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Dysregulation of the immune
response in TGF-b signalopathies

Marco M. Rodari , Nadine Cerf-Bensussan
and Marianna Parlato*

Université Paris-Cité, Institute Imagine, Laboratory of Intestinal Immunity, INSERM U1163,
Paris, France
The transforming growth factor-b (TGF-b) family of cytokines exerts

pleiotropic functions during embryonic development, tissue homeostasis and

repair as well as within the immune system. Single gene defects in individual

component of this signaling machinery cause defined Mendelian diseases

associated with aberrant activation of TGF-b signaling, ultimately leading to

impaired development, immune responses or both. Gene defects that affect

members of the TGF-b cytokine family result in more restricted phenotypes,

while those affecting downstream components of the signaling machinery

induce broader defects. These rare disorders, also known as TGF-b
signalopathies, provide the unique opportunity to improve our understanding

of the role and the relevance of the TGF-b signaling in the human immune

system. Here, we summarize this elaborate signaling pathway, review the

diverse clinical presentations and immunological phenotypes observed in

these patients and discuss the phenotypic overlap between humans and

mice genetically deficient for individual components of the TGF-b
signaling cascade.

KEYWORDS
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Introduction

The TGF-b family comprises a group of pleiotropic cytokines exerting a broad range of

responses on both immune and non-immune cells. The key role of TGF-b in immunity has

been established in genetically-engineered mice. This cytokine orchestrates T lymphocyte

regulation by limiting effector T cell functions and promoting regulatory T cell development

and functions. In humans, genome wide association studies (GWAS) have linked the SMAD3

locus - a key component of the TGF-b pathway - to predisposition to inflammatory bowel

disease (IBD) and asthma (1). In addition, observations in patients carrying single gene

defects in individual components of the TGF-b family (such as TGF-b1) (2) and their

downstream signaling components (such as TGFb-R1/2 or SMAD2/3) have further

underscored the role of TGF-b in the pathogenesis of intestinal inflammation and allergic
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diseases. In addition to gene defects that directly affect the TGF-b
cytokine family signaling, others affect TGF-b responses indirectly

by impacting the nuclear transport of signaling components (such

as IPO8) (3), or by interfering with cross-regulatory non-canonical

pathways (such as ERBIN or JNK1) (4, 5). Here, we provide an

overview of the TGF-b signaling pathway (Figure 1) and review

Mendelian disorders affecting components of the TGF-b signaling

machinery, also known as TGF-b signalopathies (6). These defects

commonly result in a complex syndrome combining craniofacial,

cardiovascular and skeletal defects, features that have been

extensively reviewed elsewhere (6, 7). Here, we intend to focus on

features of immune dysregulation which are also associated with

these defects and often overlooked and to discuss the possible

mechanisms underlying abnormal TGF-b signaling and

disease pathology.
The TGF-b signaling pathway

The human TGF-b family includes thirty-three genes that

encode for homodimeric or heterodimeric secreted cytokines,

including TGF-b1, TGF-b2 and TGF-b3, activins, nodals, bone
morphogenetic proteins (BMPs), and growth and differentiation

factors (GDFs). Identified in 1983 and best characterized (8),

TGF-b1 remains the most emblematic member of the family and,

as discussed below, the key actor of the family in the immune

system. TGF-b1 is synthesized in the rough endoplasmic

reticulum in precursor form featuring a large ~250 residue

amino-signal peptide, a central pro-domain, called latency

associated protein (LAP), and a short ~110 residue carboxy-

terminal mature peptide. After initial biogenesis and signal

peptide cleavage, two pro-peptides dimerize via intermolecular

disulfide bonds and translocate into the Golgi complex, where

TGF-b1 is cleaved from LAP by FURIN. The two products remain

non-covalently bound and form the small latent complex (SLC)

(9). In this conformation, the SLC is inactive as mature TGF-b is

hidden and protected deep inside the protein structure (10). The

SLC typically associates with either a family of proteins called

latent TGF-b binding proteins (LTBPs), forming the large latent

complex (LLC) that in turn associates with the extra-cellular

matrix (ECM) upon secretion (11, 12), or with membrane

proteins GARP (glycoprotein-A repetitions predominant) (13).

