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Walk on the wild side: SIV
infection in African non-human
primate hosts—from the field
to the laboratory

Anna J. Jasinska 1, Cristian Apetrei1,2 and Ivona Pandrea2,3*

1Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of
Pittsburgh, Pittsburgh, PA, United States, 2Department of Infectious Diseases and Immunology,
Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States,
3Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United
States
HIV emerged following cross-species transmissions of simian immunodeficiency

viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While

HIV replication and CD4+ T-cell depletion lead to increased gut permeability,

microbial translocation, chronic immune activation, and systemic inflammation,

the natural hosts of SIVs generally avoid these deleterious consequences when

infected with their species-specific SIVs and do not progress to AIDS despite

persistent lifelong high viremia due to long-term coevolution with their SIV

pathogens. The benign course of natural SIV infection in the natural hosts is in

stark contrast to the experimental SIV infection of Asian macaques, which

progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections

are studied mainly in African green monkeys, sooty mangabeys, and mandrills,

while progressing SIV infection is experimentally modeled in macaques: rhesus

macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on

the distinctive features of SIV infection in natural hosts, particularly (1): the superior

healing properties of the intestinal mucosa, which enable them to maintain the

integrity of the gut barrier and prevent microbial translocation, thus avoiding

excessive/pathologic immune activation and inflammation usually perpetrated by

the leaking of the microbial products into the circulation; (2) the gut microbiome,

the disruption of which is an important factor in some inflammatory diseases, yet

not completely understood in the course of lentiviral infection; (3) cell population

shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface

molecules that bind to SIV), control of viral replication in the lymph nodes

(expansion of natural killer cells), and anti-inflammatory effects in the gut

(NKG2a/c+ CD8+ T cells); and (4) the genes and biological pathways that can

shape genetic adaptations to viral pathogens and are associated with the non-

pathogenic outcome of the natural SIV infection. Deciphering the protective

mechanisms against SIV disease progression to immunodeficiency, which have

been established through long-term coevolution between the natural hosts and

their species-specific SIVs, may prompt the development of novel therapeutic
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interventions, such as drugs that can control gut inflammation, enhance gut

healing capacities, or modulate the gut microbiome. These developments can

go beyond HIV infection and open up large avenues for correcting gut damage,

which is common in many diseases.
KEYWORDS

AIDS - acquired immunodeficiency syndrome, HIV - human immunodeficiency virus,
nonhuman primate (NHP), African green monkey (AGM) (Chlorocebus aethiops),
mucosal immune barrier, inflammation, microbiome, immune activation
1 Introduction

The statement “The origin of AIDS is more ancient than the

origin of HIV-1” by Sharp and Hahn (1) emphasizes the long-

term presence of the SIVs, the simian ancestors of the HIV

pandemic strains, in African non-human primate (NHP)

populations (2–7). Species-specific strains of SIV have emerged

and spread among African NHPs through the codivergence of

SIV lineages with host speciation, e.g., contemporarily, SIVs are

naturally infecting over 45 NHP species in Africa, while they are

absent in NHPs native to the Asian continent and the Americas

(5, 8, 9).

HIV-1 emerged through cross-species transmission of SIV

to humans (1), leading to massive CD4+ T-cell loss,

inflammation, and chronic immune activation in the gut and

systemically, which altogether eventually lead to an exhaustion

of the immune system and the development of opportunistic

infections and AIDS-associated comorbidities, such as

hypercoagulation and other cardiovascular diseases,

hyperlipidemia, chronic kidney and hepatic diseases,

osteoporosis, endocrine diseases, and cancers (10, 11). While

some aspects of AIDS/HIV pathogenesis are reproduced in

experimentally infected Asian macaques that are vulnerable to

SIVmac-induced immunodeficiency (12, 13), the vast majority

of modern-day African NHPs manifest a benign course of

natural SIV infection when infected with their species-specific

SIV strains (14–20). These natural host species do not progress

to immunodeficiency despite life-long viremia and CD4+ T-cell

loss in the gut and periphery, e.g., sooty mangabey (SM,

Cercocebus atys) (18, 21), African green monkey (AGM, genus

Chlorocebus) (22, 23), and mandrills (MND, Mandrillus sphinx)

(19, 24).

Although the course of SIV infection in the natural host

species is generally benign, several lines of evidence demonstrate

that the viruses that naturally infect African NHP hosts do, in

fact, retain their virulence and have the capacity to cause

pathogenic infections; however, this is controlled by the

superior species-specific host defense mechanisms (1). Similar

features of SIV infections between natural hosts and progressing
02
hosts (25–27) include early and massive loss of CD4+ T cells in

the gut mucosa (23, 28–30) but the ability to preserve healthy

levels of Th17 cells, which play a key role in mucosal immunity

(promoting the recruitment of neutrophils and expression of

antimicrobial products) (31, 32), in contrast to SIV-infected

macaques (32) and HIV-infected humans (31) (2). The

description of rare cases of AIDS in SIV-infected African

NHPs after a long incubation period or in senescing

individuals revealing that the pathogenic effects of SIV

manifested in a background of a weakening immune system

(33, 34): a feral born AGM (aged 12 years) (35), a captive-born

SM naturally infected by SIVsmm transmitted in the colony

(aged 20 years) (36), a feral-born mandrill naturally infected in

the wild (aged 18 years) (37), and a black mangabey

experimentally infected with SIVsmm (38) (3). Pathogenicity

of species-specific strains from natural hosts to at least some

species of Asian macaques upon direct cross-species

transmission is routinely leveraged by employing the rhesus

macaque (Macaca mulatta), the pigtailed macaque (Macaca

nemestrina), and the cynomolgus macaque (Macaca

fascicularis) as surrogate models for studying HIV-1 infection

in humans (39, 40) (4). Lack of immunodeficiency or other

disease in AGMs infected with a pathogenically enhanced HIV-

1-like SIVagm (expressing Vpu and Nef proteins) was reported

over a 5-year infection/follow-up. Despite being associated with

moderately increased levels of chronic immune activation, this

infection neither accelerated CD4+ T-cell depletion nor caused

overt AIDS (41). Taken together, the general lack of disease

progression in the natural hosts is not due to differences in

natural history or to a lack of cytopathicity of the virus but rather

the result of active protective mechanisms against

immunodeficiency resulting from host adaptations to highly

replicating virus.

This ‘well-tempered SIV infection’ (42) in the African NHP

hosts has been previously linked to several main protective

strategies (1): a lack of microbial translocation from the gut,

and therefore, a lack of stimulation of inflammation and

immune activation (43) (2); anti-inflammatory mechanisms

controlling these processes and preventing chronic
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inflammation (44–46) (3); homeostatic regulation of various

immune cell populations, including the sparing of critical

immune cell subsets through the downregulation of CD4

receptors (47–50) whi le preserving some of their

functionalities, or downregulation of CCR5 co-receptor on the

CD4+ T-cell surface at sites critical for SIV pathogenesis (51) and

in immature individuals (52–54) (Figure 1).

The identification of critical differences in the host

mechanisms counteracting the pathogenic HIV infection in

humans (or SIV infection of experimental NHP models of

simian AIDS) and non-pathogenic infection in some natural

hosts may shed light on the host mechanisms controlling the

pathogenicity of lentiviral infection and inspire novel

approaches to HIV/AIDS treatment.
2 The natural hosts of SIVs are the
origin of pathogenic SIVs and HIVs

SIV is an old pathogen in NHPs, as suggested by the lack of

pathogenicity in the host species and demonstrated by two

studies that combined molecular phylogeny with biogeography

to recalibrate molecular clock analyses. The first study compared

SIV sequences originating from the same species collected from

Bioko Island and the Equatorial Guinea African mainland,

which were once connected via a land bridge but became

separated 12,800 years ago at the end of ice age. Recalibration

of the molecular clocks to include the biogeography, and thus the
Frontiers in Immunology 03
fact that the last time when these two strains could have been in

contact was before the collapse of the land bridge, led to the

conclusion that SIV could have been infecting these NHP species

for at least 32,000 years but was likely much more ancient (4).

