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Acute pancreatitis is a common gastrointestinal disease characterized by

inflammation of the exocrine pancreas and manifesting itself through acute

onset of abdominal pain. It is frequently associated with organ failure,

pancreatic necrosis, and death. Mounting evidence describes monocytes -

phagocytic, antigen presenting, and regulatory cells of the innate immune

system - as key contributors and regulators of the inflammatory response and

subsequent organ failure in acute pancreatitis. This review highlights the recent

advances of dynamic change of numbers, phenotypes, and functions of

circulating monocytes as well as their underling regulatory mechanisms with

a special focus on the role of lipid modulation during acute pancreatitis.
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1 Introduction

Acute pancreatitis (AP) is a common gastrointestinal disease with a globally rising

incidence (1). Patients present with very acute onset of severe abdominal pain often

necessitating urgent hospital admission (2), an event which is thought to coincide with

the time of initial pancreatic injury. After the initial insult by pancreatitis toxins, injured

pancreatic acinar cells release cytokines, chemokines, cellular components, and

neuropeptides to promote inflammation (3–5). Immune cells are closely related with

the systemic response to pancreatic injury, thereby contributing substantially to disease

severity (6–9). Neutrophils and monocytes are recruited to the pancreas during early

stages of AP, followed by dendritic cells (DCs), mast cells, and T cells (8, 10). Neutrophils

promote inflammation and tissue damage in AP through further secretion of cytokines
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and chemokines, as well as through generation of reactive

oxygen species (ROS) (11), enhancement of nicotinamide

adenine dinucleotide phosphate oxidase (12) and granule

enzymes activity (13, 14), release of neutrophil extracellular

traps (15), and promotion of trypsinogen activation (16). The

critical role of neutrophils in the pathogenesis of AP has been

recently reviewed (17, 18). There is some limited evidence to

suggest that DCs possess both protective (19) and pro-

fibroinflammatory roles (20), while mast cells are often

reported to contribute to deleterious outcomes of AP (21, 22).

The role of T cells in AP is complex, with AP severity correlating

with T cell infiltration and being regulated by the balance of

Th1/Th2 and Treg/Th17 cells (23, 24).

Monocytes/macrophages are also widely accepted as the key

contributors and main inflammatory cell population during

initiation and progression of systemic inflammation in AP (7,

25). Monocyte-derived macrophages form the bulk of the

macrophage population in inflamed pancreatic tissue (26) and

while tissue macrophages in AP have been extensively reviewed

(25, 27), the role of circulating monocytes remains largely

neglected. This review aims to detai l the current

understanding of circulating monocytes in AP.
2 Monocytes

Monocytes are short-lived mononuclear phagocytes

characterized by kidney-shaped nuclei, and are the largest

leucocyte subtype in blood, making up about 5-10% of

circulating blood leucocytes (28, 29). They are a crucial

component of the innate immune system and serve as

phagocytes and antigen-presenting cells as well as having a

critical role in orchestrating the immune response to infection

and inflammation (30–34). Traditionally, monocytes were
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regarded as transitional cells – non-terminally differentiated,

circulating forms of macrophages or DCs. Increasingly, distinct

functions of heterogeneous subsets of monocytes with their own

transcriptional profiles and phenotypes are being described in

inflammatory and autoimmune diseases (30, 35).

Monocytes develop primarily in the bone marrow (BM) in a

highly regulated manner (33). Spleen is a primary site of

extramedullary monocytopoiesis and contains a monocyte

reservoir with over one million monocytes (36, 37). The

common monocyte progenitor population is identified to be

present in BM and spleen, which generates monocytes and

monocyte-derived macrophages (38).

There are two main populations of monocytes in human and

other species, termed as classical and non-classical monocytes.

The proportion of these two subsets are analogous in blood and

spleen (37, 39). Classical monocyte fate is regulated by the

sequential action of transcription factors including PU.1

(Sfpi1), Irf8, and Klf4 (33, 40). Non-classical monocytes

develop from classical monocytes under regulation of Nr4a1

(TR3/Nur77), but the possibility of directly deriving from

progenitors in BM cannot be ruled out (33, 40). Intermediate

monocytes are thought to be transitional populations between

classical and non-classical monocytes (30). The specific markers

and distinct functions of the different populations are briefly

summarized in Table 1.
3 Monocytes in AP

During AP, pancreatic acinar and ductal cells are injured in

the initial aseptic environment through a series of pathological

cellular and molecular events including premature trypsinogen

activation, calcium overload, loss of mitochondrial membrane

potential, endoplasmic reticulum stress, and impaired autophagy
TABLE 1 Specific immune markers and functions of monocyte subsets.

Classical monocytes Non-classical monocytes Intermediate
monocytes

References

Size 18 mM 14 mM Intermediate (28, 41)

Approximate
proportion of total
monocytes

80-95% 2-8% 2-11% (28)

Approximate lifespan
in circulation

1 day 2 days (in mice) or 7 days (in human) 3-5 days (31, 33, 42)

Functions Migrating across the endothelium to tissues,
maturing into macrophages or remaining as
monocytes within tissues

Patrolling vessel walls, recognising and clearing
pathogens, supporting endothelial cells, and
monitoring vessel integrity

Transitional population
between classical and non-
classical monocytes

(28, 30)

Identification
phenotype

Human CD14++CD16- CD14+CD16++ CD14++CD16+ (43)

Mouse Ly6ChiCD43low Ly6ClowCD43hi Ly6Chi/midCD43hiTreml4+ (35, 43)

Rat CD43low CD43hiCCR2lowCD62Llow (44)

Pig CD163- CD163+CCR2low (44)

Recruitment Mediated by CCR2/CCL2 Mediated by CX3CR1/CX3CL1 Mediated by CCR2/CCL2,
CX3CR1/CX3CL1

(30, 45)
fr
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after exposure to pernicious factors such as alcohol metabolites,

free fatty acids, bile acids, high intraductal pressure or

intraductal acidification (3, 46). Injured cells liberate pro-

inflammatory cytokines, chemokines (47), and other

inflammatory meditators such as damage-associated molecular

patterns (48, 49) locally and into circulation, promoting

leucocytes infiltration and activation which exacerbates

pancreatic injury, systemic inflammation, and organ failure (4).

Among inflammatory mediators, the released CC-

chemokines including CC-motif chemokine ligand 2 (CCL2;

or monocyte chemoattractant protein-1, MCP-1), CCL3

(macrophage inflammatory protein-1a, MIP-1a), CCL5

(RANTES), and CCL7 (MCP-3) give rise to recruitment of

circulating monocytes to the inflamed pancreas (25, 50). CCL2

is a canonical chemokine produced by stromal cells or immune

cells in acute inflammation, dimerizes, and binds to extracellular

matrix glycosaminoglycans forming a stable gradient to attract

CCR2+ inflammatory monocytes (7, 50). CCL2 levels were

increased in pancreatic, systemic, lung, intestinal, and urinary

samples and correlated with severity in experimental and clinical

AP (51–57). The infiltrating monocytes become activated and

gain distinct immune phenotype in response to the

environmental cues, which afterwards either serve as

monocyte reservoirs with proliferative activity or further

differentiate into macrophages or DCs (33) (Figure 1). The key

findings of major studies on monocytes in experimental and

clinical AP are summarized in Supplementary Table 1 and

Supplementary Table 2 respectively.
3.1 Dynamic changes of monocyte
numbers

Human pancreas is often difficult to obtain for mechanistic

studies. Therefore, experimental animal models have been

widely employed to investigate the pathobiology of AP for

over a century and a half (58). Of the experimental animals,

mice and rats are preferred as the mammalian pancreas differs

markedly from non-mammals in structure and function and due

to the relative ease of genetic manipulation in these species (59).

