19 patients (Cohorts 4 and 5;

Chile & Brazil) and it did not correlate with disease severity

(Supplementary Figure 1B). These findings suggested that blood

IFI27 gene expression (not protein expression) could act as a

surrogate marker of disease outcome in COVID-19.

We then used an independent prospective cohort (Cohort 7;

Australia & Singapore) to test the hypothesis that changes in

blood IFI27 gene expression could predict outcomes in COVID-

19 patients. In Cohort 7, blood sampling (for IFI27 gene

expression) was performed upon initial presentation of each

patient when the disease outcome was still unknown. Each

patient was then followed up for 28 days and their clinical

outcomes (e.g., acute respiratory distress syndrome) were

recorded (see Methods). We found once again that blood

IFI27 gene expression was significantly higher in patients who

tested positive for SARS-CoV-2, a necessary pre-requisite for a

prognostic biomarker. (Figure 3A) We also noted that IFI27

blood expression was high in COVID-19 patients who developed

an adverse outcome (Figure 3B). It is important to emphasise

that all patients in this cohort (Cohort 7) were prospectively

recruited at the early phase of their infection, which was prior to

their outcomes become known (e.g., discharge home or

admission to ICU). The patient outcomes were ascertained

later in the follow-up period. Therefore, Figure 3C

demonstrates the predictive capability of blood IFI27 in the

early phase of the infection when the patient’s subsequent

trajectory was unknown to the clinician. Since all patients

were recruited under the same protocol (i.e., prospective

recruitment), the findings in Figure 3C reflects the forward

performance of IFI27 of all patients in this cohort. In case

studies of a more limited number of patients IFI27 gene

expression increase could precede – by several days – clinical

signs of deteriorations or abnormal changes in laboratory

parameters such as high levels of C-reactive protein

(Supplementary Figure 2).

This observation was further confirmed by area under the

curve of receiver-operator-characteristics curve (AUROC)

analysis , which showed the IFI27 gene expression

outperformed laboratory variables (e.g., C-reactive proteins),

patient variables (e.g., age, comorbidity) and physiological

parameters (e.g., respiratory rate) in predicting COVID-19

outcomes (Table 2 and Figure 3D). Notably, the IFI27 gene
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expression had a high sensitivity (0.95), high specificity (0.83)

and an AUROC of 0.90, all of which were higher than known

factors associated with COVID-19 outcomes (e.g., age, co-

morbidity). To confirm the prognostic value of IFI27

expression in the blood of COVID-19 patients, a second

prospective cohort was recruited (Cohort 8; Iran). Although

this cohort was recruited during the peak of the Delta wave in

Iran, the same trend was observed: increased IFI27 expression

was observed in patients with more severe COVID-

19 (Figure 3E).

Ideally, for pandemic preparedness, a prognostic biomarker

would function for many viral infections and not be restricted to

COVID-19 alone. To investigate this further we analysed blood

gene expression data from a previously published microarray

study of influenza patients (20). This analysis confirmed that

IFI27 upregulation occurred in severe influenza infection

(Figure 4A). Importantly, the IFI27 gene family- including

interferon alpha-inducible protein 27-like protein 1 (IFI27L1),

and not and interferon alpha-inducible protein 27-like protein 2

(IFI27L2) (Figures 4B, C) were best suited to discriminating

disease outcomes. Together, these expanded analyses

demonstrated that IFI27, or its gene family, could be a

prognostic biomarker of the host response to respiratory viruses.
Discussion

Globally, more than 500K new SARS-CoV-2 infections are

recorded every day and the emergence of novel viral variants has

raised concerns that these numbers will increase, despite the

increasing availability of vaccines. The current global situation

emphasises the ongoing need for COVID-19 prognostic

biomarkers to facilitate both patient triage and resource

prioritisation. Here, we have provided the first evidence of

blood IFI27 expression as a potential biomarker for risk

stratification of COVID-19 patients. When prospectively

validated, blood IFI27 expression showed a high positive and

negative predictive value, outperforming other known predictors

of COVID-19 outcomes reported in the literature.

IFI27 is an interferon inducible gene. Accordingly, the strong

association observed between IFI27 upregulation and severe

COVID-19 could be indicative of an increased viral

replication. However, this hypothesis would be inconsistent

with the poor correlation observed between nasopharyngeal

IFI27 expression and viral replication in the nose. Instead,

we propose that IFI27 expression reflects increased

immunopathology (either local or systemic) and could predict

COVID-19 outcome. The correlation of interferon expression

and the severity of COVID-19 shows significant anatomical

variation. In the upper respiratory tract, rapid induction of

type I interferons is typically associated with reduced COVID-

19 severity, as their induction is associated with the ability to

control viral replication with limited immunopathology (26, 27).
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FIGURE 2 (Continued)

