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LATPS, a novel prognostic
signature based on tumor
microenvironment of lung
adenocarcinoma to better
predict survival and
immunotherapy response
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Xiaodi Zhu1, Xiaoqing Wang2, Jiaxin Li1, Wenyu Liang1,
Yuting Wu3, Xiaocheng Liu1, Dong Yu1, Yunna Zheng1,
Jian Guan2*, Yongzhong Zhan1* and Laiyu Liu1*

1Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine,
Nanfang Hospital, Southern Medical University, Guangzhou, China, 2Department of Radiation
Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China, 3Department of
Blood Transfusion, Ganzhou People’s Hospital, Ganzhou, China
Background: Clinically, only a minority of patients benefit from

immunotherapy and few efficient biomarkers have been identified to

distinguish patients who would respond to immunotherapy. The tumor

microenvironment (TME) is reported to contribute to immunotherapy

response, but details remain unknown. We aimed to construct a prognostic

model based on the TME of lung adenocarcinoma (LUAD) to predict the

prognosis and immunotherapy efficacy.

Methods: We integrated computational algorithms to describe the immune

infiltrative landscape of LUAD patients. With the least absolute shrinkage and

selection operator (LASSO) and Cox regression analyses, we developed a LUAD

tumor microenvironment prognostic signature (LATPS). Subsequently, the

immune characteristics and the benefit of immunotherapy in LATPS-defined

subgroups were analyzed. RNA sequencing of tumor samples from 28 lung

cancer patients treated with anti-PD-1 therapy was conducted to verify the

predictive value of the LATPS.

Results:We constructed the LATPS grounded on four genes, including UBE2T,

KRT6A, IRX2, and CD3D. The LATPS-low subgroup had a better overall survival

(OS) and tended to have a hot immune phenotype, which was characterized by

an elevated abundance of immune cell infiltration and increased activity of

immune-related pathways. Additionally, tumor immune dysfunction and

exclusion (TIDE) score was markedly decreased in the LATPS-low subgroup,

indicating an enhanced opportunity to benefit from immunotherapy. Survival

analysis in 28 advanced lung cancer patients treated with an anti-PD-1 regimen
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at Nanfang hospital revealed that the LATPS-low subgroup had better

immunotherapy benefit.

Conclusion: LATPS is an effective predictor to distinguish survival, immune

characteristics, and immunotherapy benefit in LUAD patients.
KEYWORDS
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Introduction

Immunotherapy has dramatically revolutionized the

landscape of non-small cell lung cancer (NSCLC) treatment

(1). Among the various immunotherapy, immune checkpoint

inhibitors (ICIs) reactivate the immune system to eliminate

cancer cells, exhibiting a durable anti-tumor response in

NSCLC patients (2, 3). However, not all NSCLC patients

respond to ICIs treatment. The overall response rate (ORR)

was only about 40% in PD-L1 > 50% cases (4, 5). Multiple

reported factors including PD-L1, TMB, and MSI can’t

efficiently predict immunotherapy response (6). Thus, new

biomarkers are urgently needed.

Recently, the tumor microenvironment (TME) was

demonstrated to exhibit a strong influence on the response to

ICIs treatment (7, 8). Jiang P et al. constructed a tumor immune

dysfunction and exclusion (TIDE) model based on the status of

T cell dysfunction and exclusion. The TIDE model had a higher

accuracy for predicting the immunotherapy response of

advanced NSCLC compared with traditional PD-L1 expression

and TMB (9). However, the TIDEmodel needs to conduct whole

transcriptome sequencing of the tumor samples. Besides, the

TIDE model only focused on the T cells’ status, which may not

be insufficient to reflect the complexity of the TME in patients

with NSCLC.

NSCLC accounts for nearly 85% of lung cancer and lung

adenocarcinoma (LUAD) is the most common pathological type,

making up approximately 40% of lung cancers (1). Thus, a deeper

understanding of the TME might help to discover novel

biomarkers for immunotherapy in LUAD. In the present study,

we sought to explore the immune landscape in LUAD using the

CIBERSORT and ESTIMATE algorithms, screen out differently

expressed genes and construct a LUAD tumor microenvironment

prognostic signature (LATPS). Subsequently, we explored the

clinical value of the LATPS in predicting survival and

immunotherapeutic benefits in LUAD patients.
02
Materials and methods

Patients and data collection

The RNA sequencing data and corresponding clinical

annotations were retrieved from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/). Microarray

profiles were downloaded from Gene Expression Omnibus

(GEO) (https://www.ncbi.nlm.nih.gov/geo/). We collected 1088

LUAD patients (GSE42127, GSE72094, and TCGA-LUAD) and

combined them into a meta cohort after normalization (10) to

generate the LATPS.

To evaluate the predictive value of the LATPS for

immunotherapy benefits, three independent immunotherapy

cohorts, including two NSCLC cohorts who received anti-PD-1

treatment (GSE135222, GSE126044), 28 advanced NSCLC

patients with intervention of anti-PD-1 therapy at Nanfang

Hospital (Guangzhou, China) from January 2019 to June 2021,

were chosen to verify the predictive value of the constructed

LATPS for immunotherapy benefits. The detailed clinical

characteristics are presented in Supplementary Table 1. In

Nanfang Hospital cohort, Patients were eligible for enrolment if

they were aged ≥18 years, diagnosed with advanced NSCLC, had

an Eastern Cooperative Oncology Group (ECOG) performance

status score of 0 or 1. Exclusion criteria included: unstable or

untreated central nervous system metastases, uncontrolled

infection, ongoing corticosteroid therapy over 10 mg prednisone

per day, active autoimmune disease within the past 2 years,

discontinued to received ICIs due to serious ICIs-related adverse

events (IRAs), and those who lost of follow-ups. The patients were

treated with anti-PD-1 therapy every 3 weeks as a cycle. Tumor

response was assessed every 2 cycles according to the Response

Evaluation Criteria in Solid Tumors (RECIST), version 1.1 (11).