Repetitive administration of caerulein, a cholecystokinin

analogue, causes clinical, biochemical and histopathological

changes in rodent pancreas similar to those seen in human AP

(60). Caerulein-induced AP (CER-AP) is the most popular

experimental model, as it is easily reproducible, simple to

perform and the severity can be adjusted by different dosing

regimens (58). Further, a septic condition with profound

systemic inflammation and organ failure can be produced by

superimposing a single injection of lipopolysaccharide (LPS) on

CER-AP (CER/LPS-AP) (58). Choline-deficient ethionine-

supplemented diet and intraperitoneal administration of L-

arginine are other less-invasive ways to induce AP (CDE-AP

and ARG-AP, respectively) (58, 61). These AP models are often
Frontiers in Immunology 03
associated with significant systemic inflammation, organ failure

and a certain rate of mortality, thereby mirroring the

pathobiology of SAP (58). Both ductal infusion of bile acid,

sodium taurocholate induced-AP (NaTC-AP) and pancreatic

duct ligation-induced AP (PDL-AP) are designed to mimic

human biliary pancreatitis and have features of clinical SAP

(62, 63).

Observational studies looking at monocyte subtypes in

circulation or within the pancreas in association with different

stages of AP as well as its severity, together with depletion studies

in experimental models form the backbone of our understanding

of the role of monocytes in AP. Most detailed studies of the

timeline of monocyte response during AP come from

experimental models, where the time of disease onset is

carefully controlled.

In mice with CER-AP, the number of circulating monocytes

peaked at 12 h and pancreatic monocytes at 24 h, both returning

to baseline during the recovery phase (by 168 h) (64). Following

NaTC-AP and in PDL-AP in rats, monocyte numbers in

peripheral blood were significantly elevated from 30 min and 6

h respectively (65, 66). An increased frequency of monocytes was

observed both in circulation and in the pancreas at 72 h in mice

with CDE-AP but this was not statistically significant in

circulation (64). In a similar manner, peripheral monocytes

were elevated in AP patients on admission, especially those

who had more severe clinical phenotype (67–69). Monocyte

levels remained elevated up to one week after admission (67–69).

Clinically, lymphocyte-to-monocyte ratio (LMR) could serve as

one of the predictive indices for persistent organ failure and

mortality (70–75). Compared with mild AP (MAP; no organ

failure, no local or systemic complications) or moderately severe

AP (MSAP; transient organ failure or local or systemic

complications) patients, those with severe AP (SAP; persistent

organ failure) as defined by the revised Atlanta classification (76)

had a lower LMR (71, 73, 74, 77, 78). Paradoxically, SAP patients

with uncertain time of disease onset had reduced lymphocyte

and monocyte counts at the early stage of their ICU stay, perhaps

indicating an immune anergy later in severe disease, which

recovered to normal on day 7 (79). Depletion of monocytes/

macrophages in circulation and tissue by clodronate liposomes

reduced disease severity in CER-APmice and NaTC-AP rats (80,

81) if used prior to AP induction. The method was also used to

describe the dynamic phenotypes (pro-inflammatory and

restorative) during CER-AP and recovery (26, 82). Conditional

depletion of monocytes, achieved by administration of

diphtheria toxin (DT) to mice with transgenic expression of

the human diphtheria toxin receptor [DTR] coupled to the

CD11b promoter (CD11b-DTR), reduced pancreatic edema

and necrosis in CER-AP and NaTC-AP (83). Targeting the

CCL2 axis with genetic ablation or pharmacological inhibition

reduced the number of monocytes/macrophages in the pancreas

and ameliorated the severity of CER-AP, ARG-AP, and NaTC-

AP models (84–86).
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It was first demonstrated in the 1970s that monocytes

increased proliferative activity in BM during inflammation,

resulting in monocytosis (87). Intriguingly, cholesterol

metabolism plays a crucial role in regulating proliferation of

hematopoietic stem and progenitor cells (88). And

hypercholesterolemia is reported to increase circulating

monocytes via promoting hematopoietic stem and progenitor

cell proliferation in BM and seed in spleen (88). However rapid

changes in the number of circulating leucocytes are a function of

release of cells from storage pools, rather than de novo synthesis
Frontiers in Immunology 04
of cells. Classical monocytes have been shown to egress from BM

in a CCR2-dependent manner. CCL2 and CCL7 are ligands for

CCR2 and help maintain the stable levels of circulating

monocytes (89). Whether non-classical monocytes exist in the

BM and the mechanism of them exiting the BM are as yet

unclear. The spleen contains a mobilizable monocyte reservoir in

the subcapsular red pulp, with morphology and transcriptomes

of Ly6Chigh monocytes indistinguishable from those in blood

(39, 90). Angiotensin II or CCR2 signaling is reported to induce

monocytes egress from the spleen to the sites of injury and
FIGURE 1

Monocytes in acute pancreatitis. Monocytes are continuously produced in bone marrow (BM) and spleen from hematopoietic stem cells (HSCs)
via granulocyte and macrophage progenitors (GMPs), monocyte/dendritic cell (DC) progenitors (MDPs), and common monocyte progenitors
(cMoPs) intermediates. During acute and severe inflammation, monocytes might be directly generated from GMPs in response to the need for
rapid generation. Non-classical monocytes (NCMs) are derived from classical monocytes (CMs) and might be directly developed from cMoPs.
The existence of NCMs in BM/spleen and the regulatory mechanisms of their egress into circulation are disputable and obscure. Intermediate
monocytes (IMs) are the transitional cells of CMs and NCMs with distinct functions. The role of NCMs and IMs in acute pancreatitis (AP) is still
vague. During AP, pancreatic acinar and ductal cells are injured and liberate damage-associated molecular patterns, cytokines, chemokines, and
various pro-inflammatory mediators, leading to the recruitment of circulating monocytes to the inflamed pancreas. Monocytes migration across
the endothelium requires a series of sequential adhesive interactions between monocytes and endothelial cells mediated by the indicated
endothelial adhesion molecules and monocyte selectin and integrin ligands. When monocytes influx into the pancreas, they either develop into
monocyte-derived macrophages/DCs or maintain monocyte-state. The infiltrated monocytes and monocyte-derived macrophages exhibit
heterogeneous phenotypes such as pro-inflammatory or anti-inflammatory activities, depending on the environmental cues. Abbreviations:
PSGL-1, P-selectin glycoprotein ligand 1; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cellular adhesion molecule-1.
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tumor, such as myocardial infarction and lung adenocarcinoma,

resulting in increased circulating monocytes mirrored with

reduced splenic monocytes (39, 91). Splenectomy related

experiments demonstrate that spleen contributed almost 50%

of the monocytes to the infarcted heart and 30% of the

monocytes, all the Ly6Chi monocytes to the growing atheroma

(92, 93).

In mild CER-AP, increased numbers of peripheral and

pancreatic Ly6Chi monocytes were observed concomitant with

decreased Ly6Chi monocytes in BM (94). However, the

percentage of splenic Ly6Chi monocytes was no different to

that of control mice, indicating monocytes were principally

mobilized from the BM instead of spleen in this setting (94).