Several mechanisms regulate the release of active TGF-b,
including aV integrins expressed at the cell surface of many cell

types and extracellular proteases (9, 14). Mechanistically, it has

been suggested that physical traction resulting from interaction

between ECM-associated latent TGF-b and cell-surface aV
integrins ultimately leads to conformational changes of the

latent complexes and to active TGF-b release (15). In addition,

this conformational change is thought to allow higher accessibility

of the latent complex to extracellular proteases (9). Overall

physiological release of active TGF-b likely requires synergic

actions of both integrins and proteases (16).
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TGF-bs signal via a pair of transmembrane serine/threonine

protein kinases known as the type I (TGF-bR1 or ALK5) and

type II receptors (TGF-bR2). Binding of one of these cytokines

to a TGF-bR2 dimer triggers the recruitment and subsequent

transphosphorylation of TGF-bR1 which, in turn, activates the

downstream canonical signaling cascade via the receptor-

regulated SMADs (R-SMADs). BMP subfamily receptors

phosphorylate SMAD1, SMAD5 and SMAD8, while TGF-b
subfamily receptors mainly phosphorylate SMAD2 and

SMAD3. Upon phosphorylation, R-SMADs dissociate from

the receptor and form a heterotrimeric transcriptional

complex with SMAD4. Typically, heterotrimers of SMAD2,

SMAD3 and SMAD4 are formed, but complexes that contain

homodimers of SMAD2 or SMAD3 may form as well and target

distinct genes (17). Localization and concentration of SMADs

are regulated by anchor for receptor activation (SARA) proteins

which recruit non-phosphorylated SMADs to the activated

receptors for phosphorylation. Upon receptor activation,

phosphorylation of SMADs causes their dissociation from

SARA and formation of SMAD2/3–SMAD4 complexes (18).

Heteromeric SMAD complexes translocate and accumulate in

the nucleus where they bind DNA directly but with low affinity

and specificity or indirectly by interacting with other DNA-

binding proteins to target specific genes for transcriptional

regulation. Regulatory mechanisms are in place to avoid

spontaneous transcriptional activation of TGF-b target genes.

Thus, in absence of TGF-b stimuli, SKI inhibits the expression of

TGF-b target genes by binding Smad Binding Elements (SBEs)

complexed with SMAD4 and by recruiting other repressors and

histone deacetylases (HDA) (19). SMADs turnover in the

nucleus is tightly controlled. Nuclear SMAD levels are kept in

check either by regulating protein turnover, before and after

translocation into the nucleus, or by regulating the subcellular

localization of SMADs. SMAD6 and SMAD7 are inhibitory

molecules that suppress receptor and SMAD signaling

functions. SMAD7 recruits SMURF2 ubiquitin ligases to TGF-

b receptors to promote their ubiquitin-mediated degradation

(20, 21). Inhibitory SMADs also associate with R-SMADs,

preventing the formation of R-SMAD complexes with

SMAD4. In addition, the expression of SMAD6 and SMAD7

induced by TGF-b family members also triggers negative

feedback (22). SMAD interactions with distinct karyopherin

proteins might also result in differential regulation of nuclear

import depending on the SMAD, which may represent a

complementary layer of regulation of the dynamics of SMAD-

mediated transcription responses. Once in the nucleus, SMAD

trimers interact with specific transcriptional factors as well as

with regulatory proteins, to initiate transcription of specific

target genes. Upon dephosphorylation by the nuclear

phosphatase PPM1A, SMAD trimeric complexes disassemble

and SMAD proteins are exported out of the nucleus by different

exportins, such as RanBP3, thus facilitating termination of TGF-

b signals (23, 24).
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FIGURE 1