Upper respiratory tract IFI27 gene expression in COVID-19. (A) IFI27 expression in primary human nasal epithelial cells at 72 hours post-SARS-
CoV-2 (QLD/02) or Mock infection. (B) IFI27 gene expression in nasopharyngeal samples in Cohort 2 (n=137). SARS-CoV-2 virus load (as
measured by Ct values) is used as a proxy of local disease activity. A statistically non-significant p-value of the linear regression model
(represented by R2) indicates that there is no association between IFI27 expression and viral RNA in the upper respiratory tract. (C) IFI27 gene
expression in nasopharyngeal samples in Cohort 3 (n=60). ‘Mild’ disease is defined as the presence of COVID-19 disease in a patient who does
not require hospitalization. ‘Moderate’ disease is defined as the presence of COVID-19 disease in a patient who requires hospitalization. ‘Severe’
disease is defined as the presence of COVID-19 disease in a patient who requires mechanical ventilation in an intensive care unit. p value is
calculated using Mann-Whitney U test. **p < 0.01; ns, not significant. Data shows mean ± SEM. IFI27 gene expression is measured by qPCR
normalized to house-keeping genes.
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In contrast, the relationship between type I interferons and

disease pathology is more complex. Certainly, an intact

interferon response is important to reduce the severity of

SARS-CoV-2 infection. This has been clearly shown by the

fact that patients with auto-antibodies to type I IFN (28) or

inborn errors in type I IFN immunity (29) experience more

severe COVID-19. However, at the same time it is known SARS-

CoV-2–infected IFNAR1 KO mice, lacking IFN-a/b signalling,

have reduced inflammation and lymphocyte activation, which

would support the notion that IFN-a/b can drive pathogenic
Frontiers in Immunology 10
inflammation in COVID-19 (15). Similarly, patients with severe

COVID-19 maintain an elevated interferon response throughout

the course of infection, whilst those with moderate disease

display a progressive reduction in type I IFN responses over

time (30). These seemingly disparate results can be explained by

the fact that interferons can play both a protective and

pathogenic role during SARS-CoV-2 infection.

What determines whether the interferon response is

pathogenic or protective is largely dependent on the

magnitude of the response, the kinetics of the response (i.e., if
A B
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FIGURE 3

Blood IFI27 gene expression in COVID-19 patients (prospective cohorts). (A) Blood IFI27 expression in Cohort 7 (n=44), between those patients
with a positive SARS-CoV-2 PCR (labelled as ‘positive’) (n=29) and those without (labelled as ‘negative’) (n=15). (B) Blood IFI27 gene expression
in Cohort 7 grouped by patients who developed complications (labelled as “adverse outcomes”) (n=20) versus those who did not developed
complications (labelled as “no adverse outcomes”) (n=24). (C) Blood IFI27 expression levels grouped by how the patients were managed after
infection was diagnosed. A total of 37 patients had adequate follow-up data, including those being managed at home (n=13), admitted to
hospital ward (n=20) or admitted to intensive care unit (n=4)”. (D) Area-under-the-curve of Receiver-Operator-Characteristics curve (AUROC)
analysis of blood IFI27 gene expression levels in predicting composite outcome in Cohort 7 (n=44) IFI27 gene-expression level (‘IFI27’), total
number of symptoms (‘Symptoms’), C-reactive protein (‘CRP’) and lymphocyte count (‘Lymphocytes’). (E) IFI27 expression in Cohort 8, in
patients without SARS-CoV-2 (Control) and then those with mild, moderate, and severe disease (as defined in Table 1). Data shows mean ± SEM
and statistical significance was determined as described in the Methods. *p < 0.05; **p < 0.01; ns, not significant.
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the period of interferon production overlaps with the period of

viral replication) and the localisation of the response (i.e.,

interferon responses in the nose tend to be associated with a

more protective response whilst interferon responses in the

blood tend to be associated with a more pathogenic response).

Importantly, we observed a stronger association between

COVID-19 outcome and the IFI27 gene expression than that

observed with the IFI27 protein expression in blood. This most

likely reflects an increased dynamic range for measuring gene

expression and thereby an increased ability to differentiate

patient outcomes. Future attempts to translate these findings
Frontiers in Immunology 11
into routine clinical settings should therefore focus on PCR-

based assays to measure IFI27 expression in blood.

Compared to other biomarkers reported in COVID-19

literature, IFI27 offers several clinical advantages. Firstly, IFI27

expression appears to be specific to viral illness. In contrast, most

infection/inflammatory biomarkers (e.g., C-reactive protein,

leukocytes, interlukin-6) are elevated in many non-viral illnesses

(e.g., trauma, sepsis). Secondly, IFI27 expression isdirectly linked to

intra-cellular recognition of respiratory viruses (15, 26, 27, 30).

Given the control point of IFI27 expression lies in the disease causal

pathway, it makes sense to track disease progression by using IFI27
TABLE 2 Performance of blood IFI27 gene-expression in predicting composite outcome in Cohort 7.