In sodium deoxycholate-induced AP rats, splenocytes were

recruited to the systemic circulation and resulted in splenic

atrophy (95). Splenectomy after AP induction in this model

reduced serum amylase, inflammatory cytokine levels and

pancreatic histological injury (96). The precise role of splenic

monocytes in AP remains unclear.
3.2 Phenotypic changes of monocyte
immune markers

Heterogeneity of monocyte subsets is increasingly becoming

apparent (33). However, studies addressing the role of

monocytes in experimental and clinical AP principally pertain

to classical monocytes. The involvement of non-classical, or

indeed intermediate monocytes in the pathogenesis of AP is

still unclear.

3.2.1 Classical monocytes
Classical monocytes are described by the expression of the

LPS-binding receptor CD14 and the absence of the FcgRIII
(CD16) receptor. In AP patients, the proportion and absolute

numbers of circulating classical monocytes (CD14++CD16-)

increase compared to healthy controls and correlate with

escalating severity (MAP < MSAP < SAP) (64, 97–99).

Numbers of classical monocytes remain high in SAP patients,

whereas in MSAP patients, numbers decrease within one week

after AP onset (98, 99). This finding correlates with experimental

models of AP, where elevated numbers of equivalent monocytes

[CD11bhighCD11c-Gr-1low monocytes/macrophages (86)] in

circulation and in the pancreas were shown to correlate with

disease severity in CER-AP and ARG-AP in mice (6, 86, 94). In

CD11b-DTR mice, administration of DT which conditionally

and specifically depletes monocytes/macrophages, abolished the

increase of pancreatic Ly6Chi monocytes and was associated

with reduced edema and necrosis of the pancreas in CER-AP

(83). This process was reversed by adoptive transfer of Ly6Chi

monocytes from mice of non-DT-treated CD11b-DTR or from

tumor necrosis factor-alpha (Tnfa)+/+ donors, but not Tnfa-/-
Frontiers in Immunology 05
donors, demonstrating that the pathological role of Ly6Chi

monocytes in this setting depends on the TNF-a signaling

pathway (83). Ly6C+ inflammatory monocytes have also been

shown to exhibit significant phenotypic heterogeneity using

novel technologies. Seven distinct groups of monocytes could

be identified by cell surface markers and cytokine profiles using

CyTOF analysis in CER-AP and six in CDE-AP and AP from

patient blood samples (64). While these novel subsets of

monocytes require validation and further characterization,

they offer a significant potential for targeted interventions

based on precision cytometry.

3.2.2 Non-classical monocytes
Non-classical monocytes are described as expressing both

CD14 and CD16. Studies investigating the role of non-classical

monocytes in AP are absent from the published records. In

sterile injury including wounds, liver injury and myocardial

infarction, a biphasic response was observed with an initial

influx of Ly6Chi monocytes producing high levels of

interleukin-1 beta (IL-1b) and TNF-a followed by a delayed

response from Ly6Clo monocytes/macrophages secreting

transforming growth factor-beta (TGF-b) and vascular

endothelial growth factor for tissue repair (100–103). Non-

classical monocytes also express human leukocyte antigen

(HLA)-DR, which is a valuable biomarker of the immune

status, whereby a percentage of HLA-DR+ monocytes of less

than 80% characterizes immunosuppression and below 30%

marks immunoparalysis (104). Several studies have

demonstrated a downregulation of HLA-DR on monocytes is

associated with an increase in AP severity (79, 99, 105–122), and

serves as a predictor for SAP, infectious complications, and

mortality in AP patients (105, 108–111, 113, 119, 120, 122–125).

Reprograming of Ly6Chi monocytes at the site of

inflammation or injury is thought to be more efficient than

recruitment of Ly6Clo monocytes to restore homeostasis (82).

Cytokines such as IL-4 and IL-10 in the local environment drive

the switch of monocytes phenotype from pro-inflammatory

Ly6ChiCCR2+ monocytes to reparative Ly6CloCX3CR1+Nr4a1hi

monocytes (102). Non-classical monocytes also appeared to be

atheroprotective in mice and were associated with vascular repair

and improved organ function in kidney and heart models of

ischemia reperfusion-induced injury (35). Studies investigating

the role of non-classical monocytes in AP are clearly needed.

3.2.3 Intermediate monocytes
Though intermediate monocytes are normally considered to

be a transitional state between classical monocytes and non-

classical monocytes, they are able to generate reactive oxygen

species (ROS) and pro-inflammatory cytokines (TNF-a and IL-

1b) in response to LPS, have high proangiogenic capacity and are
effective at antigen processing and presentation with strong

expression of HLA-DR and Toll-like receptors (TLRs) (126,
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127). While a previous study reported that intermediate

monocyte (CD14+CD16+) counts were comparable amongst

AP patients and healthy controls within 24 or 72 h of disease

onset (97), a more recent study demonstrated that the

percentage of intermediate monocytes was reduced in MAP

patients compared with healthy controls within 24 h of

admission (mean, 2.4% vs. 3.1%, respectively) (127). The

reduction of intermediate monocyte numbers was reported to

be possibly mediated by a disintegrin and metalloproteinase 17

(ADAM17) and contribute to increased susceptibility to

infection, which needs further validation (127). A recent study

demonstrated that genetic (Adam17ex/ex mice, which displayed

marked reduction in global ADAM17 expression) or

pharmacological blockade of ADAM17 ameliorated the

severity of CER-AP mice (17). Considering the ubiquitous

expression and multifunctional role of ADAM17 in

inflammation (16), it is necessary to figure out the specific

pathogenetic effect of ADAM17 on different cells including

monocytes so as to exploit a precise therapeutic approach of

cell- or tissue-specific ADAM17 inhibition. Overall, the kinetics

of circulating intermediate monocytes, their roles in the

pathogenesis of AP as well as the underlying mechanisms of

alterations in numbers and functions remain to be elusive due to

limited studies.
3.2.4 M1 and M2 polarization
M1 and M2 polarization, initially proposed for macrophages

and defined by the expression of several cellular markers of

polarization, can also be seen in peripheral monocytes in a

number of diseases (128–130). M1 monocytes are classically

activated and function as pro-inflammatory cells producing

inflammatory mediators including TNF-a, IL-1b, IL-6, and IL-12;

M2 monocytes are alternatively activated and release anti-

inflammatory or regulatory molecules including IL-10 and TGF-b
(68, 131). Different subsets of polarization usually dominate at

different stages of a disease (68), with the pro-inflammatory M1

polarization state dominating early, followed by a late M2

polarization predominating, dampening inflammation and

promoting tissue repair and reorganization.

Numbers of peripheral M1 monocytes (defined by an

absence of CD163 and presence of IL-12 or MAC387) and M2

monocytes (defined by CD206 and CD163 positivity) were both

significantly elevated in SAP compared to MAP patients or

healthy controls (131, 132); and the numbers correlated with

Acute Physiology and Chronic Health Evaluation II score (131,

132), one of commonly used composite clinical indices to predict

severity of AP (133). By day 3, a higher positive M1:M2 ratio can

be observed in the blood of SAP compared with MAP or healthy

controls (68). Unfortunately, peripheral monocyte polarization

does not appear to be useful in early differentiation of disease

severity (i.e., before 48 hours after disease onset) and it remains
Frontiers in Immunology 06
unclear whether the relationship of disease severity and

monocyte polarization is in any way causal.
3.3 Function alterations in monocytes

Numerous human and rodent studies have demonstrated

the functional variation of monocytes in AP, including

alterations in activation, adhesion and phagocytosis. Distinct

expression of surface markers and intracellular molecules, and

differential change of elaborative regulatory pathways including

gaseous signaling pathways in monocytes are associated with

specific functional dysregulation such as hyperfunction or

anergy, which may together serve as useful tools to assess the

immune status during AP (Figure 2).