Archived formalin-fixed, paraffin embedded (FFPE) tumor

samples of the 28 NSCLC patients were collected prior to

receiving immunotherapy. Before sample collection, it was
frontiersin.org
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approved by the Ethics Committee of Nanfang Hospital. To

validate the survival classification and predictive capability of

the LATPS, other four independent LUAD cohorts, including

GSE29016 (n=38), GSE31210 (n=226), GSE41271 (n=182), and

GSE50081 (n=127) were applied as external validation cohorts.
RNA sequencing and data processing

The RNA was first extracted from FFPE samples and

quantified on a Qubit 3.0/4.0, then it was assessed on a 2100

Bioanalyzer. Next, a part of total RNA (50 ng) was used with the

SMARTer Stranded Total RNA-Seq Kit v2 according to the low-

throughput protocol. We applied the Illumina NovaSeq 6000

Sequencing System to conduct RNA-seq libraries paired-end

sequencing after PCR enrichment and purification. To ensure

data quality, we used Trimmomatic (12), RSeQC (13), and

bowtie2 (14) to preprocess the raw reads and obtain clean

reads, which were used for subsequent analyses. Based on

default parameters, we used FeatureCounts (15) to evaluate the

expression level of each gene. All the sequencing data used in

this study passed the quality control, with the data screening

threshold set at greater than 3 G, and a uniquely mapping rate

greater than 60%.
Identification of differentially expressed
genes and functional enrichment analysis

The abundance of infiltrated immune cells in LUAD samples

was evaluated based on the LM22 gene signature with the

“CIBERSORT” package (16). We used the “ESTIMATE”

package to assess the immune and stromal contents of each

LUAD sample, which further generated TME scores, including

ImmuneScore, StromalScore, and ESTIMATEScore. The

ESTIMATEScore was calculated as the sum of ImmuneScore

and StromalScore. Higher ESTIMATEScore refers to lower

tumor purity (17). According to the CIBERSORT results, we

performed consensus clustering with the “ConsensusClusterPlus”

package (18). We applied the “km” algorithm based on

“euclidean” distance of ConsensusClusterPlus package.

Subsequently, an empirical cumulative distribution function

(CDF) diagram and a delta area diagram were generated to

visualize the clustering results, in which k represented the

number of subgroups. We chose k = 3 as the optimal value for

the delta area showed a significant reduction and CDF plateaued

when k > 3, which classified LUAD patients into three TME

subgroups. A consensus matrix was generated to demonstrate the

clustering stability of the hierarchical clustering results. Principal

component analysis (PCA) was used to visualize the clustering

pattern. DEGs among different TME subgroups were identified

using the “Limma” package with the screening threshold set at a

p-value< 0.05 and an absolute log2FoldChange > 1. “Boruta”
Frontiers in Immunology 03
package was applied to reduce superfluous genes. We conducted

gene ontology (GO) enrichment analysis utilizing the

“clusterProfiler” package (19). GO terms with p-value< 0.05

were considered statistically significant.
Constructing the LATPS for patients
with LUAD

We screened out 1035 LUAD patients (the total cohort) with

matched survival information from the meta cohort. Then, the

total cohort was randomly divided into a training cohort and a

test cohort at a ratio of 1:1. We used the training cohort to

identify prognostic genes and construct the LATPS. Firstly, we

used univariate Cox regression analysis to screen out the

significant prognostic genes from the DEGs (p-value< 0.01).

Secondly, to minimize overfitting (20), we performed LASSO

analysis using the “glmnet” package. Finally, after filtration using

LASSO analysis, we established the LATPS based on four hub

genes filtered by Multivariate Cox regression analysis.

Subsequently, we calculated the LATPS score as follows:

LATPS score 

=oiCoefficient   of   gene(i)  �   Expression   of   gene   (i)

Coefficient of gene (i) represents the regression coefficients of

the four hub genes in the Cox model and Expression of gene (i)

means the expression value of the four hub genes for patients

with LUAD. Thereafter, we classified the patients into a LATPS-

high subgroup and a LATPS-low subgroup according to the

median LATPS scores. Moreover, we conducted survival analysis

using “survival” and “survminer” packages. To evaluate the

predictive power and capability of the LATPS, Time-

dependent receiver operating characteristic (ROC) in the

“timeROC” package was analyzed. Furthermore, we performed

a prognostic meta-analysis to evaluate the comprehensive

predictive significance of LATPS in four validation cohorts

(n=573) using the “meta” R package.
Analyzing the predictive value of the
LATPS for immunotherapy response

We applied single sample gene set enrichment analysis

(ssGSEA) algorithm to quantify the relative abundance of the

immune cell infiltration in each LUAD sample using the gene set

variation analysis (GSVA) package. Twenty eight immune cell

subpopulations gene signatures were obtained from a previous

study (21) and the other 24 types of tumor-infiltrating immune

cells (TIICs) gene signatures were downloaded from the

Immune Cells Abundance Identifier (ImmuCellAI) database.

We then performed GSVA to estimate the variation of pathway

activity over a sample population in an unsupervised manner
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based on the “GSVA” package (22). We obtained the twenty five

immune-related pathways gene signatures from a previous study

(23). The Spearman method was utilized to analyze the

correlation between LATPS score and immune-related

pathways or immune cell infiltration level. Results were filtered

by setting a p-value< 0.05 as a threshold and were visualized

using lollipop plots. Thereafter, we scored LUAD patients using

the TIDE algorithm online (http://tide.dfci.harvard.edu/).