TGF-b signaling pathway: from TGF-b biogenesis to gene expression regulation. Mature TGF-b is secreted in form of small and large latent
complexes (SLC and LLC) and associates with fibronectin fibers and fibrillin microfibrils composing the extracellular matrix (ECM), as well as with
plasma membrane-associated proteins (not shown). Upon interaction with extracellular proteases and integrins on the surface of TGF-b
responsive cells, mature TGF-b is released. Active TGF-b binds to type II receptors (TbRII), which recruits and activates type I receptors (TbRI).
Receptor-induced phosphorylation of SMAD2 and SMAD3 induces their dissociation from SARA and formation of SMAD2/3-SMAD4 complexes
which in turn translocate to the nucleus in an IPO8-mediated manner to initiate signaling. In the absence of TGF-b, SKI is bound to DNA at
Smad Binding Elements (SBEs) with SMAD4, recruiting others repressors and histone deacetylases (HDA) to inhibit the expression of TGF-b
target genes. SMAD6/7 attenuate ligand-induced SMAD activation, preventing SMAD2/3 recruitment to TbRI and competing with SMAD4 for
binding to SMAD2/3, while ERBIN competes with SARA for binding to SMAD2/3, segregating phosphorylated SMAD2/3 in the cytoplasm. The
TGF-b TbRI/TbRII complex can also activate non-canonical non-SMAD signaling pathways, including the ERK MAP kinase and the p38 MAPK and
JNK pathways, the PI3K-AKT-mTOR and the JAK-STAT signaling, which overall complement SMAD-dependent signaling and strongly
complicate the output of a TGF-b trigger. Proteins found mutated in TGF-b signalopathies are indicated with a star, blue if patients do not
present with immune dysregulation (fibrillin and SKI), red if they present with immune dysregulation (TGF-b1, TGF-bRI and TGF-bRII, SMAD2 and
SMAD3, IPO8, ERBIN and JNK).
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TGF-b receptors stimulation can also result in the activation of

SMAD-independent pathways that are collectively referred to as

non-canonical TGF-b signaling pathways (25). They include

branches of ERK, JNK, p38 MAPK, NF-kB, PI3K-AKT, JAK-
STAT and small GTPase pathways (10, 26, 27). Upon activation,

direct phosphorylation of ShcA by TGF-bRI induces its association
with Grb2/Sos and sequential Ras, MEK1/2 and ERK1/2 activation

(28). Thus, initiation of the ERK pathway also depends on TGF-bRI
mediated phosphorylation. In contrast, TGF-bRI kinase activity

seems to be dispensable for the activation of other non-SMAD

signaling pathways. Recruitment of the E3 ubiquitin ligases TRAF4

and TRAF6 onto the TGF-b receptors leads to intramolecular

polyubiquitination of TRAF4 or TRAF6, and consequent

recruitment and ubiquitination of the MAPKK kinase TAK1.

This post-translational modification does not lead to TAK1

degradation, but instead to MAPK kinases (MKKs)

phosphorylation by TAK1 and finally to activation of either JNK

or p38 (29, 30). Eventually, TRAF6 can also interact with IKK

proteins and trigger NF-kB signaling (31). In a similar way, TRAF6-

mediated ubiquitination seems to be central for TGF-b-dependent
activation of PI3K and AKT in the mTOR pathway (32). Finally,

TGF-b can also regulate other non-SMAD pathways, including

Rho-like GTPases. Yet, more work is needed to better elucidate the

details of their TGF-b-dependent activation (10, 33, 34). When and

how TGF-b stimulation can lead to SMAD-dependent or

-independent signals is clearly cell- and context- dependent, but

the intricate regulatory mechanisms that orchestrate these events

remain to be fully deciphered. It has been shown that SMAD-

dependent signaling is associated with clathrin-bound receptors,

while non-SMAD signaling pathways originate from lipid-raft

caveolar compartments (35), suggesting that the variability in

signaling output might depend on functionally different receptor

complexes (10). Several kinases, including some members of the

MAP kinase family, can also phosphorylate R-SMADs, and thereby

regulate their effector functions in a TGF-b-independent manner.