3.3.1 Activation
Monocyte activation takes place in response to activation of

TLR4, triggering receptor expressed on myeloid cells-1 (TREM-

1) or sphingosine-1-phosphate (S1P) signaling, transduced via

the signal transducer and activator of transcription (STAT),

nuclear factor kB (NF-kB) and mitogen-activated protein kinase

(MAPK) pathways (134). Disorders of these signaling profiles in

monocytes in AP are briefly summarized in Table 2. Evidence for

the enhanced activation of monocytes in AP can be seen in both

experimental and clinical AP. CD69, the early activation inducer

molecule, is a C-type lectin binding protein with a

transmembrane and intracellular signaling domain expressed

on a wide range of immune cells, including monocytes.

Activation of CD69 on monocytes results in nitric oxide

produc t ion , and induc t ion o f phospho l ipase A2 ,

cyclooxygenase, and lipoxygenase (67). CD25, an IL-2 receptor

alpha chain, is expressed on activated T cells, B cells, and

monocytes (67). Elevated expressions of both CD69 and CD25

were found in AP patients compared with healthy controls

(67, 139).
3.3.2 Adhesion
Monocyte adhesion to activated endothelial cells is an

essential step for the capture, rolling and transmigration of

monocytes into target tissues. This process is regulated by a

number of different cell surface proteins on both monocytes and

endothelial cells. For example, P-selectin glycoprotein ligand 1

(PSGL-1, CD162) modulates the migration, activation, and

infiltration of immune cells through binding with E-, P-, or L-

selectin (69, 140). Peripheral monocytes from AP patients

exhibited increased PSGL-1 expression compared with

monocytes from healthy controls (69). Genetic knockout of

PSGL-1 in CER-AP mice resulted in less monocyte-endothelial

interaction, fewer infiltrating pancreatic monocytes/

macrophages and peripheral Ly6C+ monocytes and a milder
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1062849
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.1062849
disease course (69). Platelet endothelial cell adhesion molecule 1

(PECAM-1; CD31) and intercellular adhesion molecule 1

(ICAM-1; CD54) are adhesion molecules found on the surface

of activated endothelium as well as on some immune cells

including monocytes and their expression is upregulated in

experimental AP (141). In patients, cellular adhesion

molecules in general, but ICAM-1 in particular, have been

shown to be expressed in greater amounts in patients

experiencing lung injury and respiratory failure in the context

of severe acute pancreatitis (67, 139, 142). CD11b, a member of

the b2 integrin family of adhesion molecules, is also up-regulated

on circulating monocytes in experimental AP rats at 6, 12, 24,

and 48 h after disease induction (66), and in AP patients over

healthy controls (139). The degree of overexpression in

peripheral monocytes was again associated with AP severity

and organ dysfunction (107).
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3.3.3 Phagocytosis
Phagocytosis by monocytes/macrophages is critical for the

clearance of microbial pathogens and apoptotic cells in order to

maintain homeostasis; it is a rare event at rest, but increases

during inflammation upon stimulation by bacterial products,

cellular debris or cytokines (143). The phagocytic activity of

monocytes is a measurable entity that may provide further

insight about the innate immune response in specific disease

conditions (144). Impaired phagocytosis in monocytes is

associated with immunosuppression in severe trauma and

sepsis (145–147). In AP patients, the phagocytotic (148, 149)

and ROS generation capacity (150) of circulating monocytes is

impaired and this phagocytosis potential may be a useful

predictor for infectious complications. By calculating the area

under the receiver-operating-characteristic curve (AUC), a

statistical tool routinely used for evaluating the discriminatory
FIGURE 2

The dynamic changes of monocyte numbers, phenotypes, and functions in acute pancreatitis. Numbers: The number of monocytes in
circulation and pancreas is dynamically elevated and might return at various timepoints of experimental and clinical acute pancreatitis (AP). The
association of the increased number of monocytes with severity of AP has not been fully verified, despite that the increase in monocytes is
more pronounced in more severe phenotype in some cases. Lymphocyte-to-monocyte ratio (LMR) is negatively correlated with AP severity and
serves as a predictive index for persistent organ failure and mortality. The augmented number of monocytes within a short time is mainly the
function of the release from storage pools. The increased proliferation of monocytes and associated progenitors in bone marrow (BM) and
spleen may also contribute to the increased circulating monocytes in AP. Phenotypes: Circulating classical monocytes (CM) levels are associated
with escalating AP severity. Novel heterogeneous subsets of monocytes in AP have been identified. The role of non-classical monocytes (NCM)
and intermediate monocytes (IM) in AP is still not known. Decreased number of IM in AP might associate with increased susceptibility to
infections. Increased M1 and M2 monocytes together with higher M1/M2 ratio can be observed in AP, which possibly correlate with disease
severity. Functions: Monocyte activation along with disturbed intracellular multiple signaling profiles and elevated activation markers including
CD69 and CD25, leads to massive production of nitric oxide (NO) together with induction of phospholipase A2 (PLA2), cyclooxygenase (COX),
and lipoxygenase (LOX). Monocytes in AP exhibit increased adhesion molecules including P-selectin glycoprotein ligand 1 (PSGL-1), platelet
endothelial cell adhesion molecule-1 (PECAM-1), and intercellular adhesion molecule 1 (ICAM-1), promoting monocyte adhesion to endothelium
and migration to the inflamed pancreas. Impaired phagocytosis of monocytes in AP might be a useful predictor for infectious complication.
Heme oxygenase-1 (HO-1)/carbon monoxide (CO) and inducible NO synthase (iNOS)/NO are pivotal gaseous signaling pathways in monocytes
of AP. HO-1/CO pathway in monocytes exerts anti-inflammatory effect to dampen AP severity. Increased expression of iNOS in monocytes is
observed in AP and the generated NO has dual effect on the production of pro-inflammatory mediators depending on concentrations.
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ability of continuous markers, it was reported that the admission

phagocytosis potential ([ROS generation index value after

stimulation-basal value]/basal value) had an AUC of 0.84 with

sensitivity and specificity of 76.2% and 83.6%, respectively, for

predicting infectious complications in patients with MSAP/

SAP (150).

3.3.4 Gaseous signaling
Activated monocytes contribute to gaseous signaling

through the generation of carbon monoxide (CO) and nitric

oxide (NO). Specifically, CO serves as a gaseous signaling

molecule exerting anti-inflammatory effects through regulation

of p38 MAPK and IL-10 pathways (151, 152), whereas NO

regulates intracellular signaling molecules such as MAPK, JAK,

NF-kB, and activating protein-1, mediating the production of

pro-inflammatory cytokines and chemokines (153, 154).