The second study was performed on vervets from South

Africa, which have been postulated to have coevolved with SIV

over a long period of evolutionary time, initially estimated to be

between 3 million to 100,000 years ago, with limits

corresponding to the vervets dispersal across sub-Saharan

Africa and mass Plio-Pleistocene migration of various African

species. Mutation analysis in SIVs present in the South African

vervets showed a striking divergence of SIVagm around the

Drakensberg Mountain range, suggesting that the mountains

represented an insurmountable geographical barrier (due to the

lack of water and food resources) during the vervet and SIVagm

spread, the timing of which could accordingly be established.

The molecular clock based on the phylogenetic relationships

among Chlorocebus SIVs and further geologically calibrated

based on the Bioko split of SIVdrl of the drill monkey

(Mandrillus leucophaeus) further narrowed down the time of

divergence of vervets in South Africa to approximately 200,000

years (6). That allowed time for long-term selective pressure

from the SIV pathogen to take place in the African vervets.

Cross-species transmission from NHPs to humans is not a

very rare event, as demonstrated by the observation that, during

the last century, multiple cross-species transmissions

contributed to HIV emergence in humans: two from

chimpanzees and two from gorillas, which were responsible
FIGURE 1

Mechanisms of protection against SIV infections include homeostatic regulation of immune cell populations through target cell restriction by
downregulation of CD4 or CCR5 in T-cells (green frame) and NK cell colocalization in secondary lymphoid tissues, expansion and enhanced
MHC-E restricted activity (blue frame), preservation of mucosal immunity, and thus prevention of microbial translocation, immune system
stimulation and chronic immune activation. Inflammation is undergirded by highly effective non-inflammatory wound healing in the intestinal
mucosa, the anti-viral content of epithelial microvesicles in the gut, and a potential anti-inflammatory role of NKG2a/c+CD8+ T cells in the gut,
while the role of the intestinal microbiome remains unclear (red frame), and systemic anti-inflammatory mechanisms control the expression of
interferon-stimulated genes after the acute phase (yellow).
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for the emergence of the four HIV-1 groups, (M-P) and eight

from the sooty mangabeys, which were responsible for the

emergence of the eight HIV-2 groups (A-H) (55, 56). In the

great apes, SIVcpz emerged following a recombination between

SIVrcm from red-capped mangabey (Cercocebus torquatus

torquatus) and SIVgsn/mus/mon from one of the species on

which chimpanzees prey, i.e., greater spot-nosed monkey

(Cercopithecus nictitans), mustached monkey (C. cephus), and

mona monkey (C. mona), respectively (57). Such chimeric

viruses emerge during superinfections/coinfection with

di fferent SIVs from different hosts , which enable

recombinations (58–60).

Two out of four chimpanzee subspecies in West-Central and

East-Central Africa, Pan troglodytes troglodytes and P. t.

schweinfurthii, are infected with SIVcpz (SIVcpzPtt and

SIVcpzPts , respectively) at a prevalence of 6%-14%,

respectively (60–64), although the distribution of the virus is

very uneven between different chimpanzee troops (60).

Phylogenetic studies revealed that only SIVcpzPtt is an

ancestor of HIV-1 (61, 65). This virus crossed the species

barrier to humans in at least two instances, being responsible

for the emergence of two HIV-1 groups: M (major), which likely

emerged in the first half of the twentieth century (66) and is

responsible for the world AIDS pandemic (estimated 98% of

HIV infections worldwide) (55); and the non-pandemic HIV1

group N, limited to a small number of infections in Cameroon

(61, 67, 68). The HIV-1 groups O and P originated following

cross-species transmission of the SIVgor, a virus that naturally

infects wild western-lowland gorillas from Cameroon (SIVgor)

(69, 70). SIVgor also originated from cross-species transmissions

of SIVcpzPtt (69, 71).

HIV-2, comprising eight groups, originated following eight

cross-species transmissions of SIVsmm from sooty mangabeys

(72–76). Interestingly, SMs naturally infected with SIVsmm

were the origin of the major reference strains in macaques (77,

78), following accidental transmissions that occurred during

kuru (79) and leprosy (80) experiments carried out in the

1970s in the National Primate Research Centers in the US

(81). This accidental experimental transmission of these

viruses (which involved serial passages) is probably the reason

for their high pathogenicity in macaques (82). Note that direct

cross-species transmission of SIVsmm to rhesus macaques may

have a very variable pathogenic outcome, ranging from

pathogenic infection to virus control (Apetrei, unpublished).

Other SIVs are completely controlled when experimentally

transmitted to RMs (83–85). Among the different species of

macaques, the pigtailed macaques appear to be the most

permissive to cross-species infections, as shown by the

persistent infections with SIVagm or SIVrcm in PTMs (86–

88). The course of progressive SIV infection in macaques

recapitulates all aspects of HIV-1 infection in humans, albeit
Frontiers in Immunology 04
in a more condensed timeframe, and as such, the macaques

represent a pathogenic NHP model of simian AIDS (40, 89).

3 The clinical course of SIV infection
in well-adapted and more recent
natural hosts—lessons from the wild

3.1 Well adapted hosts, i.e., the vervet/
AGM (genus Chlorocebus)

AGM, also called the savanna monkey (vervet), is a term that

is broadly applied to members of the major subspecies of the

single-species genus Chlorocebus of the Old World monkey

superfamily (90). They are highly abundant primates ranging

across sub-Saharan Africa, with the exception of tropical forests

and deserts, and heavily infected with species-specific SIVagm

(SIVsab in C. sabaeus, SIVgri in C. aethiops, SIVtan in C.

tantalus, SIVmal-ZMB in C. cynosuros, and SIVver in C.

pygerythrus) (6, 52, 91). Extensive laboratory data gathered

from experimental SIVsab infection in Caribbean AGMs

demonstrates that a benign course of the infection

characterized by high peak viremia of 107-108 copies/ml 8-10

days postinfection (dpi) that drops to set point values of 2x105

copies/ml by 28 dpi, a transient CD4+ T-cell decrease in the

blood and lymph nodes, and a lack of systemic T-cell activation

(22). In AGMs, inflammatory responses (IL-10 and INF-g) are
activated immediately yet transiently, while lagging in the

progressing SIVmac251 infection of the RMs (44). The gut is a

major replication site for SIVagm, yet virus is detectable across

various tissues, including blood and lymph nodes (the virus from

these tissues has more restricted growth in human T-cell lines)

and brain and CSF (the virus from these samples is capable of

infecting macrophage cultures) (16). However, despite markedly

high virus levels in the nervous system, no neuropathologies

were observed in AGMs (16).

SIV infection in wild AGM populations, in particular, in South

African C. pygerythrus (6) and West African C. sabaeus in the

Gambia (52) has been broadly studied using minimally invasive

procedures to assess the markers of chronic immune activation,

microbial translocation, abundances of different cell populations,

and gut and genital microbiome (6, 52, 92). A combination of viral

loadmeasurements and serological testing (ELISA for gp41 peptide)

in the plasma allowed the staging of SIV infection (acute/chronic) in

these cross-sectional samples based on the Fiebig criteria, according

to which chronic infection is diagnosed based on the moderately

high viral loads in the presence of anti-SIV antibodies, and acute

infection can be defined based on high viral loads in the absence of

anti-SIV antibodies (93). The major findings of these pathogenesis

studies in the wild (the only studies ever performed in wild

animals) were:
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3.1.1 Massive yet uneven distribution of SIV
infection across demographics

Wild AGMs showed a high prevalence of the SIV infection

in adults, with a strong bias towards a higher infection rate in

females than males (SIV prevalence in females was 78% in South

Africa and 90% in The Gambia, while in the males, the

prevalence was significantly lower: 57% in South Africa, and

36% in the Gambia) concordant with unequal male access to

females and possibly an increased transmissibility to females (6,

52) [a similar bias to that observed for HIV-1 transmission in

humans (94)]. The high frequency of SIV infection was also

associated with a very active SIV transmission in the wild

populations, as suggested by the high frequency of acute

infection (leading to an estimate of SIVver incidence of 4.4%

in South Africa) (6).