As a consequence, R-SMADs activation can result from stimulation

by cytokines distinct from TGF-b family members. Moreover,

translocation of R-SMADs to the nucleus can induce a delayed

activation of non-SMAD pathways via gene-expression regulation,

further complicating the study of downstream molecular events

(10). Overall, these multiple signaling cross-talks enable a broad

diversity of responses and underlie the versatility in terms of dosage,

spatiotemporal activity and cell context of this family of cytokines in

regulating cellular processes. A range of inherited human diseases

results from single-gene variants in several components of this

tightly controlled signaling pathway. On one end of the range, these

gene defects lead to exclusively developmental defects, while on the

other end, they are restricted almost purely to the immune system.

Therefore, comparing the phenotypic consequences of pathogenic

variants in genes encoding TGF-b receptors or downstream

components of the signaling machinery, and in genes encoding

members of the family (TGF-b1, TGF-b2, and TGF-b3) enable to
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differentiate and appreciate the role of those individual cytokines in

immune and non-immune cells in humans.
Mendelian disorders affecting TGF-b
signaling and presenting with
immune dysregulation

The term “TGF-b signalopathies” defines a number of

Mendelian disorders associated with inappropriate activation of

TGF-b signaling and ultimately impacting developmental

processes, immune responses, or both. A large group of these

gene defects result in complex syndromes of variable expressivity

encompassing a broad spectrum of cardiovascular, craniofacial,

and skeletal features associated or not with impaired immune

regulation (6) (Table 1). Those, include, among others, Loeys–

Dietz syndrome (LDS) which is caused by heterozygous loss-of-

function (LOF) variants in TGFBR1 (MIM: 190181), TGFBR2

(MIM: 190182), TGFB2 (MIM: 190220) or TGFB3 (MIM:

190230), SMAD2 (MIM: 601366) or SMAD3 (MIM: 603109)

and Marfan syndrome (MFS) (MIM: 154700) caused by

variants in FBN1, encoding fibrillin 1, the main component of

extracellular matrix microfibrils that scaffolds latent TGF-b
(Figure 1). Clinically, MFS and LDS show overlapping

cardiovascular and skeletal manifestations. Yet, in contrast to

LDS patients, immune regulation is not affected in Marfan

patients, likely because fibrillin 1 is mainly expressed in

connective and soft tissues, and muscles, while it is almost

absent in sites that are exposed to environmental immune

triggers such as lungs and intestine, or in sites of adaptive

immune priming such as lymph nodes and spleen. Similarly,

Shprintzen-Goldberg syndrome (MIM: 182212), which is caused

by heterozygous variants in SKI features all the craniofacial,

skeletal and cardiovascular manifestations of LDS but no

immune dysregulation, likely due to the expression pattern of

SKI. Indeed, expression of this negative regulator of the pathway,

at least in vessels, seems to be regionally confined and temporally

limited at early stages of development in mice (41). Contrasting

with this group of diseases, the more recently identified TGF-b1
deficiency results in a prominent immune phenotype

underscoring the central immunoregulatory role of this cytokine.
TGF-b1 deficiency causes very early
onset-IBD