CO is a downstream product of heme oxygenase-1 (HO-1)

released together with biliverdin and ferritin as a consequence of

heme metabolism, all of which contribute to an anti-

inflammatory effect (155). Monocytes expressing HO-1 are

anti-inflammatory and rapidly recruited to the pancreas

dampening the severity of CER-AP and CDE-AP in mice

(156). In MAP patients, HO-1 expression of monocytes on

admission was higher than healthy controls (156). The level of

HO-1 expression was highest on admission and decreased to

normal levels on day 3 with clinical improvement (156). The

release of CO can be achieved in a controlled way by

administration of CO-releasing molecule-2 (CORM-2) without

disturbing carboxyhemoglobin levels. CORM-2 suppressed

TLR4/MD2 receptor complex activation and TNF-a
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production by macrophages in pancreas and spleen,

attenuating cytokine cascade and organ injury in CER-AP and

CDE-AP in mice (157). CORM-2 further inhibited pancreatic

CCL2 production and blocked CCL2-triggered CCR2

endocytosis, thus impairing pathological CD11b+Ly6Chi

monocyte recruitment from the blood to pancreas (94). This

axis has also been effectively targeted with therapy using haemin,

a HO-1 inducing agent in clinical use for the treatment of

thalassemia intermedia. Haemin has been shown to upregulate

HO-1 expression in peritoneal and pancreatic macrophages,

which reduced severity of CER-AP and CDE-AP in mice

(140, 156).

NO is generated via the activity of nitric oxide synthase

(NOS), which is inducible in inflammatory cells in response to

activation (153). Increased expression of iNOS could be detected

in peritoneal monocytes/macrophages in NaTC-AP but not

CER-AP rats (158), and while low NO concentrations

ame l io ra t ed mic roc i r cu la t ion d i s turbances , l a rge

concentrations contributed to capillary leakage and micro-

circulatory failure (159). Clinically, elevated iNOS expression

was detected in monocytes from AP patients with systemic

inflammatory response syndrome, but no significant changes

were observed in those without (160).
4 Obesity and lipid modulation of
monocytes in AP

Obesity, as defined by a body mass index of 30 kg/m2 or

more, has reached global pandemic levels (161). Beyond merely
TABLE 2 Aberrant signaling profiles of monocytes in acute pancreatitis.

Signaling
pathways

Roles Alterations References

STAT Mediating gene transcription of inflammatory
mediators

(1) Reduced cytokine stimulated pSTAT1, pSTAT3, and pSTAT6 in AP patients
than HCs
(2) Higher constitutive pSTAT3 in AP patients than HCs
(3) Constitutive pSTAT3 levels were early predictor for development of persistent
organ failure (AUC 0.725 [0.558-0.893]) and secondary infection (0.662 [0.547-
0.776])

(115, 121,
135)

NF-kB Regulating expression of plentiful genes involved in
immunity and inflammation

Reduced NF-kB activation in response to TNF, whole bacteria, and bacteria
byproducts in AP patients than HCs

(115, 121,
136)

MAPK Regulating the adhesion, chemotaxis, and effector
functions of monocytes

(1) Upregulated expression of p38 MAPK in NaTC-AP rats than controls
(2) AP severity was alleviated by selective MAPK signaling inhibitors

(134)

SphK1/S1P Regulating critical cellular events including neutrophil
priming, cytokines production, and leukocyte
chemotaxis
Regulating MAPK and NF-kB signaling pathways

(1) Upregulated expression of SphK1 in AP than HCs in the early stage
(2) SphK1 levels correlated positively with clinical severity scores in AP patients

(79)

TREM-1 Producing pro-inflammatory mediators and
costimulatory molecules

Higher expression of TREM-1 in AP patients than HCs (137)

TLR4 Triggering pro-inflammatory signaling pathways (1) Elevated expression of TLR4 expression in AP patients than HCs
(2) TLR4 expression correlated with organ failure and mortality

(138)
fr
STAT, signal transducers and activators of transcription; AP, acute pancreatitis; HC, healthy control; AUC, area under the receiver-operating-characteristic curve; NF-kB, nuclear factor-
kappa B; TNF, tumor necrosis factor; MAPK, mitogen-activated protein kinase; NaTC-AP, sodium taurocholate-induced acute pancreatitis; SphK1, sphingosine kinase 1; S1P, sphingosine
1-phosphate; TREM-1, triggering receptor expressed on myeloid cells-1; TLR4, Toll-like receptor 4.
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an excess in body weight, it is a metabolic disorder associated

with excessive lipid storage and chronic, low-grade

inflammation (161). The relationship between obesity and AP

has been gradually explored using various obesity-related AP

animal models. These models include induction of NaTC-AP in

high-fat diet (HFD) fed rats (162) and CER-AP (or CER/LPS-

AP) in HFD fed, leptin-deficient ob/ob, or leptin receptor-

defective db/db mice (163–165) as well as the administration

of IL-12 plus IL-18 in ob/ob mice or HFD mice (166, 167). Most

recently, our group has shown that administration of alcohol in

HFD mice could induce AP with multiorgan injury mediated by

adipocyte tissue lipolysis (168). Clinically, studies have linked

obesity to an increased incidence and severity of AP (169).

Obesity may aggravate AP severity through unsaturated fatty

acids via lipase mediated lipolysis and various adipokines from

adipose tissue (170–172). During AP, pancreatic lipase leaks

from the injured pancreas into adipose tissue with increased

amount and activity, generating excessive free fatty acids via

lipolysis, which in turn worsen systemic inflammation and organ

failure in AP (173, 174). Genetic knockout or pharmacological

inhibition of pancreatic lipase reduced adipose tissue lipolysis,

systemic inflammation, organ failure, and mortality of AP in ob/

ob obese mice (170, 173, 174).

Dyslipidemias are disorders of the plasma lipid profile that

are frequently related with obesity and diabetes (175, 176). With

the recognition of metabolically healthy obesity and

metabolically unhealthy normal weight subjects, the

association of obesity and dyslipidemia becomes complex and

intriguing (176). Hypertriglyceridemia (HTG) is a highly

prevalent form of dyslipidemia with major health concern

(175). HTG is the third most common cause of AP globally

(177) and is one of the most leading etiologies in Chinese AP

cohorts (178–181). Apart from elevated triglyceride levels, HTG-

AP is also accompanied with maladjusted lipoprotein

metabolism (177). Furthermore, the severity of AP is

proportionally increased with escalating triglyceride levels

(178, 182, 183).

Adipocytes release lipids through lipase-mediated lipolysis

or lipid-filled exosomes, modulating the differentiation and

function of monocytes/macrophages (184). Activation and

polarization of monocytes/macrophages is affected by lipids

via direct effects on the physical properties of plasma

membranes or indirectly with lipids acting as signaling

molecules (185, 186). Distinct lipid species (saturated or

unsaturated fatty acids, cholesterols, and lipoproteins), lipid

modifica t ions ( i . e . , ox ida t ion) and dys l ip idemias

(hypercholesterolemia and hypertriglyceridemia) affect

monocyte responses in different ways and relevant studies are

summarized in Supplementary Table 3. In extremely obese mice,

adipose tissue macrophage content is over 50% of the total cell

count and most are derived from circulating monocytes (187).

Obesity preferentially promotes M1 polarization of monocytes/

macrophages in adipose tissue of mice but the phenotypes of
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adipose tissue macrophages in human are not fully

determined (187).

Adipose tissue, particularly areas of fat necrosis, is a vital

source of inflammatory mediators promoting the pro-

inflammatory M1 polarization of monocytes/macrophages and

inhibition of the M2 reparative phenotype, thereby exacerbating

systemic inflammation in PDL-AP or NaTC-AP rats (188, 189).