3.1.2 Exposed seronegative phenomenon
Interestingly, a large proportion of reproductively active

adult females (10-22%) avoid SIV infection through

heterosexual transmission (6, 52), yet it remains unknown

whether this apparent resistance is transient or permanent. It

would be interesting to evaluate what factors (e.g., host genetic

variants, gene expression, epigenetic modifications, and/or

genital and gut microbiomes are associated with the

resistance) are protecting the ESN individuals against SIV

acquisition and how they are shaping the key features of

viral resistance.

3.1.3 Limited mother-to-infant transmission of
SIVs in natural hosts in the wild

SIV infection is nearly absent in infants and very rare in

juveniles, intermediate in young adults, and high in adults,

pointing to a very rare MTIT in the wild and suggesting that the

vast majority of transmissions occur around the time when

monkeys reach sexual maturity, join the reproductive community,

and become exposed to the virus via heterosexual contacts and

aggressive behavior (6, 52, 95, 96). The very low incidence of SIV

MTIT has also been confirmed in captive AGMs, SMs, and MNDs

(97–100).

This bias implicates the protection of immature individuals

through adaptive biological mechanism(s). CCR5, the main co-

receptor of SIV and HIV, shows a striking age-specific expression

pattern in CD4+ T cells, rising from nearly absent in young

individuals to highly abundant in adults (52). Additionally,

infected young individuals tend to show higher CCR5 expression

in CD4+ T cells than uninfected ones (52). The age-related

maturation of CCR5 expression in CD4+ T cells is associated

with a similar age-related increase in the frequency of SIV

infection, which points to target cell restriction as a critical

defense mechanism against the lentiviral infection of immature

individuals (53, 101). This hypothesis was confirmed in

experimental mucosal transmission studies in AGMs (51). In
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experimental studies of breast-feeding transmission of SIVmnd-1

in infant mandrills, low CCR5 expression in CD4+ T cells was

reported to be the main determinant of the lack of SIVmnd-1

transmission to the offspring (54).
3.1.4 Lack of hallmarks of HIV disease
progression to AIDS in the natural environment

SIV infection status (infected/uninfected) in wild AGMs in

Africa does not impact the following major health-related

measurements (6, 52) (1): body mass index (a proxy for clinical

phenotypes not available in field conditions) (2); physiological

measures, which are biomarkers of mortality and disease

progression in HIV/SIV disease in progressing infection, such as

sCD14 (a biomarker of macrophage activation) (102), a wide panel

of cytokines and chemokines (103), and C-reactive protein (CRP, a

negative biomarker of survival time in HIV-infected patients) (104)

(3); the blood counts of major immune cell populations (including

CD4+ T cells, CD8+ T cells, B cells, NK cells, myeloid cells, and

plasmacytoid dendritic cells), which do not differ between SIVsab-

infected and uninfected AGMs (52). T-cell activation biomarkers

(such as the expression of HLA-DR and Ki-67 in CD4+ and CD8+ T

cells) are similarly expressed in SIVsab-infected and uninfected

AGMs (52). The three following biomarkers stood out as being

associated with SIV infection in African AGMs: D-dimer (a

hypercoagulation biomarker), the levels of which are positively

correlated with SIV infection, although D-dimer also increases with

age and, as such, considering the age-related bias in SIV infection

prevalence, it is a reflection of age rather than SIV infection status;

IL-6 (an inflammatory cytokine), which is elevated in SIV-infected

individuals, but this signal is driven by acute infection, when the

high levels of viral replication trigger a transient increase in systemic

inflammation in the natural hosts; and CCR5 expression in

circulating CD4+ T cells; the increase with age of CD4+ T cells

appears to be a very effective mechanism for preventing MTIT in

natural hosts of SIVs (6, 52, 101).

In summary, the absence of differences in the levels of

biomarkers associated with disease progression and mortality

in natural NHP hosts of SIVs demonstrate that in the presence of

other pathogens and parasites, even under harsh natural

conditions and sometimes with limited water and food

resources, African NHPs that are natural hosts of SIVs show

resilience to immunodeficiency upon SIV infection (6, 52).
3.2 Vulnerable seminatural hosts—the
chimpanzee

SIVcpz infection is pathogenic and manifests with an increased

mortality rate (10-16-fold), lower birth rates, and higher infant

mortality in natural chimpanzee populations (62, 105). A high rate

of SIVcpz infection (40-50%) was associated with local chimpanzee

population decline (62). Some SIVcpz-infected chimpanzees in the
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wild showed lymphatic tissue destruction, depletion of cortical and

paracortical T- and B-lymphocytes, and follicular hyperplasia with

prominent germinal centers (105, 106). Full-blown AIDS was

reported from necropsies of several SIVcpz-infected wild-living

chimpanzees that died as a result of AIDS, conspecific (i.e., within

species) aggressive behavior, and injuries. Captive chimpanzees

showed a blend of features characteristic of benign and

pathogenic lentiviral infections. On the one hand, they showed a

lack of increased mortality (some individuals were surviving 25

years post infection), no increase in the plasma levels of the sCD14

marker of microbial translocation during chronic infection (yet no

direct assessments of SIVcpz showed whether there is indeed a lack

of intestinal damage), a lack of AIDS-like clinical signs, and limited

immune activation typical of non-progressing infection in well-

adapted natural hosts. Yet, captive SIVcpz-infected chimps also

displayed reduced CD4+ T-cell abundance and disruption of

secondary lymphoid tissue architecture typically found in

pathogenic infection (107). Soluble markers of immune activation

(b-2 microglobulin, neopterin, and sTRAIL) and markers of T-cell

activation in the peripheral blood (Patr-DR MHC class II and Ki-

67) showed a temporary increase during acute infection, but no

lasting increase in the chronic phase, while CD69, also a

conventional marker of T-cell activation, showed a fluctuating

increase during acute and chronic infection (107). These

combinations of pathogenic and non-pathogenic features of

lentiviral infection in captive chimpanzees infected with SIVcpz

may be associated with advantageous/favorable conditions in

controlled environments, i.e., reduced exposure to other

pathogens, parasites, conspecific aggression and trauma,

availability of food resources (107). In the case of SIVcpz

infection of chimpanzees, studies in the wild and a long follow-up

decisively contributed to the definition of the pathogenic nature of

SIV infection.

The immunopathogenicity of SIVcpz was documented in a

western chimpanzee (Pan troglodytes verus, a subspecies that

does not harbor SIV in the wild) that was experimentally

infected with SIVcpz for 20 years. The chimpanzee developed

several clinical hallmarks of AIDS (high viremia [105-106 SIVcpz

copies/ml of plasma], massive CD4+ T-cell depletion [220 cells/

ul], and thrombocytopenia [90,000 platelets/ul]), and was

effectively treated with antiretroviral therapy (108).

In conclusion, existing data point to the gradual adaptation

of the NHP host to their SIVs, i.e., the longer the time of

coevolution between SIV and its host, the more effective the

host defense mechanisms are at counteracting SIV pathogenic

potential and preventing immunodeficiency.
4 Entry co-receptor usage

To avoid pathogenic SIV infection, natural hosts have

developed adaptations that control the use of the CCR5-

mediated entry pathway (101).
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4.1 CCR5 genetic deficiency and co-
receptor use

Natural hosts have acquired CCR5 null mutations that,

similar to the CCR5-D32 loss-of-function allele in human

populations that can modulate the risk of HIV transmission

(109–111), abrogate CCR5 surface expression and protect null

homozygotes from SIV entry through the CCR5 pathway

[CCR5-D24 with a frequency of 86.6% in RCMs, 4.1% in SMs

(112) and CCR5- D2 in SMs (113)]. Yet, the SIV pathogen

bypasses the lack of functional CCR5 co-receptor in some RCMs

and SMs and utilizes the non-CCR5-mediated entry pathway

with alternative co-receptors. Thus, SIVrcm in RCMs uses

CCR2b as the main entry co-receptor, while SIVsmm in SM

can use CXCR6 as an alternative co-receptor in addition to

CCR5 (113).