As mentioned above, bi-allelic LOF variants in TGFB1 were

recently identified in 3 patients from 2 unrelated families

presenting with severe very early onset IBD, manifesting as

bloody diarrhea with failure to thrive, and central nervous

system (CNS) disease associated with epilepsy, brain atrophy

and posterior leukoencephalopathy (2). Functionally, these
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variants affected TGF-b1 complex formation, secretion and/or

bioavailability for signal transduction ultimately resulting in

decreased downstream SMAD2/3 signaling. Recurrent infections

and dermatitis were also reported in two patients altogether with

reduced T-cell responses to stimulation with anti-CD3 and anti-

CD28 as well as impaired T cell proliferation in response to

diphtheria and tetanus toxoids. Immunophenotyping was

performed only in one child and showed decreased memory

Treg, TH1 and TH17 cell counts in peripheral blood, associated

with reduced frequencies of Treg, TH1, TH17 and CD103+ T cells

infiltrating the colon and increased serum concentration of IgG
Frontiers in Immunology 05
and IgE. The disease course was extremely severe as only one

patient remained alive at the age of 11 years in stable condition,

while in 2 others septicemia resulted in death at 25 and 39months,

respectively. Given the very severe condition of the affected

children, it remains difficult to ascribe all immunological

abnormalities and notably the fatal infectious complications to

the lack of TGF-b1. However, the very severe IBD phenotype

illustrates the key role of TGF-b1 in maintaining immune

homeostasis at the intestinal barrier. Of note, Tgfb1-/- mice show

no gross developmental defects but they develop immediately after

birth very severe multi-organ inflammation resulting in organ
TABLE 1 Clinical features presenting in patients with TGF-b signalopathies.

Gene TGFBR1/2 TGFB2/3 SMAD2/3 TGFB1 IPO8 ERBIN MAPK8
(JNK1)

Gene/Locus MIM number 190181; 190182 190220; 190230 601366; 603109 190180 605600 606944 601158

Phenotype MIM number 609192; 610168 614816; 615582 619656; 613795 618213 619472 / /

Type of variant LOF LOF LOF LOF LOF LOF LOF

Inheritance AD AD AD AR AR AD AD

Vascular abnormalities yes yes yes N/A yes yes no

Ocular abnormalities yes yes yes N/A yes N/A no

Craniofacial abnormalities yes yes yes N/A yes N/A yes

Skeletal abnormalities yes yes yes N/A yes yes yes

Connective tissue
abnormalities

yes yes yes N/A yes yes yes

Neurological
manifestations

yes yes yes yes yes N/A yes

Immunological
abnormalities

Allergic symptoms yes N/A yes N/A yes yes yes

Autoimmunity N/A N/A yes N/A N/A yes N/A

Recurent infections N/A N/A N/A yes N/A N/A yes

Intestinal inflammation yes N/A yes yes yes N/A no

Intestinal transit problems N/A N/A N/A N/A N/A N/A yes

Eosinophilic esophagitis yes N/A N/A yes N/A yes N/A

Hypereosinophilia yes N/A N/A N/A yes yes yes

TH1 cells N/A N/A N/A reduced N/A N/A increased

TH17 cells N/A N/A N/A reduced N/A N/A reduced

Treg cells increased N/A N/A reduced N/A increased normal

HyperIgE yes N/A N/A yes yes yes N/A

HyperIgG no N/A N/A yes yes no no

HyperIgM no N/A N/A no N/A no no

HypoIgA no N/A N/A no yes yes no

TH2 cytokines production increased N/A N/A N/A N/A increased normal

IL-17 production intact N/A N/A reduced N/A intact reduced

TGF-b signaling Increased in
aorta, bone,
thymic tissue and
CD4+ T cells

Increased in the
aorta

Increased in the
aorta

Reduce
pSMAD in
lamina
propria
mononuclear
cells

Reduced pSMAD
translocation in ipo8-/-

zebrafish, higher
pSMAD nuclear
accumulation in
Ipo8-/- mice aorta

Increased pSMAD
nuclear
accumulation in
primary
lymphocytes
following TGF-b
stimulation

Impaired SMAD-
independent
TGF-b signaling
in fibroblasts
following TGF-b
stimulation

References (36, 37) (6, 7) (38–40) (2) (3) (4) (5)
AD, autosomal dominant; AR, autosomal recessive; LOF, loss-of-function; N/A, not available.
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failure and fatal outcome within 20-30 days (Table 2) (42–44).