It was also observed that oxidized free fatty acids in ascitic fluid

interfered with the anti-inflammatory regulation of monocytes/

macrophages, aggravating inflammatory responses in NaTC-AP

rats (190). As aforementioned, the infiltration of macrophages in

adipose tissue is increased in obese mice. After CER/LPS

challenge to HFD mice, despite an overall decreased count of

adipose tissue macrophages, the proportion of M1 adipose tissue

macrophages increased together with enhanced expression of

pro-inflammatory cytokines in adipose tissue (165). Consistent

with experimental studies, CD14+CD86+ M1 monocytes

increased in circulation in HTG population compared with

healthy controls (68). Likewise, HTG-AP patients displayed

higher M1 monocyte counts than respective HTG control

patients on days 1, 3, and 7 after admission. Most importantly,

the level of peripheral M1 monocytes was positively correlated

with plasma triglyceride level and Ranson score (a scoring

system to assess and prognosticate AP severity) in HTG-AP

patients (68). However, there was no obvious difference in

peripheral M2 monocytes between HTG-AP patients and

HTG control patients (68). Besides, the level of M2 monocytes

exhibited no association with either plasma triglyceride level or

Ranson score in HTG-AP patients (68). The effects of obesity

and dyslipidemias on the recruitment and polarization of

monocytes/macrophages in AP are still unclear, however, the

mechanism by which obesity and dyslipidemias exacerbate AP

severity might, at least in part, be attributed to disturbing

monocyte homeostasis (i.e., promoting M1 monocytes

polar izat ion) . How far th is effect i s mediated by

lipotoxicity of specific lipids/lipid groups warrants further

investigation (Figure 3).
5 Conclusions and perspectives

Due to the difficulties in studying the human pancreas

directly, circulating immune cells in general, and monocytes in

particular, serve as excellent intermediates for assessing systemic

inflammation and immune status. Monocytes play a pivotal role

in the initiation and progression of AP, but important questions

regarding the precise role of monocytes in the pathogenesis of

AP remain. These include:

1. Dynamic changes and roles of monocyte subsets are unclear,

as indeed are the degree to which cells can be encouraged into

different expression patterns using environmental cues. It is still

unknown how the spatially defined signals in the inflamed

pancreas serve to reprogram monocyte subsets and determine
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their fate. Monocytes could extravasate into tissue retaining

monocyte phenotypic markers without differentiating into

macrophages. Increasing recognition of heterogeneity in

monocyte population makes identification of tissue monocytes

and deciphering the transition of monocyte subsets into particular

tissue macrophages more challenging. Monocytes are remarkably

multipotent cells in regulating inflammation but the pathogenetic

mechanisms of monocytes in regulating AP severity are not fully

investigated. More fundamentally, novel technologies have

identified cells based on their distinct transcription patterns,

whereby traditionally much simpler phenotypic markers were

used. These can greatly compromise comparability between

studies. A consensus on relevant monocyte subsets based on

multiple different detection technologies, and their lineage, might

be developed for better communications between laboratories and

future clinical appliance.

2. The finely orchestrated balance between pro- and anti-

inflammatory responses is disturbed in more severe forms of AP,

which is reflected in imbalances in monocyte function. Obesity

and dyslipidemias aggravate AP severity with varying degrees

depending on individual factors. Accumulation of free fatty acids

generated by elevated lipolysis in patients with metabolically

unhealthy obesity and HTG may partially contribute to the

exacerbation of AP via promoting M1 monocytes polarization,

which needs further investigations. Besides free fatty acids, other

lipid species are capable of regulating subsets, numbers, and

functions of monocytes, but their specific involvement in

dynamic changes of monocytes during AP is largely unknown.
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Future studies, especially those aiming to develop targeted

therapy, should design methods to differentiate between causal

and associative patterns in monocyte changes with disease in

order to guide the development of effective therapy.

3. Immune markers on circulating monocytes provide a

potential window for identifying particular inflammation types

in diseases. It should be possible to refine the inflammatory

signatures of immune cells and develop specific ‘immune

signaling fingerprints’ to monitor the inflammatory response

and disease progression during AP. These could be used to guide

personalized therapeutic strategies using anti-inflammatory,

immunomodulatory, immunostimulatory agents alone or in

combination for the optimal treatment of individual patients

using a personalized medicine approach.
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129. Medeiros LT, Peraçoli JC, Bannwart-Castro CF, Romão M,Weel IC, Golim
MA, et al. Monocytes from pregnant women with pre-eclampsia are polarized to a
M1 phenotype. Am J Reprod Immunol (2014) 72(1):5–13. doi: 10.1111/aji.12222

130. Satoh N, Shimatsu A, Himeno A, Sasaki Y, Yamakage H, Yamada K, et al.
Unbalanced M1/M2 phenotype of peripheral blood monocytes in obese diabetic
patients: effect of pioglitazone. Diabetes Care (2010) 33(1):e7. doi: 10.2337/dc09-
1315

131. Zhang ML, Jiang YF, Wang XR, Ding LL, Wang HJ, Meng QQ, et al.
Different phenotypes of monocytes in patients with new-onset mild acute
pancreatitis. World J Gastroenterol (2017) 23(8):1477–88. doi: 10.3748/
wjg.v23.i8.1477

132. Zhang M, Ding L, Wang X, Hou J, Li M, Jiang Y, et al. Circulating CD14(+)
CD163(+)CD115(+) M2 monocytes are associated with the severity of new onset
severe acute pancreatitis in Chinese patients. Int Immunopharmacol (2018)
57:181–9. doi: 10.1016/j.intimp.2018.02.018
Frontiers in Immunology 14
133. Zawada AM, Rogacev KS, Schirmer SH, Sester M, Böhm M, Fliser D, et al.
Monocyte heterogeneity in human cardiovascular disease. Immunobiology (2012)
217(12):1273–84. doi: 10.1016/j.imbio.2012.07.001

134. Liu HS, Pan CE, Liu QG, Yang W, Liu XM. Effect of NF-kappaB and p38
MAPK in activated monocytes/macrophages on pro-inflammatory cytokines of
rats with acute pancreatitis. World J Gastroenterol (2003) 9(11):2513–8. doi:
10.3748/wjg.v9.i11.2513

135. Turunen A, Kuuliala A, Mustonen H, Puolakkainen P, Kylänpää L,
Kuuliala K. Blood leukocyte signaling pathways as predictors of severity of acute
pancreatitis. Pancreas (2021) 50(5):710–8. doi: 10.1097/MPA.0000000000001832

136. Shi C, Zhao X, Lagergren A, Sigvardsson M, Wang X, Andersson R.
Immune status and inflammatory response differ locally and systemically in severe
acute pancreatitis. Scand J Gastroenterol (2006) 41(4):472–80. doi: 10.1080/
00365520500318965

137. Ferat-Osorio E, Wong-Baeza I, Esquivel-Callejas N, Figueroa-Figueroa S,
Duarte-Rojo A, Guzman-Valdivia-Gomez G, et al. Triggering receptor expressed
on myeloid cells-1 expression on monocytes is associated with inflammation but
not with infection in acute pancreatitis. Crit Care (2009) 13(3):R69. doi: 10.1186/
cc7876

138. Li HG, Zhou ZG, Li Y, Zheng XL, Lei S, Zhu L, et al. Alterations of toll-like
receptor 4 expression on peripheral blood monocytes during the early stage of
human acute pancreatitis. Dig Dis Sci (2007) 52(8):1973–8. doi: 10.1007/s10620-
006-9211-4

139. Bhatnagar A, Wig JD, Majumdar S. Expression of activation, adhesion
molecules and intracellular cytokines in acute pancreatitis. Immunol Lett (2001) 77
(3):133–41. doi: 10.1016/S0165-2478(01)00210-3