As a result of CCR5 downregulation, SMs and AGMs have

significantly lower levels of CD4+ CCR5+ T cells than humans or

RMs, both in the blood and at mucosal sites (53). The shift in

tropism fromCCR5 to CXCR6may benefit the host, as it directs the

virus to a different and putatively more dispensable cell population

(113). On the other hand, the loss of CXCR6 co-receptor use is

characteristic of the lineage of more pathogenic lentiviruses—

SIVcpz in chimpanzees and HIV-1 in humans (114).
4.2 Restriction of infection through
control of surface expression of
canonical receptors

Restricted expression of entry receptors eliciting resistance

to SIV infection is a mechanism that helps to spare critically

important cell populations among the CD4+ T lymphocyte

memory pool—the long-lived central memory CD4+ T cells

(Tcm). Tcm T cells have stem-like properties, reside primarily

in the lymphoid tissue, and have strong proliferation capabilities

in response to stimuli. In stark contrast, effector memory CD4+

T cells (Tem) have lower proliferation potential, are located in

non-lymphoid tissues, and remain susceptible to SIV

infection (5).

In SMs, CD4+ Tcm cells are relatively protected from SIV-

mediated depletion through the downregulation of CCR5 (115).

CCR5, which is the canonical co-receptor for HIV/SIV infection

in humans and RMs, is also expressed in the CD4+ T cell of the

natural hosts (SMs, AGMs, mandrills, and sun-tailed monkeys)

but at very low levels (53). Instead of CCR5, CXCR6 is the major

SIV co-receptor in SMs and AGMs (116–118). As a result, SIV

still can infect and replicate in natural hosts but only in the cell

populations expressing CXCR6. The targeting of different cell

populations by SIV is dependent on the pattern of distribution of

the co-receptors CCR5 and CXCR6. In SMs, they are expressed

in largely non-overlapping populations of CD4+ T cells, with

only 0.3% of CD4+ T cells being dual-positive for CCR5 and
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CXCR6 (114). In CD4+ T cell memory subsets, CXCR6 was

enriched in Tem (5.9%) but less so in naive CD4+ T cells (0.5%)

and Tcm (1%) (114). Interestingly, some features of non-

progressing SIVsmm infection in SMs—low immune

activation despite high viremia and low CCR5 density on

CD4+ Tcm cells—were observed in a pediatric HIV non-

progressor cohort from South Africa (119). The fine-tuned

control of co-receptor expression helps to preserve the CD4+

Tcm population, which is critical for maintaining immune

homeostasis. A similar phenomenon of protecting Tcm CD4+

cells from SIV infection is achieved through the downregulation

of CD4 in CD4+ Tcm cells in AGMs (48, 120).
5 Preservation of gut health in SIV-
infected NHPs that are natural hosts

5.1 Different impacts of SIV infection on
the intestinal mucosa between natural
and non-natural hosts

Salient features of non-pathogenic SIV infections in natural

hosts that differentiate them from pathologic infections include

preservation of the mucosal barrier, preservation of the Th-17 cells

(the T-cell subset that protects mucosa against bacterial and fungal

infection) in the gut and periphery (31, 32), a lack of microbial

translocation, and a lack of chronic inflammation and T-cell

immune activation (121–123), which suggest that gut health is a

key determinant of the pathogenic or non-pathogenic course

of infection.
5.1.1 Integrity of the Mucosal Barrier
5.1.1.1 The role of microbial translocation

The gut plays a dual role as a structural and immunological

barrier between the external and internal environment. It requires a

fine-tuned balance between tolerance and sensitivity and the ability

to provide rapid yet sustainable long-term protection against

pathogens (124, 125). Nearly 70% of the body’s T-cell-generating

lymphoid tissue is located in the gut (124), which is also the primary

site of SIV/HIV replication (25, 43, 126–128), and intestinal

epithelium is highly susceptible to inflammation. Lentiviral

infection leads to physical and immunological dysfunction of the

intestinal mucosa (129, 130). Damage to the enteric barrier allows

microbial and fungal translocation, i.e., the leakage of microbial and

fungal products across the breached intestinal epithelium into the

blood circulation, and causes the systemic dissemination of

microbial biomolecules, such as LPS (bacterial translocation

marker), peptidoglycan, bacterial DNA, and viral genomes, which

can be found in various tissues even at distant anatomical sites with

progressive SIV infection (131) and, in the case of the major fungal

cell wall antigen b-d-glucan (BDG) (a biomarker of fungal

translocation), at elevated levels in the plasma (132, 133).
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Microbial products translocated from the gut strongly

stimulate the immune system and the production of cytokines,

contributing to persistent local and systemic inflammation and

T-cell activation, which further amplify viremia by generating

more target cells in both treated and untreated HIV-infected

individuals (43). While initially CD4+ T-cell counts or plasma

viral loads appeared to be the most accurate biomarkers of

disease progression, immune activation that enhances virus

replication by providing the virus with activated CD4+ T-cell

targets is now considered a more accurate predictor of survival

time in advanced HIV-1 disease (134). Note that persistent

CD4+ T cell depletion for over 1.5 years did not result in SIV

disease progression in AGMs (135). Plasma levels of soluble

CD14 (a biomarker of microbial translocation) are an

independent predictor of mortality in HIV infection (102).

Microbial translocation is characteristic of the disease

pathogenesis of not only acquired immunodeficiency (HIV

infection) (136) but also primary deficiencies, such as

idiopathic CD4+ T-cell lymphocytopenia (ICL) (137); however,

the link between microbial translocation and the perturbation of

CD4+ T cell homeostasis in ICL is not as obvious as in the case of

HIV-1/AIDS. In ICL, sCD14 levels are only modestly increased,

and the local architecture of the GI tract is preserved, with

normal enterocyte turnover and no apparent loss of Th17 cells,

which is in contrast to patients with HIV-1/AIDS (138).

BDG is a biomarker of fungal translocation and is elevated in

HIV-infected individuals (139) and is associated with gut

damage, immune activation and inflammation (140), and a

risk of neurocognitive comorbidities (141). In HIV-infected

individuals, fungal products stimulate antigen-presenting cells

(monocytes and macrophages) and NK cells, leading to the

excessive secretion of proinflammatory cytokines and

inflammation (133).

The following mechanisms may be responsible for triggering

the functional loss of the gut barrier in progressive HIV/SIV

infections (142) (1): loss of the CD4+ T cells, the primary target

of HIV-1/SIV infection, undergoing virus-induced cell death,

which results in a severe reduction of this cell population in

circulation and mucosal sites during acute infection in both

progressive and non-progressive hosts (22, 23, 27, 53, 143) (2);

preferential infection and loss of Th-17 cells, which play a critical

role in protecting against microbial and fungal pathogens and

regenerating the gut epithelium, thus being a key contributor to

the maintenance of mucosal integrity (144) in the GI tract.

Differentiation of Th-17 cells and HIV replication in these cells

are regulated by a retinoic acid-related nuclear hormone

receptor, RORC2 (145). The long-term survival and

proliferation capacities of Th-17 cells make them preferential

targets for HIV reservoirs in individuals receiving ART (146,

147). By contrast to progressing infection, Th-17 abundance is

well maintained in the natural hosts during non-progressing

infection (31, 32) (3); persistent gut cell death and mucosal

apoptosis (130, 148, 149). The loss of integrity of the intestinal
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immune barrier occurs during the acute pathogenic infection

and continues through the chronic phase due to incomplete

repair of the barrier. These gut breaches permit an influx of

microbial toxins into the circulation, which drive chronic T-cell

immune activation and systemic inflammation. In contrast to

the progressing hosts, natural hosts chronically infected with

species-specific SIVs (SIVsmm-infected SMs and SIVagm-

infected AGMs) manage to prevent permeabilization of the

mucosal barrier (23, 28). As such, gut integrity is maintained

in the natural hosts throughout the SIV infection (150, 151). As a

result, in spite of the relatively robust viral replication resulting

in levels of viremia, which are similar or higher than those

observed during pathogenic SIV infection, the natural hosts of

SIVs do not display any of the hallmarks of HIV disease

progression, i.e., breakdown of the gut epithelial barrier,

microbial translocation, and chronic T-cell immune activation

and inflammation, CD4+ T-cell decline, or hypercoagulation (6,

28, 52, 122, 130, 151–153).