Additionally, we performed survival and ROC analyses in

three independent cohorts who received immunotherapy to

investigate the potential value of the LATPS to predict

immunotherapy benefits.
Establishing a nomogram signature

We collected clinicopathological factors integrated with

transcriptome profile of LUAD patients. Then we performed

univariate and multivariate Cox regressions to determine

whether the LATPS model was an independent prognostic

factor. We employed the “rms” and “foreign” packages to

establish a predictive nomogram on the basis of the

clinicopathological factors and LATPS score. Subsequently,

calibration curve and ROC curve analyses were used to assess

the predictive precision of the nomogram.
Statistical analysis

The Mann-Whitney U test was employed to compare

continuous variables between two groups. Kruskal–Wallis tests

were used to conduct difference comparisons of three or more

groups (24). The Chi-squared test was carried out to compare

categorical variables between two groups. Survival curve analysis

was conducted using the Kaplan–Meier method and log-rank tests

were used to identify significant differences among subgroups. A p-

value< 0.05 was considered statistically significant. All analyses were

processed with R version 4.0.2 and its appropriate packages.
Results

Characterization of immune cell
landscape in LUAD

The workflow chart of our study is shown in Figure 1. LUAD

samples (n = 1088) from GSE72094, GSE42127, and TGCA-

LUAD were combined into one meta-cohort after

normalization. Table 1 summarizes the baseline information of

the patients with LUAD in different datasets. PCA was applied to

visualize the overall expression pattern of the three LUAD

cohorts before and after normalization (Supplementary

Figures 1A, B). The ESTIMATE algorithm then generated
Frontiers in Immunology 04
TME scores, including StromalScore, ImmuneScore, and

ESTIMATEScore. Survival analyses showed that TME score-

high patients had better OS, indicating that the TME may

influence the OS of LUAD patients (Figures 2A-C).

To further analyze the immune cell landscape of LUAD

patients, we first calculated the abundance of 22 immune cell

subpopulations of each LUAD sample using the CIBERSORT

algorithm. We then performed unsupervised clustering to

categorize LUAD patients into three TME subgroups according

to the CIBERSORT results. (Supplementary Figures 2A, B). The

consensus matrix showed that when k = 3, there was little

crossover between LUAD samples (Supplementary Figure 2C).

In addition, PCA indicated a marked difference in immune cell

infiltration levels among the TME subgroups (Figure 2D). To

explore the clinical significance of the TME subgroups, we

performed a survival analysis. As a result, the three TME

subgroups showed a significant difference in OS (log-rank test,

P<0.001) (Figure 2E).

We next aimed to investigate the distribution of tumor-

infiltrating immune cells (TIICs) among TME subgroups. A

heatmap was generated to visualize the distribution of TIICs

(Figure 2F). TME subgroup A was marked by higher-level

infiltration of monocytes, M2 macrophages, activated dendritic

cells, resting dendritic cells, resting mast cells, memory B cells,

and memory resting CD4+ T cells. TME subgroup B was

characterized by higher-level infiltration of plasma cells, CD8+ T

cells, memory activated CD4+ T cells, follicular helper T cells,

gamma delta T cells, activated natural killer cells, and M1

macrophages. TME subgroup C was featured by a notable

elevated regulatory T cell (Treg) and M0 macrophage infiltration.

A boxplot further revealed the different distribution of TIICs in the

three TME subgroups (Figure 2G). Additionally, we observed a

higher StromalScore in TME subgroup A (P<0.05) (Figure 2H), a

greater ImmuneScore in TME subgroup B (P<0.05) (Figure 2I), and

a lower ESTIMATEScore in TME subgroup C (P<0.05) (Figure 2J),

suggesting differences in tumor purity among the three

TME subgroups.
Construction of the LATPS

To obtain quantitative indexes of immune cell landscape in

LUAD patients, differential expression analysis to identify the

transcriptome variations among the TME subgroups was

performed using the Limma package, which identified 149 DEGs.

Volcano plots were constructed to show the results of pairwise

comparison between the TME subgroups (Supplementary

Figures 2D-F). We then performed the Boruta method to reduce

redundant genes, leaving 146 candidate DEGs. By using the

clusterProfiler package, GO enrichment analysis of the DEGs was

carried out, and it was found that they were significantly enriched in

humoral immune response, T cell activation, and extracellular

organization (Supplementary Figures 2G).
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FIGURE 1

The workflow chart of this study.
TABLE 1 Clinical characteristics of patients with LUAD in each dataset.

Characteristics Dataset

GSE42127 GSE72094 TCGA

Platform (%) GPL6884 GPL15048 IlluminaHiSeq

Patients (n) 133 442 513

Age (%) ≤65 65 (48.9) 127 (28.7) 238 (46.4)

>65 68 (51.1) 294 (66.5) 256 (49.9)

NA 0 (0.0) 21 (4.8) 19 (3.7)

Sex (%) Female 65 (48.9) 240 (54.3) 276 (53.8)

Male 68 (51.1) 202 (45.7) 237 (46.2)

Stage (%) I 89 (66.9) 265 (60.0) 274 (53.4)

II 22 (16.5) 69 (15.6) 121 (23.6)

III 20 (15.0) 63 (14.3) 84 (16.4)

IV 1 (0.8) 17 (3.8) 26 (5.1)

NA 1 (0.8) 28 (6.3) 8 (1.6)

Survival (%) Alive 90 (67.7) 298 (67.4) 326 (63.5)

Dead 43 (32.3) 122 (27.6) 187 (36.5)

NA 0 (0.0) 22 (5.0) 0 (0.0)
Frontiers in Immunology
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Next, LUAD patients with complete prognostic information

(the total cohort) were randomly divided into a training cohort

(n = 519) and a test cohort (n = 516). There was no statistical

difference in clinicopathological parameters between the training

and test cohorts (Table 2). Univariate Cox regression analysis

was conducted in the training cohort to further explore the
Frontiers in Immunology 06
prognostic value of the 146 candidate DEGs, which identified 93

genes that were associated significantly with survival

(Supplementary Table 2). The top 30 significant genes were

shown in Figure 3A.