140. Tinoco R, Otero DC, Takahashi AA, Bradley LM. PSGL-1: A new player in
the immune checkpoint landscape. Trends Immunol (2017) 38(5):323–35. doi:
10.1016/j.it.2017.02.002

141. Zhao X, Dib M,Wang X, Widegren B, Andersson R. Influence of mast cells
on the expression of adhesion molecules on circulating and migrating leukocytes in
acute pancreatitis-associated lung injury. Lung (2005) 183(4):253–64. doi: 10.1007/
s00408-004-2538-8

142. Chooklin S. Pathogenic aspects of pulmonary complications in acute
pancreatitis patients. Hepatobiliary Pancreat Dis Int (2009) 8(2):186–92.
doi: 10.1111/j.1523-5378.2009.00663.x

143. Uribe-Querol E, Rosales C. Phagocytosis: Our current understanding of a
universal biological process. Front Immunol (2020) 11:1066. doi: 10.3389/
fimmu.2020.01066

144. Döring M, Cabanillas Stanchi KM, Erbacher A, Haufe S, Schwarze CP,
Handgretinger R, et al. Phagocytic activity of monocytes, their subpopulations and
granulocytes during post-transplant adverse events after hematopoietic stem cell
transplantation. Immunobiology (2015) 220(5):605–13. doi: 10.1016/
j.imbio.2014.12.002

145. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a
novel understanding of the disorder and a new therapeutic approach. Lancet Infect
Dis (2013) 13(3):260–8. doi: 10.1016/S1473-3099(13)70001-X

146. Cao C, Yu M, Chai Y. Pathological alteration and therapeutic implications
of sepsis-induced immune cell apoptosis. Cell Death Dis (2019) 10(10):782. doi:
10.1038/s41419-019-2015-1

147. Janicova A, Becker N, Xu B, Simic M, Noack L, Wagner N, et al. Severe
traumatic injury induces phenotypic and functional changes of neutrophils and
monocytes. J Clin Med (2021) 10(18):4139. doi: 10.3390/jcm10184139

148. Larvin M, Alexander DJ, Switala SF, McMahonMJ. Impaired mononuclear
phagocyte function in patients with severe acute pancreatitis: evidence from studies
of plasma clearance of trypsin and monocyte phagocytosis. Dig Dis Sci (1993) 38
(1):18–27. doi: 10.1007/BF01296768

149. Liras G, Carballo F. An impaired phagocytic function is associated with
leucocyte activation in the early stages of severe acute pancreatitis. Gut (1996) 39
(1):39–42. doi: 10.1136/gut.39.1.39

150. Susak YM, Dirda OO, Fedorchuk OG, Tkachenko OA, Skivka LM.
Infectious complications of acute pancreatitis is associated with peripheral blood
phagocyte functional exhaustion. Dig Dis Sci (2021) 66(1):121–30. doi: 10.1007/
s10620-020-06172-y

151. Lee TS, Chau LY. Heme oxygenase-1 mediates the anti-inflammatory effect
of interleukin-10 in mice. Nat Med (2002) 8(3):240–6. doi: 10.1038/nm0302-240

152. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, et al.
Carbon monoxide has anti-inflammatory effects involving the mitogen-activated
protein kinase pathway. Nat Med (2000) 6(4):422–8. doi: 10.1038/74680

153. Kobayashi Y. The regulatory role of nitric oxide in proinflammatory
cytokine expression during the induction and resolution of inflammation. J
Leukoc Biol (2010) 88(6):1157–62. doi: 10.1189/jlb.0310149
frontiersin.org

https://doi.org/10.1111/j.1572-0241.2006.00495.x
https://doi.org/10.1111/j.1572-0241.2006.00495.x
https://doi.org/10.1080/00365520701427086
https://doi.org/10.1097/CCM.0b013e3181e7161c
https://doi.org/10.1016/j.humimm.2010.10.002
https://doi.org/10.1016/j.humimm.2010.10.002
https://doi.org/10.1016/j.pan.2013.01.010
https://doi.org/10.2741/4150
https://doi.org/10.5754/hge.13313
https://doi.org/10.18632/oncotarget.23911
https://doi.org/10.1080/00365513.2019.1700548
https://doi.org/10.1080/00365513.2019.1700548
https://doi.org/10.1080/15321819.2021.1903491
https://doi.org/10.1007/s11596-018-1899-9
https://doi.org/10.1007/s10620-017-4813-6
https://doi.org/10.1111/sji.12564
https://doi.org/10.1002/cyto.a.22703
https://doi.org/10.3389/fimmu.2019.01902
https://doi.org/10.3389/fimmu.2019.01902
https://doi.org/10.1086/599090
https://doi.org/10.1111/aji.12222
https://doi.org/10.2337/dc09-1315
https://doi.org/10.2337/dc09-1315
https://doi.org/10.3748/wjg.v23.i8.1477
https://doi.org/10.3748/wjg.v23.i8.1477
https://doi.org/10.1016/j.intimp.2018.02.018
https://doi.org/10.1016/j.imbio.2012.07.001
https://doi.org/10.3748/wjg.v9.i11.2513
https://doi.org/10.1097/MPA.0000000000001832
https://doi.org/10.1080/00365520500318965
https://doi.org/10.1080/00365520500318965
https://doi.org/10.1186/cc7876
https://doi.org/10.1186/cc7876
https://doi.org/10.1007/s10620-006-9211-4
https://doi.org/10.1007/s10620-006-9211-4
https://doi.org/10.1016/S0165-2478(01)00210-3
https://doi.org/10.1016/j.it.2017.02.002
https://doi.org/10.1007/s00408-004-2538-8
https://doi.org/10.1007/s00408-004-2538-8
https://doi.org/10.1111/j.1523-5378.2009.00663.x
https://doi.org/10.3389/fimmu.2020.01066
https://doi.org/10.3389/fimmu.2020.01066
https://doi.org/10.1016/j.imbio.2014.12.002
https://doi.org/10.1016/j.imbio.2014.12.002
https://doi.org/10.1016/S1473-3099(13)70001-X
https://doi.org/10.1038/s41419-019-2015-1
https://doi.org/10.3390/jcm10184139
https://doi.org/10.1007/BF01296768
https://doi.org/10.1136/gut.39.1.39
https://doi.org/10.1007/s10620-020-06172-y
https://doi.org/10.1007/s10620-020-06172-y
https://doi.org/10.1038/nm0302-240
https://doi.org/10.1038/74680
https://doi.org/10.1189/jlb.0310149
https://doi.org/10.3389/fimmu.2022.1062849
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.1062849
154. Taylor EL, Megson IL, Haslett C, Rossi AG. Nitric oxide: a key regulator of
myeloid inflammatory cell apoptosis. Cell Death Diff (2003) 10(4):418–30. doi:
10.1038/sj.cdd.4401152

155. Otterbein LE, Soares MP, Yamashita K, Bach FH. Heme oxygenase-1:
unleashing the protective properties of heme. Trends Immunol (2003) 24(8):449–
55. doi: 10.1016/S1471-4906(03)00181-9

156. Habtezion A, Kwan R, Yang AL, Morgan ME, Akhtar E, Wanaski SP, et al.
Heme oxygenase-1 is induced in peripheral blood mononuclear cells of patients
with acute pancreatitis: a potential therapeutic target. Am J Physiol Gastrointest
Liver Physiol (2011) 300(1):G12–20. doi: 10.1152/ajpgi.00231.2010

157. Xue J, Habtezion A. Carbon monoxide-based therapy ameliorates acute
pancreatitis via TLR4 inhibition. J Clin Invest (2014) 124(1):437–47. doi: 10.1172/
JCI71362

158. Satoh A, Shimosegawa T, Kimura K, Moriizumi S, Masamune A, Koizumi M,
et al. Nitric oxide is overproduced by peritoneal macrophages in rat taurocholate
pancreatitis: the mechanism of inducible nitric oxide synthase expression. Pancreas
(1998) 17(4):402–11. doi: 10.1097/00006676-199811000-00012

159. Zhang XP, Lin Q, Zhou YF. Progress of study on the relationship between
mediators of inflammation and apoptosis in acute pancreatitis. Dig Dis Sci (2007)
52(5):1199–205. doi: 10.1007/s10620-006-9388-6

160. Tanjoh K, Tomita R, Izumi T, Kinoshita K, Kawahara Y, Moriya T, et al. The
expression of the inducible nitric oxide synthase messenger RNA on monocytes in
severe acute pancreatitis. Hepatogastroenterology (2007) 54(75):927–31.

161. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev
Endocrinol (2019) 15(5):288–98. doi: 10.1038/s41574-019-0176-8

162. Segersvard R, Sylvan M, Herrington M, Larsson J, Permert J. Obesity
increases the severity of acute experimental pancreatitis in the rat. Scandinavian J
Gastroenterol (2001) 36(6):658–63. doi: 10.1080/003655201750163213

163. Araki H, Nishihara T, Matsuda M, Fukuhara A, Kihara S, Funahashi T,
et al. Adiponectin plays a protective role in caerulein-induced acute pancreatitis in
mice fed a high-fat diet. Gut (2008) 57(10):1431–40. doi: 10.1136/gut.2007.135665

164. Zyromski NJ, Mathur A, Pitt HA, Lu D, Gripe JT, Walker JJ, et al. A
murine model of obesity implicates the adipokine milieu in the pathogenesis of
severe acute pancreatitis. Am J Physiol Gastrointest Liver Physiol (2008) 295(3):
G552–8. doi: 10.1152/ajpgi.90278.2008

165. Yu Q, Xu T, Ding F, Ding Z, Lin R. Decreased infiltration of adipose tissue
macrophages and amplified inflammation of adipose tissue in obese mice with
severe acute pancreatitis. Pancreatology (2021) S1424-3903(21):00156-3. doi:
10.1016/j.pan.2021.05.005

166. Sennello JA, Fayad R, Pini M, Gove ME, Ponemone V, Cabay RJ, et al.
Interleukin-18, together with interleukin-12, induces severe acute pancreatitis in
obese but not in nonobese leptin-deficient mice. Proc Natl Acad Sci U S A (2008)
105(23):8085–90. doi: 10.1073/pnas.0804091105

167. Pini M, Sennello JA, Cabay RJ, Fantuzzi G. Effect of diet-induced obesity
on acute pancreatitis induced by administration of interleukin-12 plus interleukin-
18 in mice. Obes (Silver Spring) (2010) 18(3):476–81. doi: 10.1038/oby.2009.263

168. Yang X, Yao L, Dai L, Yuan M, He W, Liu T, et al. Alcohol predisposes
obese mice to acute pancreatitis via adipose triglyceride lipase-dependent visceral
adipocyte lipolysis. Gut (2022). doi: 10.1136/gutjnl-2022-326958

169. Aune D, Mahamat-Saleh Y, Norat T, Riboli E. High body mass index and
central adiposity is associated with increased risk of acute pancreatitis: A meta-
analysis. Dig Dis Sci (2021) 66(4):1249–67. doi: 10.1007/s10620-020-06275-6

170. Navina S, Acharya C, DeLany JP, Orlichenko LS, Baty CJ, Shiva SS, et al.
Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in
obesity. Sci Transl Med (2011) 3(107):107ra10. doi: 10.1126/scitranslmed.3002573

171. Sempere L, Martinez J, de Madaria E, Lozano B, Sanchez-Paya J, Jover R,
et al. Obesity and fat distribution imply a greater systemic inflammatory response
and a worse prognosis in acute pancreatitis. Pancreatology (2008) 8(3):257–64. doi:
10.1159/000134273
Frontiers in Immunology 15
172. Khatua B, El-Kurdi B, Singh VP. Obesity and pancreatitis. Curr Opin
Gastroenterol (2017) 33(5):374–82. doi: 10.1097/MOG.0000000000000386

173. de Oliveira C, Khatua B, Noel P, Kostenko S, Bag A, Balakrishnan B, et al.
Pancreatic triglyceride lipase mediates lipotoxic systemic inflammation. J Clin
Invest (2020) 130(4):1931–47. doi: 10.1172/JCI132767

174. Patel K, Trivedi RN, Durgampudi C, Noel P, Cline RA, DeLany JP, et al.
Lipolysis of visceral adipocyte triglyceride by pancreatic lipases converts mild acute
pancreatitis to severe pancreatitis independent of necrosis and inflammation. Am J
Pathol (2015) 185(3):808–19. doi: 10.1016/j.ajpath.2014.11.019

175. Pirillo A, Casula M, Olmastroni E, Norata GD, Catapano AL. Global
epidemiology of dyslipidaemias. Nat Rev Cardiol (2021) 18(10):689–700. doi:
10.1038/s41569-021-00541-4

176. Vekic J, Zeljkovic A, Stefanovic A, Jelic-Ivanovic Z, Spasojevic-
Kalimanovska V. Obesity and dyslipidemia. Metabol: Clin Experimental (2019)
92:71–81. doi: 10.1016/j.metabol.2018.11.005

177. Yang AL, McNabb-Baltar J. Hypertriglyceridemia and acute pancreatitis.
Pancreatology (2020) 20(5):795–800. doi: 10.1016/j.pan.2020.06.005

178. Zhang R, Deng L, Jin T, Zhu P, Shi N, Jiang K, et al. Hypertriglyceridaemia-
associated acute pancreatitis: diagnosis and impact on severity. HPB Off J Int
Hepato Pancreato Biliary Assoc (2019) 21(9):1240–9. doi: 10.1016/
j.hpb.2019.01.015

179. Shi N, Liu T, de la Iglesia-Garcia D, Deng L, Jin T, Lan L, et al. Duration of
organ failure impacts mortality in acute pancreatitis. Gut (2020) 69(3):604–5. doi:
10.1136/gutjnl-2019-318241

180. Ke L, Zhou J, Mao W, Chen T, Zhu Y, Pan X, et al. Immune enhancement
in patients with predicted severe acute necrotising pancreatitis: a multicentre
double-blind randomised controlled trial. Intensive Care Med (2022) 48(7):899–
909. doi: 10.1007/s00134-022-06745-7

181. Su N, Zhu Y, Peng Y, Xia W, Chen L, Yu H, et al. Triglycerides to high-
density lipoprotein cholesterol (TG/HDL-c) ratio is an independent predictor of
the severity of hyperlipidaemic acute pancreatitis. J Hepatobiliary Pancreat Sci
(2022). doi: 10.1002/jhbp.1281

182. Nawaz H, Koutroumpakis E, Easler J, Slivka A, Whitcomb DC, Singh VP,
et al. Elevated serum triglycerides are independently associated with persistent
organ failure in acute pancreatitis. Am J Gastroenterol (2015) 110(10):1497–503.
doi: 10.1038/ajg.2015.261

183. Mosztbacher D, Hanák L, Farkas N, Szentesi A, Mikó A, Bajor J, et al.
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