Alterations of the mucosal barrier of SIV-infected natural hosts

drive the otherwise non-pathogenic infection towards disease

progression. The intestinal mucosa functions as a physical and

immunological barrier and is thus critical for gut and systemic

health. All impairments of gut integrity, such as pathogenic

lentiviral infections, inflammatory bowel disease (IBD) (154), are

associated with chronic systemic inflammation and immune
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activation (124, 125). Damage to the intestinal mucosa and loss

of its barrier function can occur in the absence of lentiviral infection

during multiple clinical conditions, including celiac disease, IBD,

colon carcinoma, chronic liver disease, type 1 diabetes, and obesity

(155) (Figure 2). Experimental destruction of the mucosal barrier of

uninfected RMs with dextran sulfate sodium (DSS), which is toxic

to enterocytes in the crypts and causes chemically induced colitis in

rodents and non-human primates (157), induces gut damage that

evokes features of pathogenic lentiviral infection, including

neutrophil infiltration of the lamina propria in the colon,

microbial translocation to local and distant anatomical sites, local

inflammation and activation of local T cells, systemic inflammation

(IL-6) and immune activation, and fibrosis in lymphoid tissues,

which is a histopathologic hallmark of pathogenic lentiviral

infection (157).

Furthermore, the administration of DSS to chronically SIVagm-

infected AGMs induces a gut dysfunction (mucosal thickening,

redness, ulcerations, and colitis) that can drive the non-pathogenic

SIV infection towards a more progressive pattern. This

experimentally induced gut damage is associated with elevated

levels of the plasma markers of gut barrier dysfunction, microbial

translocation, and systemic immune activation (sCD14) and

inflammation (CRP) that further increases plasma viral loads and

CD4+ T-cell depletion (157). Note, however, that while chemical-

induced gut dysfunction clearly has the potential to alter the clinical
FIGURE 2

Hallmarks of lentiviral infection in natural non-progressing hosts (vervets/AGMs and SMs) and progressing hosts (humans and RMs). In the acute
phase of infection in vervet/AGMs, the immediate activation of macrophage-associated regenerative wound healing bypassing the early
inflammatory stage prevents the loss of immune barrier function of the gut (156). However, chemically induced damage of the intestinal
mucosa with DSS treatment during acute infection shifts the course of pathogenesis from a non-pathogenic course (controlling microbial
translocation and its consequences of persistent activation of the immune system) to a pathogenic course (losing the containment of the
luminal microbiota, leading to immune activation and inflammation on a local and systemic scale), demonstrating that dysfunction of the gut
barrier can initiate a vicious cycle in SIV-infected non-progressing hosts (157). Whether the DSS-induced hallmarks of the pathogenic course of
infection in AGMs are predictive of the development of HIV-like clinical manifestations typical to progressing infection, needs to be determined.
Longer DSS administration is needed to determine whether that would be sufficient to evoke progression to AIDS.
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pattern of SIV infection in natural hosts, studies of longer DSS

administration are needed to test whether or not the induced defects

of the mucosal barrier are sufficient to trigger progression to AIDS.

5.1.1.2 Robustness of the intestinal barrier

Intestinal barrier robustness was tested in a single study that

assessed, on serial necropsies, systemic health during the acute

phase of non-pathogenic SIVagm infection of AGMs (151). The

observations derived from this study were as follows: (1) SIV

infection exerted a minimal impact on the major immune

populations both in the periphery and at the mucosal sites. Thus,

circulating CD4+ T cells were only minimally depleted during acute

SIVagm infection, and were already restored to pre-infection levels

by the time of transition to chronic infection; (2) very importantly,

and in agreement with previous observations (158), CD4+ T-cell

loss through bystander mechanisms was not increased in SIV-

infected AGMs. Thus, little or no apoptosis in the gut lamina

propria and epithelium was observed (based on the caspase-3

biomarker). This minimal loss, in the absence of bystander

depletion mechanisms, did not induce a major local

inflammation; instead, (3) local inflammation of the gut mucosa

was very transient, and likely virus induced, as demonstrated by a

temporary increase of MPO-neutrophils that returned to the

baseline after the peak of viremia, an increase of MX-1 at the

peak of viremia, and a transient increase of Ki-67 expression in the

lymph nodes at the peak of viremia during the chronic phase; as a

result, (4) the overall integrity of the mucosal barrier was

maintained, as demonstrated by the overall preservation of the

continuity of colonic epithelium, which was documented by the

distribution of claudin-3, a biomarker of the proper sealing of tight

junctions, which is critical for regulating the permeability of the

epithelial barrier; (5) microbial translocation did not increase with

SIV infection, as indicated by biomarker analysis (based on in situ

LPS and an E. coli IHS assay), or at best was transiently increased

around the peak of virus replication (based on the plasma levels of

LPS and sCD14). (6) the absence of SIV-induced fibrosis in the gut

or lymph nodes was documented by the lack of increased collagen

deposits at these sites and normal plasma levels of hyaluronic acid (a

biomarker of liver fibrosis) (151). These findings underscore that

the key distinction of the natural host’s response to the lentiviral

infection is the capability to withstand SIV infection without

damage to gut mucosa integrity, rather than rapidly repair and

restore breaks in it (151). This might be because of superior healing

mechanisms that enable AGMs to sustain gut integrity without

permanent or even transient damage (156).

5.1.1.3 How do the natural hosts prevent
gut dysfunction?

The issue of how natural hosts prevent gut dysfunction was

investigated through comparative transcriptomic analysis of

responses to SIVsab and SIVmac in the rectal tissues of AGMs

and RMs, respectively, during acute infection (156). Gene
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expression responses characteristic of the pathogenic infection of

RMs were primarily orchestrated by LPS as the main upstream

regulator and showed a stronger activation of antiviral and

antimicrobial immune responses. By contrast, reactions specific to

the non-pathogenic infection in AGMs did not manifest

antimicrobial signatures, but appeared to be driven by IFN-g and
prolactin genes (both inflammatory cytokines) as the upstream

regulators and were marked by the recruitment of leukocytes and

myeloid cells. AGMs activated IFN-driven targets, myeloid cell

migration, and the developmental processes of muscle, epithelial,

and adipose tissues in the absence of microbe-activated patterns as

early as the previremic phase, suggesting that preventive repair

mechanisms may be responsible for stopping microbial

translocation (156).

The superior ability to maintain the gut barrier function of

the gut mucosa throughout acute infection is a critical feature

that differentiates pathogenic and non-pathogenic infection

(151). Transcriptomic profiles in rectal tissues through the

course of non-pathogenic SIVsab infection in AGMs pointed

to regenerative wound healing mechanisms, which bypass the

early inflammatory processes and rapidly activate the late stage

of wound healing, resembling the transcriptional profile that

regulates the regeneration process in the aquatic axolotl, with

fully functional scar-free repairs, including blood vessel

development (angiogenesis). This process in AGMs involved

fibronectin as a key connector between collagen and the laminin

components of the extracellular matrix in transcriptional

networks. Among the predicted upstream regulators of the

wound healing networks was EGFB release factor, which was

also upregulated during the axolotl wound repair process,

suggesting that TGF-b secretion is a regulator of monocyte/

macrophage-mediated epithelial cell repair in AGMs (156).

Taken together, while pathogenic infections are characterized

by inflammatory tissue damage signatures and microbial pattern

recognition receptor and inflammatory signaling, non-pathogenic

hosts displayed a strong wound-healing signature, probably

regulated by monocytes early in the acute infection. This wound-

healing ability prevented infection from taking a pathogenic course

and causing microbial translocation and subsequent local and

systemic inflammation and chronic immune activation (156).
5.1.2 The microbiome
The development and health of the immune system is

shaped by commensal microbiome, and disruption of its

homeostasis leads to the impairment of the immune system.