To avoid overfitting of the candidate genes, LASSO analysis

was performed and 12 genes were retained (Figure 3B, C).
B C

D E

F G

H I J

A

FIGURE 2

Analysis of the immune cell infiltration and TME scores of patients with LUAD. Kaplan–Meier curve analysis of the OS for different levels of (A)
StromalScore, (B) ImmuneScore, and (C) ESTIMATEScore. (D) PCA for the immune cell infiltration level of the three TME subgroups, showing a
remarkable difference in immune cell infiltration levels between different subgroups. (E) Kaplan–Meier curve analysis for the OS of patients with
LUAD in different TME subgroups. (F) Heatmap of the 22 TIICs in different LUAD cohorts. Rows represent TIICs, and columns indicate LUAD
samples. (G) The fraction of 22 TIICs, StromalScore, and ImmuneScore were compared between different TME subgroups using the Kruskal-
Wallis test. The Kruskal–Wallis test was used to compare the statistical difference of (H) StromalScore, (I) ImmuneScore and (J) ESTIMATEScore
of the three TME subgroups. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001; ns, no significance. LUAD, lung adenocarcinoma; TME, tumor
microenvironment; OS, overall survival; PCA, principal component analysis; TIIC, tumor infiltrating immune cell.
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Multivariate Cox regression analysis was used to establish the

prognostic signature and four hub genes, including UBE2C

(encoding ubiquitin conjugating enzyme E2 C), KRT6A

(encoding keratin 6A), IRX2 (encoding iroquois homeobox 2),

and CD3D (encoding CD3d molecule) were identified

(Figure 3D). We scored each patient with LUAD with following

formula: LATPS score = UBE2C*0.177738 + KRT6A*0.110354 +

IRX2*(-0.112574) + CD3D*(-0.250127).

Moreover, PCA revealed markedly different distribution patterns

of the four hub genes between the LATPS-high and LATPS-low

subgroups in the training (Figure 3E and Supplementary Figure 3A),

test (Figure 3F and Supplementary Figure 3B), and total cohorts

(Figure 3G and Supplementary Figure 3C).
Correlation between the LATPS and
the TME

We then sought to explore the immune characteristics of the

LATPS-defined subgroups. The ESTIMATE algorithm was used to

estimate tumor purity in LUAD samples. Boxplots showed distinct

distributions of StromalScore, ImmuneScore, and ESTIMATEScore

between the LATPS subgroups (Supplementary Figure 3D-F).

Notably, the ImmuneScore was significantly higher in the

LATPS-low subgroup (Mann-Whitney U test, P<2.2e−16)

(Supplementary Figure 3E). Immune activation and immune

infiltration are pivotal components of the immune system;

therefore, we evaluated the abundance of immune cells and the

activation of immune-related pathways using the GSVA package.

The heatmap showed that the LATPS-low patients had a higher

infiltration level for most TIICs (Figure 4A). For further validation,

a lollipop plot was constructed, which revealed that the LATPS
Frontiers in Immunology 07
score correlated negatively with the infiltration of most immune

cells (Figure 4B).

Additionally, a heatmap showed that the majority of

immune-related pathways were significantly enriched in the

LATPS-low subgroup, comprising antigen processing and

presentation, CTLA4 Signalling, and PDL1 Signalling

(Figure 4C). The LATPS score was correlated negatively with

the majority of immune-related pathways (Figure 4D).

Collectively, these results suggested that the LATPS-low

subgroup tended to be a hot immune phenotype and might

benefit more from immunotherapy (23).
The role of the LATPS in predicting
immunotherapeutic benefits

To further explore whether the LATPS could distinguish

potential immunotherapeutic benefits for different subgroups,

we scored each LUAD sample using TIDE algorithm and

visualized the distribution of the results as waterfall plots

(Supplementary Figure 3G-I). A higher TIDE score represents

a greater possibility of immune dysfunction and immune

evasion, indicating that the patients would receive less benefit

from immunotherapy (9). Notably, the LATPS-low patients had

a lower TIDE score, suggesting that these patients might achieve

a better immunotherapy response (Figure 5A-C).

To verify the above speculation, we assessed the predictive value

in NSCLC cohorts receiving anti-PD-1 treatment, including

GSE135222, GSE126044 and Nanfang Hospital cohorts. As a

result, we could find that LATPS-low patients had better

progression-free survival (PFS) in GSE135222 cohort (log-rank

test, P=0.017) (Figure 5D) and Nanfang Hospital cohort (log-rank
frontiersin
TABLE 2 Clinical characteristics of patients with LUAD in different dataset.

Characteristics Dataset p value

Training cohort Test cohort

n 519 516

Age (%) <=65 207 (39.9) 214 (41.5) 0.736

>65 306 (59.0) 298 (57.8)

NA 6 (1.2) 4 (0.8)

Sex (%) Female 270 (52.0) 287 (55.6) 0.272

Male 249 (48.0) 229 (44.4)

Stage (%) I 318 (61.3) 295 (57.2) 0.102

II 94 (18.1) 114 (22.1)

III 72 (13.9) 86 (16.7)

IV 27 (5.2) 15 (2.9)

NA 8 (1.5) 6 (1.2)

Survival (%) Alive 355 (68.4) 341 (66.1) 0.467

Dead 164 (31.6) 175 (33.9)
NA, not available.
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test, P=0.005) (Figure 5F). The AUC of LATPS for predicting

immunotherapy benefits was 0.643 at 6 months, 0.702 at 12

months, and 0.858 at 18 months follow-up in GSE135222 cohort

(Figure 5E). As for NanfangHospital cohort, the AUCwas 0.548 at 6

months, 0.656 at 12 months, and 0.700 at 18 months follow-up,

respectively (Figure 5G). Moreover, the LATPS score had the

potential to distinguish patients with different anti-PD-1 responses

(Mann-Whitney U test, P=0.052) (Supplementary Figure 4A). ROC

analysis revealed that the LATPS had a promising accuracy to

predict immunotherapy response in the GSE126044 cohort, with
Frontiers in Immunology 08
an AUC of 0.818. (Supplementary Figure 4B). These findings

strongly suggested that the LATPS is a promising prognostic

biomarker that can predict immunotherapy benefits.
Exploring and validating the prognostic
value of the LATPS