Overall data in humans and in mice converge to demonstrate the

non-redundant role of TGF-b1 in maintaining immune

homeostasis. In contrast to LDS, TGF-b1 deficiency is

associated with severe CNS dysfunction. The mechanism(s)

of this very severe neurological phenotype remain(s) not fully

understood and the respective role of uncontrolled inflammation

and of a developmental defect are not yet well-delineated.
Defects in TGF-b receptor 1/2 and
SMAD2/3 result in Loeys-Dietz syndrome
featuring atopy and
intestinal inflammation

Autosomal dominant (AD) variants in genes coding for

TGF-b ligands (TGFB2, TGFB3), receptors (TGFBR1 ,

TGFBR2) or downstream effectors (SMAD2, SMAD3) (58–63)

cause LDS syndrome. These gene defects share the craniofacial,

cardiovascular and skeletal phenotypic core but penetrance,

disease severity and immune defects are variable depending on

the gene. The exact nature of the signaling defects remains

difficult to appreciate. Thus, despite being inactivating when

functionally tested in vitro, heterozygous variants in TGFBR1 or

TGFBR2 paradoxically result in increased TGF-b signaling

output, as revealed by elevated levels of phosphorylated

SMAD2/3 or ERK1/2 and increased TGF-b1 levels in several

tissues derived from LDS patients, including aorta, bone, and
Frontiers in Immunology 06
thymus (59, 61–63). Altered cell surface recycling of the mutant

receptors (64), imbalance between SMAD-dependent and

SMAD-independent cascades (65) or alternative ligand usage

(41, 62) may explain the paradoxical increase in TGF-b
signaling. Yet, more recently, data obtained in cardiovascular

progenitor cell-derived smooth muscle cells (CPC-SMCs)

differentiated from human induced pluripotent stem cells

(hiPSC) carrying AD TGFBRs variants showed decreased,

rather than enhanced, pSMAD2/3 and pAKT signaling

following TGF-b1 stimulation (66), thus suggesting that LOF

TGFBRs variants do indeed result in decreased pathway

activation. It seems possible that epigenetic changes and

compensatory mechanisms become activated overtime, thus

leading to the increase in pSMAD2/3 that is observed in end-

stage aortic tissues. More undifferentiated cell types might thus

be better suited to interrogate the early molecular events

underlying development of LDS and LDS-related disorders.

Immune dysregulation with variable prevalence and severity

can be observed in LDS patients. Increased risk to develop

atopy including food allergies asthma, allergic rhinitis, eczema

and eosinophilic gastrointestinal diseases was first reported in a

cohort of TGFBR1 or TGFBR2 carriers (36) and confirmed by

latter identification of additional cases (37). Consistent with the

allergic manifestations, these patients had significantly increased

eosinophil counts, elevated levels of both IgE and allergy-

associated type 2 cytokines IL-5 and IL-13 which contrasted

with normal non-IgE antibody isotypes. As previously reported

in aortic tissues, a paradoxical increase in TGF-b signaling was
TABLE 2 Mouse models for the study of immune dysregulation in TGF-b signalopathies.

Target Mouse
model

Affected
cells

Immunological phenotype References

TGF-b1 Tgfb1-/- Systemic
effects

Increased embryonic lethality; severe autoimmunity and inflammation, reduced peripheral Treg cells, death
around 3 weeks of age

(42–44)

Tgfb1f/f T cells Wasting and severe colitis leading to lethality starting at 6 months of age, altered T cell activation, proliferation,
and differentiation

(45)

TGF-bRI Tgfbr1f/f T cells In Lck-Cre and CD4-Cre mice, lethal inflammation within 7 weeks of age; decreased thymic and splenic Treg

cells
(46, 47)

TGF-bRII Tgfbr2f/f T cells In CD4-Cre mice, early-onset lethal inflammation with altered T cell development and activation (48, 49)