The intestinal ecosystem is the site of multidirectional

interactions between the host, the commensal microbiome,

and the pathogen. Progressive loss of gut immune function

(due to loss of CD4+ T cells in the gut mucosa, in particular

the loss of the Th-17 CD4+ T cells that are key effectors that

maintain immune barrier function and memory cells)

contributes to the destabilization of the intestinal microbiome
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in HIV-infected individuals (159). A shift towards dysbiotic

mucosa-associated communities enriched in Proteobacteria and

depletion of Bacteroidia species was associated with mucosal

immune disruption, T-cell activation, and chronic inflammation

in HIV-infected subjects (160). Biomarkers of HIV disease

progression, such as levels of mucosal and systemic immune

activation and inflammation, CD4+ T-cell counts, and viral

loads, were correlated with gut dysbiosis manifesting with the

disruption of microbial homeostasis, characterized by an

expansion of pathogenic bacteria compared with commensal

species (160–162). However, various studies produced diverse

results, probably due to variability within and between the study

cohorts. Pathogenic infection in RMs led to shifts in the

composition of gut microbiota, yet studies lacked consistency,

probably due to cohort and experimental variability (163).

Nevertheless, the gut microbiome can act as a potential

modulator of SIV/HIV disease, probably as one of the main

determinants of the resilience to lentiviral-induced destruction

of the gut mucosa and microbial translocation and

their consequences.

The extent to which the gut microbiome helps natural hosts

preserve the integrity of the gut mucosa and prevent

translocation of bacterial products from the gut is not fully

understood, but there is increasing insight into the natural

microbiome composition in wild populations of natural hosts

(Figure 3). We anticipated microbiota stability or activation of

protective mechanisms in ancient well-adapted hosts (SMs and

AGMs) and destabilization of the microbiome in more recent

hosts (CPZ).
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5.1.2.1 The impact of SIVcpz on the chimpanzee
gut microbiome

SIVcpz impact on the gut microbiomes of chimpanzees was

studied in wild eastern chimpanzees (Pan troglodytes

schweinfurthii) from Gombe National Park, Tanzania that

naturally host pathogenic SIVcpzPts (164). Long-term non-

invasive monitoring of SIV infection status and AIDS-like

symptoms in this chimpanzee population allowed the assessment

of changes in the fecal microbiome upon SIVcpzPts infection (164).

While the core gut microbiome suggested a composition that was

overall stable at the phylum level, with no significant changes in the

abundance of individual bacteria upon SIVcpzPts infection, it

underwent marked changes in relative microbial abundance that

increased with time and an upturn in microbes not observed prior

to infection and potentially relevant to immune health, i.e., bacteria

from disease-associated genera (Sarcina, Staphylococcus and

Selenomonas) and Tetragenococcus (164), known for their

immunomodulatory effect (168). Further studies using a

combination of metagenomic sequencing and larger-scale

bacterial 16SrRNA gene sequencing showed that the chimpanzee

gut microbiome is very robust throughout most of the course of SIV

infection and that its stability collapses only in the final stage of

disease and for the fewmonths preceding AIDS-related death (165).

SIVcpz-infected chimpanzees showed a tendency towards

enrichment for bacteria from the Prevotellaceae family (165).

Chimpanzee stool-associated circular virus (Chi-SCV) and

adenovirus (ChAdV), quantified using metagenomic sequencing,

did not show differential abundances in SIVcpz-infected

chimpanzees (165). The microbial composition in the guts of
FIGURE 3

The gut microbiome of natural NHP hosts of SIV infection: chimpanzee, a host displaying mixed clinical signs of progressing and non-
progressing SIV infection (top left) (164, 165); gorilla, a host with lacking sufficient data on clinical indicators of AIDS (bottom left) (166); and
hosts that typically do not develop immunodeficiency and simian AIDS - vervet/AGM (top right) (92) and sooty mangabey (bottom right) (167).
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SIVcpz-infected chimpanzees showed continuous drifts, resulting in

gradual changes in response to SIVcpz infection in wild

chimpanzees rather than a single shift.

5.1.2.2 Stability of the gorilla gut microbiome

Non-invasive sampling methods investigating SIV infection

status and evaluating SIV pathogenicity via microbiome analysis

in feces provided insight into the influence of SIVgor infection in

the gut microbiome of western lowland gorillas (Gorilla gorilla

gorilla). While SIVcpz in chimpanzees and HIV-1 in humans are

pathogenic and cause substantial alterations to the composition of

the gut microbiome (164, 165), it remains unknown whether the

closely related SIVgor leads to pathogenesis and clinical signs of

AIDS in its natural host. Despite SIVgor originating from the

SIVcpz strain, which destabilizes the gut microbiome in

chimpanzees, SIVgor infection in gorillas does not show similarly

pathogenic behavior and does not lead to gut microbiome variation

in western gorillas from Southern Cameroon. Unlike chimpanzees,

the gorilla gut microbiome does not show a progressing shift in

composition over time or a tendency towards the emergence of

opportunistic pathogens upon infection (166). There were no

noticeable differences in diversity and composition between

SIVgor-infected and uninfected gorillas or accelerated changes in

microbiome composition over time in infected individuals.
5.1.2.3 SIVver-associated variation in the microbiomes
of South African AGMs

Typically, 5-7 taxa are delineated within the genus

Chlorocebus, which are characterized by different geographical

ranges across tropical and temperate climatic zones in Africa and

a massive spread of SIVagm infection (90). However, the majority

of controlled experiments are conducted in AGMs originating

from a founder isolate population in the Caribbean Islands (St.

Kitts and Nevis) that was more recently established from the west

African populations and is free of SIV (169, 170). So far,

microbiome studies relating to SIV infection have been

conducted only in the natural populations of South African

AGMs (Chlorocebus pygerythrus) (92). Studies of natural

microbiome in wild vervets involved a wide range of ages, from

infants to old adults, to cover as much as possible the

epidemiological profile of SIV infection/transmission and the

course of the diseases (6). While SIV-infected vervets (both in

natural and captive populations) do not experience gut

dysfunction, microbial translocation, and chronic immune

activation and in general do not progress to immunodeficiency,

their microbiome displays significant differences in the microbial

ecosystems of the gut and genital tract compared with uninfected

individuals (92). The gut microbiota in SIV-infected vervets

showed (1) increased alpha diversity (2), decreased abundance

of the phylum Proteobacteria (particularly the genus

Succinivibrio) (3), decreased ‘bacterial invasion of epithelial cells’

and ‘Vibrio cholerae pathogenic cycle’ KEGG pathways in the
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predicted fecal metagenome of SIV-infected individuals compared

with uninfected individuals, and (4) partial control of early SIV-

induced alterations during chronic infection (92). The host

microbiome differences between SIV-infected and uninfected

individuals may represent adaptations to the virus that prevent

microbial translocation, persistent immune activation, and the

resultant disease progression in vervets. This cross-sectional study

showed that SIVver infection in vervets is characterized by a

distinct gut microbiome composition and functionality yet did not

determine whether these differences are pre-existing or responsive

to the infection, a question that could be further addressed

through longitudinal studies.

Fecal samples were an accurate predictor of SIV infection

status in wild vervets (92). While this observation was obtained

from samples collected from the rectum, it seems possible that

non-invasively collected samples on the ground may provide a

feasible microbial biomarker predictive of immune health in

wild primate populations.

Conventional studies of disease correlates in animal models,

including AGMs, are typically conducted under well-controlled

standardized laboratory conditions in a small number of animals

that can be subjected to invasive sampling. Natural populations,

on the other hand, allow for more scalable studies (dozens or

even hundreds of individuals) in the context of a complex and

variable environment (including natural habitat and social

groups) using non- or minimally invasive sampling. The

natural setting differs from the laboratory as wild primates

usually expend more energy and may ingest less nutritional

food, which is highly dependent on timing, habitat, geographic

location, and seasonality of environment, and aggressive

interactions in the group may reduce equal access to foraging.

In wild AGMs from South Africa, gut and vaginal microbiome

revealed an association with geographic location and

environmental variables, such as geographical biomes and

temperature (92). The within-genus differences may be

significant, as illustrated by differential/distinctive vaginal

microbiome composition between South African and

Caribbean AGM populations (92). Comparison of the effects

of diet between Caribbean-origin AGMs in the wild consuming a

natural diet and AGMs fed a typical western diet (TWD) under

controlled conditions showed similar microbial richness, yet the

composition of their microbiome was distinct, with lower

abundances of Firmicutes, Lentisphaerae, Proteobacteria,

Tenericutes, and Verrucomicrobia and higher abundances of

Bacteroidetes and TM7 in AGMs with a TWD (171). Yet, wild

populations more closely reproduce conditions reflecting host-

pathogen coevolution and are the preferred setting for studies of

natural transmission.