To further explore the prognostic value of the LATPS in

patients with LUAD, we performed survival analysis in the
B

C D

E F G

A

FIGURE 3

Construction of the LATPS. (A) Forest plot presenting the top 30 significant genes from the univariate Cox analysis results. (B) A coefficient
profile plot was generated against the log (lambda) sequence. Selection of the optimal parameter (lambda) in the LASSO model. (C) LASSO
coefficient profiles of the 93 candidate prognostic genes. (D) Forest plot illustrating the multivariate Cox model results. PCA showing the
distribution differences between the LATPS-high and LATPS-low subgroups of the (E) training, (F) test, and (G) total cohorts. LATPS, LUAD tumor
microenvironment prognostic signature; LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1064874
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2022.1064874
training cohort. As it revealed that patients in the LATPS-low

subgroup had a significantly better OS (log-rank test, P<0.001)

(Figure 6A). We then performed a Time-dependent ROC

analysis to evaluate the accuracy of the LATPS. The areas

under the curves (AUCs) of this signature for 1-, 3-, and 5-

year OS were 0.736, 0.722, and 0.698, respectively (Figure 6B).

We then aimed to interrogate whether the prognostic predictive

power of the LATPS is of robustness, the patients were divided into

LATPS-high and LATPS-low subgroups in the test cohort

according to the median LATPS score used in the training

cohort. Consistent with the results in the training cohort, survival

analysis showed that the LATPS-low subgroup experienced a better

outcome than the LATPS-high subgroup in the test cohort (log-

rank test, P< 0.001) (Figure 6C) and the AUC at 1, 3, and 5 years
Frontiers in Immunology 09
was 0.679, 0.683, and 0.656 in the test cohort (Figure 6D).

Meanwhile, we assessed the predictive value of LATPS in internal

independent datasets, including the TCGA dataset, GSE42127

dataset, and GSE72094 dataset. The results from the above

datasets showed the same trend in OS, with great significance

(log-rank test, P< 0.001, P = 0.021, P< 0.001), and the AUC at 1, 3,

and 5 years was 0.704, 0.688, and 0.638 in TCGA dataset; 0.800,

0.705, 0.705 in GSE42127 dataset; 0.697, 0.724, and 0.788 in

GSE72094 dataset, respectively (Figure 6E-J). Moreover, we

performed a prognostic meta-analysis to assess the integrated

predictive significance of LATPS. The selected fixed effects model

of the meta-analysis showed that the LATPS is a significant

predictor of OS in external LUAD patients (HR: 1.86, 95%CI:

1.51-2.30, P< 0.001) (Figure 6K).
B

C D

A

FIGURE 4

The LATPS score is associated with immune cell infiltration and immune activation. (A) Heatmap showing the LATPS score and relative
abundance of 24 TIICs. (B) Lollipop plot showing the correlation between the LATPS score and the ssGSEA scores of 24 TIICs. (C) Heatmap
presenting the LATPS score and GSVA scores of 25 immune-related pathway gene sets. (D) Lollipop plot presenting the correlation between the
LATPS score and GSVA scores of 25 immune-related pathway gene sets. LATPS, LUAD tumor microenvironment prognostic signature; TIIC,
tumor infiltrating immune cell; ssGSEA, single sample gene set enrichment analysis; GSVA, gene set variation analysis.
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The association between the LATPS and
clinical characteristics

Next, univariate and multivariate Cox regression analyses

were conducted to assess whether the LATPS score could predict

patients’ prognoses independently. The results indicated that

both the stage and LATPS score can independently predict

patients’ prognoses (Table 3). Time-dependent ROC curves

analysis to further compare the predictive capacity between

the LATPS score and clinicopathological factors revealed that
Frontiers in Immunology 10
the LATPS score had a higher AUC than the other factors

(Figures 7A-C). This implied that the LATPS can more precisely

predict the patient’s prognosis than the other clinicopathological

factors. Boxplots were generated to describe the distribution of

the LATPS score via stratification of patients based on age, sex,

and stage. Results showed that the LATPS score was notably

elevated in males, patients aged below 65 years, and in stage III–

IV (Figures 7D-F). Moreover, stratified survival analysis revealed

that LATPS-low patients were linked to better OS (Figures 7G-

L), which agreed with our result in the training cohort.
B C

D E

F G

A

FIGURE 5

The role of the LATPS in the prediction of immunotherapeutic benefits. The relative distribution of TIDE was compared between the LATPS-high and
LATPS-low subgroups in the (A) training, (B) test, and (C) total cohorts. (D, E) Kaplan–Meier curve and ROC curve analyses of the LATPS for predicting
immunotherapy benefits in GSE135222 cohort. (F, G) Kaplan–Meier curve and ROC curve analyses of the LATPS for predicting immunotherapy benefits
in Nanfang Hospital cohort. LATPS, LUAD tumor microenvironment prognostic signature; ROC, receiver operating characteristic.
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B C D

E F G H
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FIGURE 6

Identification of the LATPS in the training, test, and external validation cohorts. (A, B) Kaplan–Meier curve and the ROC curve for training cohort.
(C, D) Kaplan–Meier curve and the ROC curve for test cohort. (E, F) Kaplan–Meier curve and the ROC curve for TCGA dataset. (G, H) Kaplan–
Meier curve and the ROC curve for GSE42127 dataset. (I, J) Kaplan–Meier curve and the ROC curve for GSE72094 dataset. (K) Results of the
prognostic meta-analysis on the basis of four external LUAD cohorts. LATPS, LUAD tumor microenvironment prognostic signature; ROC,
receiver operating characteristic.
TABLE 3 Univariate and multivariate Cox regression analysis in training, test, and total cohorts.