Parameters Sensitivity Specificity AUROC

IFI27 0.95 0.83 0.90*

Lymphopenia 0.40 0.71 0.60

CRP 0.72 0.75 0.69

Age 0.50 0.54 0.57

Comorbidity 0.70 0.64 0.77*

Symptom score 0.80 0.50 0.74*

Heart rate¶ 0.65 0.73 0.71*

Respiratory rate¶ 0.45 0.91 0.59

PaO2¶ 0.42 0.64 0.53

AUROC denote area under the curve of receiver-operating-characteristic curve. * Statistically significant (p<0.01).
These measurements (heart rate, respiratory rate and PaO2) were performed on the sample time where blood samples were taken for IFI27 measurement. This is usually done
immediately after the patient was recruited into the study (within 24 hours of each patient’s initial presentation). If there were multiple measurements within the same 24 hours period,
by convention, the worst reading was recorded.
fron
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FIGURE 4

(A) IFI27 like genes have prognostic value in influenza virus infection a IFI27 expression in the blood of 107 influenza patients.(B, C) the IFI27
gene family; interferon alpha-inducible protein 27-like protein 1 (IFI27L1) were best suited to discriminating disease outcome in compared to
interferon alpha-inducible protein 27-like protein 2 (IFI27L2). ‘Moderate’ disease is defined as the presence of influenza in a patient who requires
hospitalization. ‘Severe’ disease is defined as the presence of influenza in a patient who requires mechanical ventilation in an intensive care unit.
p value is calculated using Mann-Whitney U test. **p <0.01; ****p<0.0001; ns = not significant. Data shows mean ± SEM.
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expression, rather than via biomarkers that are unrelated to the

underlyingdisease activity. Finally, blood IFI27 gene expressionhas

a strikingly high dynamic range (e.g., up to thousands of fold

changes in severe COVID-19, as shown in the present study) and a

strong signal-to-noise ratio (which produced consistent findings

across different measurement platforms, such as microarray or

PCR, also evidenced in our findings). These favourable

measurement characteristics makes IFI27 a preferred prognostic

tool to other biomarkers.

The kinetics of IFI27 expression is poorly understood. As a

result, the ideal sampling window was not well-defined in this

study. It is also uncertain whether serial measurement of IFI27

expression would be more informative than a single time point

measurement. Furthermore, the predictive performance of IFI27

could be confounded by other yet-to-be-defined variables, such as

timing (e.g., early presentation versus late presentation), stages of

disease (e.g., lung only infection versus multi-organ disease) and

prior COVID-19 vaccination (only measured in Cohort 8 in the

present study). Indeed, some studies have suggested IFI27

expression is lowest in the critical care or ICU COVID-19

patients (16, 31) which is as apparently incongruent with the

data presented herein. These differences may reflect the fact some

critical cases have known defects in their interferon response (28)

or, age differences between cohorts (noting that the mean age for

cohort 7 was relatively low). Alternatively, we noted that the two

critical patients in the study of Huang et al. were first sampled

approximately 14 days after diagnosis (which was markedly later

than those in the present study) and these differences may reflect

kinetic differences in IFI27 expression. Therefore, we are unable to

extrapolate the prognostic value of blood IFI27 expression to a

broader clinical context and additional studies are required. Such

studies should consist of large-scale, prospective studies with

sample sizes adequately powered to allow researchers to assess

the independent confounding effect of each variable (e.g., timing,

disease stages and prevalence) on IFI27 expression.

The COVID-19 pandemic has emphasised the need to have

stockpiles of broad-spectrum diagnostic and therapeutic tools that

can be rapidly deployed at the start of any future viral outbreak. As

a component of the anti-viral interferon response, it is not

surprising that elevated IFI27 expression was observed in the

blood of patients infected with a broad range of different

respiratory viruses but not in the blood of patients with a

bacterial respiratory infection. These data, combined with

previous suggestions that IFI27 expression is associated with the

severity of RSV (6, 7), suggest that IFI27may represent a pan-viral

prognostic biomarker. Interestingly, when we investigated this

further in the context of influenza virus, we found that

expression of IFI27L1 in the blood, rather than IFI27 itself, was

associated with disease severity. We therefore propose that future

studies focus on developing PCR-based assays tomeasure a suite of

genes associated with IFI27 expression including IFI27L1, IFI27L2

and IFI6. It is hoped that this broader, combinatorial approach,

would lead to the development of pan-viral prognostic biomarker
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that could be incorporated into future pandemic

preparedness planning.

The basis for ancestral differences in IFN expression is not

well-explained. A study shows that in SLE patients a cluster of

highly expressed ISGs including IFI27 is more associated with

African ancestry than disease activity (32). Our study which

combines cohorts from ethnically diverse populations (Middle

Eastern, Asian, European & South American) shows robust

nature of IFI27 as a prognostic biomarker.

The present study has several limitations. Firstly, the

prospective validation cohorts were relatively limited in size.

Secondly, most patient cohorts (Cohort 1-7) were recruited prior

to the availability of vaccination.One cohort (Cohort 8) did include

vaccinated individuals recruited during the Delta wave of COVID-

19 in Iran. Accordingly, our findings do not necessarily apply to

vaccinated individuals experiencing ‘breakthrough’ Omicron (or

subsequent variant) infections. Finally, we could not correlate the

changes in IFI27 expression levels between theperipheral bloodand

the infected lung. Future studies (e.g., in animalmodels) are needed

to unravel the coupled dynamics of IFI27 expression between these

tissue compartments.
Conclusions

The findings provided herein represent the first evidence

that IFI27 expression has a potential as a blood biomarker for

risk stratification in COVID-19 patients.
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