5.1.2.4 SIVsmm-infected and -regulated SM
gut microbiome

The gut microbiomes of captive SMs did not show significant

SIVsmm-associated variation inmicrobial diversity or community
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structure, yet there were lower levels of pathobiont bacteria in SMs

not infected with SIVsmm than in diet-matched RMs

experimentally pathogenically infected with SIVmac239 (in the

early chronic phase) (167). The stability of gastrointestinal

microbiota was paralleled with the compositional stability of the

cargo of the luminal intestinal microvesicles produced by the host

enterocytes in chronic SIVsmm infection in SMs, which was in

contrast to RMs infected with closely related SIVmac (172).

Progressive SIVmac infection in RMs showed shifts in microbial

communities concomitant with changes in the content of gut

microvesicles compared with uninfected RMs, including a

reduced amount of several miRNAs and an increased level of

beta-defensin 1 (DEFB1). The microvesicles from the progressive

infection hampered the growth of Lactobacillus salivarius, one of

the commensal bacteria undergoing microbial translocation,

suggesting that their potential role is to control microbial

growth and shape microbial translocation (172).
6 Homeostatic regulation of
immune cell populations

A series of phenotypic adaptations, which are considered to

have occurred during the millenary virus-host coevolution as

tools of the host adaptation to circumvent the deleterious effects

of SIV infection, characterize the immune system of the natural

hosts of SIV:
6.1 Multifunctional CD4neg T cells

Some natural hosts of SIV (AGMs, SMs, and patas monkeys)

harbor an evolutionarily conserved downregulation of the CD4

molecule on the T-cell surface, resulting in low levels of this cell

subset in contrast to its abundance in non-natural hosts of SIV/

HIV (47, 48). Chlorocebus pygerythrus has large CD4neg

CD8aa+ T-cell populations (lacking CD4, and thus spared

from SIV infection, and distinct from canonical CD8+ T cells

expressing heterodimers with a and b chains) (50). Meanwhile,

SMs have abundant populations of double-negative cells

(expressing neither CD4 nor CD8) that are critical for

preventing massive homeostatic alterations during acute CD4+

T-cell loss (49, 173, 174). These CD4neg cell populations are

virus-resistant and preserve some CD4+ T-cell functions (49, 50,

175). In C. pygerythrus, the reduced CD4 expression in CD4+ T

cells may be related to the regulation of RUNX3 expression, the

master transcription factor regulating CD4/CD8 expression

(175). Runx3 is involved in CD4 suppression in murine

models; in RMs, its expression is higher in CD8ab T cells

than in CD4+ T cells. Yet, in vervets, RUNX3 expression does

not vary among all T cell subsets (including, CD8aa+ T cells,

CD4+, and CD8ab+ T cells), irrespective of their CD4 and CD8
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phenotype, suggesting that RUNX3 may be the factor

contributing to CD4 downregulation in CD4+ T cells (175).

The CD4neg CD8aa+ T-cell populations of C. pygerythrus

also display functions characteristic to classical CD4+ T cells

(MHC class II restriction, expression of FoxP3, CD40 ligand,

and production of IL-17 and/or IL-2) (120). These cells can

avoid SIV infection while performing some CD4+ T cell-like

functions in the absence or with very low levels of classical CD4+

T-cells. The conversion process is accelerated by SIV infection in

AGMs in vitro and induced both in vitro and in vivo by

homeostatic cytokines, such as IL-2 (50, 176). These virus-

resistant hyperfunctional T cells arise through post-thymical

downregulation of CD4 by CD4+ T cells causing CD4-to-

CD8aa conversion (120). This is a developmental process

resulting in the increase of the initially low abundance of

CD4neg CD8aa+ T cells with age. CD4 downregulation is

evoked through epigenetic silencing mechanisms involving

CpG methylation in the CD4 promoter (177), which

colocalizes with inaccessible chromatin regions in the CD4

gene region, as determined using ATAC-seq (178). Differential

chromatin accessibility across the genome attributable to the

CD4-to-CD8aa conversion was associated with immune

processes and T-cell biology, and binding sites for

transcription factors involved in the immune processes. In

CD4+ memory T-cells, more accessible regions were enriched

for high mobility group (HMG) family binding sites involved in

T-cell development and differentiation. In CD8aa+ T cells, open

chromatin regions were enriched for binding sites for Runt

domain transcription factor and erythroblast transformation

specific (ETS) regulating hematopoiesis (178).
6.2 Natural killer cells

Lymph node follicles of the natural host species remain

virus-free during SIV infection, in contrast to HIV-infected

individuals and SIV-infected NHP progressors, in which they

are major viral reservoirs, even in patients on ART (179). This

observation raises the following question: what are the

protecting mechanisms preventing infection of the cells in the

lymph nodes in AIDS-resistant NHPs? The frequencies and

phenotypes of NK cells (defined as CD45+ CD3neg CD14neg

CD20neg NKG2a/c+) assessed in African and Asian NHPs were

similarly anatomically distributed in NHPs with different

origins, yet the frequencies of circulating NKG2a/clow NK cells

was higher in African species than in the Asian ones (180). It was

also reported that SIV infection differentially drives NK

distribution in natural and non-natural hosts: in AGMs,

contrary to cynomolgus macaque, NK cells did not home to

the gut, and their abundance at mucosal sites was lower during

SIV infection but increased in lymphoid tissues (180). This was

consistent with an effective control of viral replication in the T
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1060985
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jasinska et al. 10.3389/fimmu.2022.1060985
zone and B cell follicles in secondary lymph nodes mediated by

NK cells occurring in AGMs, in contrast to progressing SIV

infection in macaques in which these anatomical locations are

the major viral reservoir (181). The process of effective control of

SIVagm in the lymph nodes of natural hosts involves SIVagm-

induced expansion of terminally differentiated NKG2alow NK

cells in lymphoid tissues. These expanded cell subsets showed

upregulation of genes in the pathways related to lytic activities of

NK cells and displayed adaptive transcriptional profiles (based

on marker analysis) and increased MHC-E-restricted

cytotoxicity towards cells presenting SIV peptides (182).

MHC-E-restricted NK cell activity against target cells

presenting SIV peptides was enhanced during SIVagm

infection in AGMs but decreased with SIV infection in

macaques (182).
6.3 NKG2a/c+ CD8+ T cells

Non-pathogenic SIVagm infection in AGMs is characterized by

a rapid expansion of NKG2a/c+ CD8+ T cells in circulation and at

mucosal sites but not in secondary lymphoid tissues (183). The

transcriptomic signatures of these expanded NKG2a/c+ CD8+ T

cells are distinctive from other CD8+ T cells, implying a cytotoxic

effect and immunoregulatory function, as well gut homing

properties of these cells. Such a pattern of cellular dynamics was

not observed during the pathogenic SIV infection of RMs. In the

progressing model, NKG2a/c+ CD8+ T cell abundancy negatively

correlated with the mucosal levels of IL-23, an inflammatory

cytokine. This negative correlation between NKG2a/c+ CD8+ T

cells with intestinal inflammation in the pathogenic models suggests

that these cells protect against intestinal inflammation during SIV

infection by controlling immunopathology in the intestine (183).
7 Genetic signatures and pathways
associated with SIV infection in
natural hosts

What genes and pathways underlie a non-progressive course

of SIV infection in natural hosts despite chronic virus

replication? Genomic analysis enabled an unbiased genome-

wide search for host adaptive links against disease progression in

SIV-infected NHPs. Genomic studies revealed genetic

adaptations in the genes involved in biological processes acting

in response to viral infections in AGMs and SMs.
7.1 Genetic adaptations to SIV infection

Comprehensive omics approaches aiming for a complete

perspective, such as genome-, transcriptome-, and epigenome-
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wide studies, facilitate an unbiased identification of the host

molecular reactions to infection and adaptive responses against

the progression to disease. The identification of molecular

processes and key genes driving the ability to evade

immunodeficiency may set new directions for the development

of novel therapeutic approaches.