Variables Univariate analysis Multivariate analysis

HR HR.95L HR.95H P value HR HR.95L HR.95H P value

Training cohort

Age 1.004 0.989 1.020 0.574 1.002 0.986 1.018 0.841

Sex 1.256 0.921 1.715 0.150 1.081 0.781 1.497 0.637

Stage 1.863 1.615 2.149 0.000 1.745 1.506 2.022 0.000

LATPS score 1.866 1.617 2.153 0.000 1.820 1.559 2.125 0.000

Test cohort

Age 1.018 1.002 1.034 0.031 1.019 1.004 1.035 0.015

Sex 1.362 1.008 1.839 0.044 1.144 0.837 1.566 0.399

Stage 1.448 1.241 1.690 0.000 1.462 1.248 1.711 0.000

LATPS score 1.570 1.350 1.826 0.000 1.550 1.319 1.822 0.000

Total cohort

Age 1.011 1.000 1.022 0.056 1.012 1.001 1.023 0.039

Sex 1.296 1.045 1.609 0.018 1.070 0.859 1.332 0.547

Stage 1.655 1.491 1.838 0.000 1.608 1.445 1.788 0.000

LATPS score 1.711 1.542 1.897 0.000 1.700 1.524 1.897 0.000
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Comparison with other published LUAD
signatures and construction of a
nomogram signature

To further evaluate the survival classification and predictive

capacity of LATPS. We not only compared the LATPS with

clinicopathological factors but also compared the predictive
Frontiers in Immunology 12
performance of two TME-based LUAD signatures. Wu signature

was an 8-gene signature (25). Yue signature was a signature

consisting of 3 genes (26). We applied Kaplan–Meier curve and

the ROC curve analyses to assess the predictive efficacy of the above

signatures. As a result, (LATPS, Wu signature, and Yue signature)

had the same significant trend in survival, for patients in the low-risk

group had better OS (log-rank test, P<0.001,p<0.001, p<0.001), and
B C

D E F

G H I

J K L

A

FIGURE 7

Confirmation of the LATPS via stratification of patients based on specific demographic and clinical features. Time-dependent ROC curve analysis of
the LATPS score and clinicopathological factors to assess the predictive capacity of the LATPS in the (A) training, (B) test, and (C) total cohorts. (D-F)
Boxplot showing the relationships between the LATPS score and clinicopathologic factors for all patients with LUAD. (G-L) Kaplan–Meier curve
analysis for patients of (G) age > 65, (H) age ≤ 65, (I) Male, (J) Female, (K) Stage I–II, (L) Stage III–IV in the LATPS-high and LATPS-low subgroups.
LATPS, LUAD tumor microenvironment prognostic signature; LUAD, lung adenocarcinoma; ROC, receiver operating characteristic.
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the AUC was 0.704, 0.715, 0.636 at 1 year; 0.688, 0.692, 0.651 at 3

years; and 0.638, 0.627, 0.569 at 5 years, respectively (Figures 8A-C).

Next, to assess the clinical utility of LATPS, a nomogram

signature was established according to the clinicopathological

factors and LATPS score in the training cohort. Each patient was

scored according to their clinical features and LATPS score to

predict survival probability (Figure 8D). Calibration curve analysis

revealed that actual and nomogram-predicted OS corresponded
Frontiers in Immunology 13
well (Figure 8E). ROC curve analysis showed that the nomogram

signature had more favorable predictive accuracy than other

clinicopathological signatures (Figures 8F-H). Moreover,

Calibration curve and ROC curve analyses of the nomogram

signature in internal cohorts indicated that the nomogram

signature was of favorable predictive capacity for OS

(Supplementary Figures 5A-H). Collectively, these results

suggested that the LATPS had clinical utility as a prognostic tool.
B C

D E

F G H

A

FIGURE 8

Comparison of the LATPS with other published gene signatures and construction of a nomogram. Kaplan–Meier curve and the ROC curve of (A)
LATPS, (B) Wu signature, and (C) Yue signature. (D) Nomogram based on the LATPS and clinical information of patients with LUAD. (E)
Calibration curve of the nomogram used for predicting OS at 1, 3, and 5 years. Time-dependent ROC curves analysis of the nomogram and
clinicopathological factors in predicting (F) 1-, (G) 3-, and (H) 5-year OS. LATPS, LUAD tumor microenvironment prognostic signature; LUAD,
lung adenocarcinoma; OS, overall survival; ROC, receiver operating characteristic.
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Discussion

ICIs treatment only benefits a fraction of NSCLC patients with

PD-L1 > 1% (5). Nevertheless, the IMpower132 study showed an

OS benefit in PD-L1-negative patients treated with ICI therapy (27).

Moreover, a previous study revealed that the accuracy of TMB in

predicting the immunotherapy response for NSCLC is only about

60% (9). Therefore, conventional PD-L1 expression and TMB may

not be enough to distinguish patients who would benefit from ICIs.

Jiang P and Daniela ST pointed out that the status of T cells and the

infiltration of T cells may be promising biomarkers for NSCLC

treated with immunotherapy (9, 28). However, the TME of NSCLC

is complicated and heterogeneous, which consists of various

immune cells apart from T cells. Furthermore, taking into

consideration that LUAD and lung squamous carcinoma (LUSC)

were different in the tumor immune landscape (29), a deeper

mining of the TME of LUAD may provide new insights for

predicting immunotherapy response.

We analyzed the immune landscape in LUAD samples and

identified three distinct TME subgroups. Notably, TME

subgroup A was associated with the best OS and exhibited a

significant increase in the infiltration of memory B cells, memory

resting CD4+ T cells, monocytes, M2 macrophages, dendritic

cells, and resting mast cells. Besides, TME subgroup B was

associated with better prognosis, featured by an elevated

infiltration of plasma cells, CD8+ T cells, gamma delta T cells,

activated NK cells, M1 macrophages, and a higher ImmuneScore

compared with TME subgroup C. Conversely, TME subgroup C

was associated with the worst OS and was marked by a greater

density of Tregs and M0 macrophages infiltration. Previous

studies have shown a high Treg density was associated with

poor prognosis in a variety of cancers, including lung cancer (30,

31). Higher infiltration of CD8+ T cells and M1 macrophages

was related to better survival outcomes, which agrees with

previous studies (32, 33). Thus, the immune cell infiltration

pattern played an important role in patient’s prognosis, which

would provide guidance to predict clinical outcomes.

Clinically, it is difficult to obtain the immune infiltration

pattern of each LUAD patient. It needs to perform whole

transcriptome sequencing (detect approximately 20,000 genes)

of LUAD tumor samples to identify the TME subgroups, which

would be expensive and impractical in clinical practice. Thus, we

aim to construct a simple and efficient signature to reflect the

immune infiltration pattern and predict the survival of LUAD

patients based on the identified TME subgroups. Besides, we

wanted to unravel the underlying biological characteristics of the

three TME subgroups and screen out the key genes that may

influence the OS of the distinct TME subgroups. Therefore, we

explored the transcriptome variation among the TME

subgroups. Subsequently, we identified 146 TME-related DEGs

after performing differential expression analysis. GO functional

enrichment analysis revealed that the DEGs were mainly

associated with immune-related GO terms, including humoral
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immune response, regulation of cell killing and T cell activation.

Studies have demonstrated the abundance and dysfunction of

immune cells might affect antitumor immunity and

immunotherapy response (9, 34, 35). Thus, our results

indicated that imbalances in these immune-related functions

or pathways might result in diverse clinical outcomes in patients

with LUAD. Based on the expression of the 146 DEGs may help

to distinguish different infiltration patterns and provide

personalized treatment.

However, in the clinic, it would be impractical to determine

the mRNA expression of the 146 TME-related DEGs. Therefore,

we utilized computational algorithms to select hub genes and

established a LUAD TME prognostic signature (LATPS),

comprising four hub prognostic genes (UBE2C, KRT6A, IRX2,

and CD3D). Reportedly, these four genes correlated with patient

survival. Overexpression of UBE2C was reported as an

independent risk factor associated with dismal outcomes in

patients with lung cancer (36, 37). Reportedly, KRT6A is

associated with cell proliferation and invasion, which drives

cancer progression by upregulating glucose-6-phosphate

dehydrogenase (G6PD) through MYC signaling pathway (38).

Consistent with previous studies, our results revealed that both

UBE2C and KRT6A were LUAD risk factors. Elevated expression

of IRX2 was linked with shorter OS in nasopharyngeal

carcinoma (NPC) (39). Interestingly, we identified IRX2 as a

protective factor in LUAD; however, limited studies have

focused on the role of IRX2 in LUAD. For CD3D, its higher

expression is related to a better outcome in colon cancer (40).

Previous studies discovered that CD3D correlates highly with

lymphocyte infiltration and is regarded as a promising

therapeutic target (41, 42). In addition, PCA revealed that the

mRNA expression pattern of the four hub genes could categorize

patients with LUAD into two different subgroups, implying that

there may be a difference in immune infiltration pattern and

survival between the LATPS-defined subgroups.

ICIs have revolutionized the treatment of NSCLC and

improved outcomes (43, 44). Therefore, understanding the

response to immunotherapy may help to predict patients’

prognoses. Studies revealed that TIICs of the TME play a

crucial role in immunotherapy response (7, 8). Besides,

patients with an inflammatory phenotype or an immunity-

high phenotype have a better prognosis and are thought to be

more likely to benefit from immunotherapy (23, 45). Therefore,

we further explored the immune infiltration landscape in the

LATPS-defined subgroups. Interestingly, similar to previous

studies, patients in the LATPS-low subgroup tended to be a

hot immune phenotype, characterized by elevated immune cell

infiltration and hyperactivated immune-related pathways. Thus,

our results suggested that the LATPS is of potential predictive

value in assessing immunotherapy response. Cancer

immunotherapy using ICIs functions by blocking inhibitory

signaling and reactivating cytotoxic T lymphocytes to attack

cancer cells (46). Multiple factors affect immunotherapy
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effectiveness and few biomarkers have been developed to

accurately assess the benefit of immunotherapy. Jiang P et al.

identified the TIDE score, which quantifies two different

mechanisms of tumor immune escape, including T cell

dysfunction and exclusion. A patient with a lower TIDE score

is likely to benefit from immunotherapy. The accuracy of the

TIDE score for predicting immunotherapy response in NSCLC

was about 80% (9). While the TIDE score was based on small

samples of 21 NSCLC patients treated with immunotherapy and

it was complicated to calculate, limiting its clinical application.

We observed a lower TIDE score in the LATPS-low subgroup,

which indicated that the LATPS might be useful for patient

selection before ICI treatment.

To verify the predictive value of the LATPS in elevating ICI

treatment benefits, we performed survival analysis in

immunotherapy cohorts. In the GSE135222 cohort, 27

advanced NSCLC patients received anti-PD-1 therapy. As

shown in Figure 5D, patients with lower LATPS score

obtained longer PFS (log rank test, p = 0.017). In addition, we

collected FFPE tumor samples of NSCLC patients treated with

anti-PD-1 based therapy at Nanfang Hospital for RNA

sequencing analysis. Among them, 20 patients with available

survival information. Consistently, the LATPS-low subgroup got

longer PFS than the LATPS-high subgroup (log rank test, p =

0.005), suggesting that the LATPS could distinguish different

outcomes in patients who received immunotherapy. The AUC of

LATPS for predicting immunotherapy benefits was higher in the

GSE135222 cohort compared with the Nanfang Hospital cohort.

Considering the sample size of Nanfang Hospital is smaller than

the GSE135222 cohort, which may explain the lower ACU in the

Nanfang Hospital cohort. Thus, further large scale

immunotherapy cohorts are needed to verify our results.

Moreover, ROC curves of the above two cohorts revealed that

the LATPS is a potential predictor to predict immunotherapy

benefits with an AUC of 0.548 to 0.858. Besides, it was evident

that LATPS has better predictive accuracy at longer follow-ups

according to the ROC curve analysis.