Genome-wide studies using next generation sequencing

revealed the genetic adaptations in the genes involved in

biological processes responding to viral infection, including

SIVs, in AGMs (184) and SMs (185–188). Genome sequencing

of representatives of diverse vervet populations across major

Chlorocebus species revealed massive polygenic adaptations to

SIV in vervets (6, 184). Genes with strong selection signals were

enriched in the GO category ‘viral processes’, vervet orthologs of

human genes interacting with HIV, and genes transcriptionally

regulated in response to SIV infection in the natural host

(AGMs), but not non-natural hosts (RMs). Early expressional

responses were enriched for clathrin-mediated endocytosis (a

process utilized by HIV to enter cells lacking CD4),

autophagosome assembly (autophagy being a key component

of host responses to HIV-1 infection), and the regulation of type

I IFN production (a key driver of early transcriptomic responses

both in natural and non-natural hosts), while expressional

changes in the chronic phase were, among others, enriched for

the regulation of NK cell activation (184).

Comparative genomic studies contrasting the protein coding

regions of SMs with humans and RMs revealed the genes that

were most diverged at the amino acid level and in structures

between the natural host and pathogenic hosts—intercellular

adhesion molecule 2 (ICAM-2) and toll-like receptor-4 (TLR4)

(188). Functional studies of the top immunoregulatory proteins

displaying major structural differences specific to the natural

host demonstrated that sequence differences have significant

functional consequences: abrogation of the cell surface

expression of ICAM-2 and TLR4 blunted the production of

pro-inflammatory cytokines in response to LPS stimulation in

vitro, a potential factor contributing to reduced immune

activation (188). Genomics combined with functional assays

allowed the identification of candidate modifier genes shaping

the resistance of the natural host to immunodeficiency.
7.2 Transcriptomic mechanisms

The benign phenotype of SIV infection in SMs has been

associated with genes in pathways contributing to interferon

signaling, BRCA1/DNA damage response, PKR/INF induction,

and CGALS8 in SMs (189) and point to the leading role of the

genes LGALS8 and IL-17RA, which enhance gut barrier function

and shape homeostasis with gut microbiota.

Wild NHPs are important models for understanding the

host mechanisms involved in the control or pathogenesis of viral

infections. Ugandan red colobus (URC) in Kibale National Park
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are naturally infected with SIVkrc (22.3%) (190). RNA-seq in

URC from this wild population pointed to pathways associated

with cellular immunity, cell activation, leukocyte activation in

infected URC, and inflammatory responses in uninfected URC.

SIVkrc infection has been characterized by downregulation of

SLAMF6 and CD4, immune genes undergoing downregulation

in HIV infection, and upregulation of the immunosuppressive

gene CD101 during infection (191). The pattern of temporary

upregulation of ISGs observed in AGMs and SMs was not

displayed by SIVkrc-infected URC, most likely because in a

moderately sized group a vast majority, or all, are in the chronic

phase of infection when ISG expression has already

normalized (191).
7.3 Epigenetic mechanisms

SIV infection has a different influence on DNA methylation

patterns in CD4+ T cells purified from circulation and lymphoid

tissue in non-pathogenic SIVagm infection of AGMs and

pathogenic SIV infection of Chinese RMs (192). Non-

pathogenic SIV infection of AGMs is characterized by the

enrichment for methylation signals in regulatory proteins,

while pathogenic infection in macaques is associated with

Th1-signaling and metabolic pathways, suggesting that

epigenetic mechanism may contribute to the risk of metabolic

diseases during progressing infection (192).
8 Conclusions and future directions:
implications for the development of
novel therapeutics

As shown above, studies of natural hosts that remain

disease-free despite life-long SIV infection identified several

directions towards the development of therapeutic approaches:

(1) Ameliorating gut inflammation and damage that leads to

aberrant mucosal permeability and translocation of enteric

bacteria to the circulation appears to be a promising

therapeutic direction. Commensal enteric microbes play an

important role in intestinal wound healing and the

maintenance of barrier function (193) and can decrease gut

permeability associated with low-grade inflammation and

normalize the levels of tight junction proteins, such as claudin,

in mice (194). (2) Therefore, stabilization of the natural

microbiome, preserving and/or enriching beneficial taxa,

manipulation of community composition, and metabolic

activity is another possible therapeutic direction. Attempts to

reduce gut inflammation through modification of the enteric

microbiome using selected bacterial strains as probiotics alone or

combined with prebiotics, or bacterial metabolic products, such

as short-chain fatty acids, brought mixed results (123). Results of
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the administration of selected microbial strains ranged from a

lack of effect on systemic inflammation (195), no effect on

immune activation biomarkers (196, 197) through reduced

systemic inflammation markers , but not microbial

translocation markers (LPS or sCD14) (198), to a significant

decrease of enterocyte apoptosis and increase in Th17 cells in the

gut (199). The role of luminal vesicle cargo of microbiome-

stabilizing molecules (miRNA and defensins) as potential

therapeutic tools to control the growth of pathobionts is

emerging, given the development of technologies allowing

scalable manufacturing and delivery systems (172). (3)

Macrophages are key drivers of the wound-healing process in

the intestinal mucosa during the non-pathogenic course of SIV

infection in the natural host (156) and participants of the

wound-healing process in various disease phenotypes

stemming from excessive or insufficient healing (aberrant

aging, diabetes, and fibrosis) (200). Therefore, they can

provide a novel therapeutic target for promoting wound-

healing disorders (151, 200). (4) Downregulation or blockade

of SIV/HIV co-receptors. An allogenic CCR5-deficient bone

marrow transplant carrying a homozygous deletion (CCR5

D32/D32) led to sustained HIV-1 disease remission (201, 202).

However, another leukemia patient who received a stem cell

transplant from a CCR5-deficient donor showed that post

transplant the HIV virus changed tropism from CCR5 toward

an alternative co-receptor, CXCR4 (203). Targeting the

interaction of CCR5 with HIV led to development of CCR5-

blocking agents that prevented virus entry. Maraviroc (MVC) is

a non-peptidic small molecule that prevents viral envelope

binding (204, 205). Leronlimab, a CCR5-specific antibody

(206), effectively increases CCR5+ CD4+ T cells in circulation

in infected humans and macaques (207), suppresses the virus in

humans chronically infected with CCR5-tropic HIV-1 and RMs

acutely infected with CCR5-tropic SHIV (208), and protects

RMs from mucosal SHIV acquisition (209). Downregulation of

CD4, which is a natural process in the maturation of CD4+ T

cells into CD4neg CD8aa+ T-cells in non-progressing hosts and

does not seem to lead to any pathologies, appears to be a

potential approach to effectively prevent cell infection

regardless of co-receptor usage (178). (5) SIV-related

epigenet ic modificat ions in genes assoc iated with

immunoregulation and tissue integrity may constitute novel

candidates for immunotherapies (192). (6) PD-1-targeting/

related therapies for controlling virus in lymphoid tissues

(182). Overexpression of programmed death-1 (PD-1) is

characteristic of HIV/SIV-induced exhaustion of the immune

system (CD4+ and CD8+ T cells) (210). PD-1 blockage was

leveraged to reduce viral reservoirs in lymphoid tissues and

specifically redirect NK cells to the follicles. It increased the

therapeutic benefits of SIV vaccine in pathogenic SIV infection

in macaques by enhancing the function and follicular homing of

vaccine-induced CD8+ T cells and decreasing viral reservoirs in

lymphoid tissue (211). The high expression of PD-1 in the
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follicular helper CD4+ T cells was harnessed to direct NK-cells

expressing a chimeric antigen receptor (CAR) to the follicles and

selectively deplete of PD-1high target cells (212).

The last two decades of studies investigating SIV infections

in their natural hosts have proven to be critical for driving our

understanding of the pathogenicity of SIV infection. Current

research points towards therapeutic avenues for controlling the

deleterious consequences of pathogenic infections.
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