Subsequently, we further evaluated the clinical value of the

LATPS for predicting immunotherapy response. In the

GSE126044 NSCLC immunotherapy cohort, patients who

responded to anti-PD-1 therapy had lower LATPS scores

compared with none responders (Mann-Whitney U test, p =

0.052). Although it was not statistically significant, there was a

trend that lower LATPS scores were more likely to benefit from

immunotherapy. Besides, the GSE126044 was grounded on small

numbers of samples, consisting of only 16 patients. Further large

immunotherapy cohorts are needed to verify this hypothesis. The

TIDE model has been reported to predict the outcome of NSCLC

treated with first-line anti-PD1 or anti-CTLA4 antibodies with an

AUC of about 0.80 (9). In the GSE126044 cohort, the AUC of

LATPS for predicting immunotherapy response was 0.818, which

was comparable with the TIDE model. Therefore, our results

showed that the LATPS model could serve as a promising
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biomarker, which would facilitate the development of new

avenues for personalized immune-intervention strategies. In

addition, The TIDE model mainly focuses on the T cell status,

whichmight be insufficient to reflect the complexity of the TME in

LUAD. Besides, whole transcriptome sequencing of tumor

samples is needed to generate the TIDE score, which is

inconvenient to conduct in the clinic. Our LATPS model

comprises only four genes, making it easier than the TIDE

model to apply in clinical practice.

Next, we aimed to assess the survival classification and

predictive efficacy of LATPS. Survival analysis revealed that

LATPS-low patients had better prognoses than the LATPS-

high subgroup in the training cohort, indicating that the

LATPS was closely linked to LUAD survival. Furthermore,

validation of the predictive accuracy of the LATPS using

internal cohorts and stratification survival analysis

demonstrated that the LATPS can more precisely predict the

prognosis of LUAD compared with other clinicopathological

factors. Moreover, univariate and multivariate Cox regression

analyses identified the LATPS as an independent risk factor to

predict patient prognosis, which was confirmed by the

prognostic meta-analysis. Collectively, our results showed that

the LATPS is a robust and generalizable predictor for survival

in LUAD.

We also compared the LATPS with other previously

published signatures (Wu signature (25) and Yue signature

(26)), which were based on the TME of LUAD patients. ROC

analysis demonstrated that the LATPS has a better predictive

ability than Yue signature. Meanwhile, LATPS has a lower AUC

for predicting OS at 1 and 3 years, but a higher AUC at 5 years

compared with Wu signature. However, LATPS is a 4-gene

signature, which is easier to conduct than the 8-gene signature

(Wu signature) in the clinic. These results indicate that the

overall performance of our LATPS is superior to others.

Several studies have constructed prognostic models to

predict patients’ OS; however, few of them have been applied

clinically (33, 47, 48). Nomograms can conveniently and

efficiently estimate cancer prognosis, and are used widely in

clinical cancer research (49). Thus, we established a nomogram

according to the LATPS score and clinicopathological factors,

which can be conveniently obtained in the clinic. Calibration

curve analysis showed favorable accordance between

nomogram-predicted and actual OS in the training cohort.

Additionally, ROC curve analysis showed that the nomogram

signature had an AUC of 0.791, which was higher than other

clinicopathological models. Thus, our results suggested that the

LATPS is a promising prognostic tool with clinical utility.

Conclusively, we applied integrated analysis to explore the

TME of LUAD and constructed a LATPS, which can serve as a

reliable tool to predict the prognosis and immunotherapy

benefits of LUAD patients; however, further large scale studies

are needed to validate the signature in LUAD cohorts treated

with immunotherapy.
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SUPPLEMENTARY FIGURE 1

(A) Principal component analysis showing the distribution differences of
different LUAD cohorts before removing batch effects using the ComBat

algorithm. (B) Principal component analysis showing the distribution
differences of different LUAD cohorts after removing batch effects using

the ComBat algorithm. LUAD, lung adenocarcinoma.

SUPPLEMENTARY FIGURE 2

(A) Empirical cumulative distribution function diagram and (B) delta area
diagram showing the results of consistent clustering based on the

CIBERSORT results, where k represents the number of subgroups. (C)
Consensus matrix presenting the clustering stability of hierarchical

clustering for k = 3. (D-F) Volcano plots showing the DEGs between

different TME subgroups. Red dots represent upregulated genes and
green dots represent downregulated genes. (G) GO enrichment analysis

of the 146 DEGs derived from the three TME subgroups. DEGs,
differentially expressed genes. TME, tumor environment. GO,

gene ontology.

SUPPLEMENTARY FIGURE 3

Principal component analysis showing the distribution differences
between the LATPS-high and LATPS-low subgroups of the (A) training,
(B) test, and (C) total cohorts. The distribution of (D) StromalScore, (E)
ImmuneScore, and (F) ESTIMATEScore between the LATPS-high and

LATPS-low subgroups. Statistical significance was assessed using the
Mann-Whitney U test. The distribution of TIDE of patients with LUAD

patients in the (G) training, (H) test, and (I) total cohorts. LATPS, LUAD
tumor microenvironment prognostic signature; TIDE, tumor immune
dysfunction and exclusion; LUAD, lung adenocarcinoma.

SUPPLEMENTARY FIGURE 4

(A) Distribution of the LATPS score in patients with different response
status to anti-PD-1 therapy of NSCLC in GSE126044. (B) ROC analysis of

the LATPS to predict an anti-PD-1 response. NSCLC, non-small cell lung

cancer ; PD-1 , p rogrammed ce l l dea th 1 ; ROC, rece i ve r
operating characteristic.

SUPPLEMENTARY FIGURE 5

Calibration curve for predicting overall survival at 1, 3, and 5 years in (A)
test and (B) total cohorts. (C-H) Time-dependent ROC curves analysis of

the nomogram and clinicopathological factors to predict 1-, 3-, and 5-

year overall survival in (C-E) test and (F-H) total cohorts. ROC, receiver
operating characteristic.
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