SMAD2 Smad2-/- Systemic
effects

Embryo lethality before E8.5 (50, 51)

Smad2f/f T cells In Lck-Cre, spontaneous low grade intestinal inflammation, increased susceptibility to experimental colitis,
normal T cell development in thymus and spleen, but altered T cell activation and homeostasis

(52)

SMAD3 Smad3-/- Systemic
effects

Viable, impaired TGF-b antiproliferative effect on T cells, spontaneous chronic intestinal inflammation, and
immune function defects leading to death between 1 and 8 months. In LckCre-Smad2f/f, severe autoimmunity
and inflammation, death within 3 to 5 weeks of age

(52–54)

ERBIN Erbin-/- Systemic
effects

Spontaneous low grade intestinal inflammation, increased susceptibility to experimental colitis (55)

IPO8 Ipo8-/- Systemic
effects

Not explored; evidence of increased pSMADs levels in end-stage tissues (56)

JNK1 Jnk1-/- Systemic
effects

Hyperproliferation of T cells, decreased activation-induced cell death, altered T cell subset differentiation (57)
fr
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observed in CD4+ T lymphocytes (36). Accordingly, and

consistent with the role of TGF-b in driving Treg cells

generation (67), but at odd with the loss of tolerance, LDS

patients had increased frequency of peripheral FOXP3+ Treg cells

with normal ability to suppress effector T cell proliferation (36).

In addition, increased prevalence of IBD has also been reported

in 2 unrelated cohorts of LDS patients (58, 68). Overall, the

paradoxical enhancement of TGF-b signaling observed in LDS

patients with monoallelic LOF variants in TGFBR1 or TGFBR2

makes it difficult to compare observations in humans with data

available in mice, where complete ablation of Tgfbr1 or Tgfbr2 in

T cells causes a rapidly fatal autoimmune disease characterized

by lymphoproliferation, increased T cell activation and cytotoxic

differentiation, and drastic Treg cells decrease in the periphery

(Table 2) (46–49).

In line with the role of SMAD3 downstream all 3 TGF-bs,
autoimmune features and allergic manifestations have been also

reported in a cohort of heterozygous SMAD3 carriers (38). In

marked contrast, the regulation of the immune response does

not seem to be affected in LDS patients carrying variants in

TGFB2/3. The lack of immune phenotype in the latter patients is

in keeping with data obtained in Tgfb2-/- and Tgfb3-/- mice (69–

71). Thus, these mice present perinatal mortality with multiple

but little overlapping developmental defects affecting a broad

range of organs, but no immune defects. Overall, these data

indicate that, in humans as in mice, the three TGF-b isoforms

cannot compensate each other. While TGF-b1 is key to maintain

homeostasis in the immune system, TGF-b2 and TGF-b3 play

complementary roles in connective tissue development.
Aberrant regulation of TGF-b signaling
due to defects in STAT3-ERBIN-SMAD2/3
complex leads to atopic predisposition

ERBB2-interacting protein (ERBIN), a member of the

leucine-rich repeat and PDZ domain (LAP) family, is a

SMAD-binding (72) and SARA-interacting protein (73) that

has been shown to negatively regulate TGF-b signaling

activation. ERBIN binds and segregates phosphorylated

SMAD2/3 in the cytoplasm, preventing their translocation in

the nucleus thereby dampening SMAD2/3-dependent

transcription. SARA recruits non-phosphorylated SMAD2/3 to

activated receptors to promote their phosphorylation and

competes with SMAD2/3 for binding to ERBIN (73)

(Figure 1). Therefore, the concentrations of these three

components of the pathway and their relative binding affinities

modulate the output of TGF-b signaling. Accordingly,

deregulation of TGF-b signaling is observed in patients

carrying heterozygous LOF variants in ERBIN (4). These

patients present with a connective tissue syndrome including

vascular abnormalities, as well as with immunological

manifestations, including eczema, atopy, eosinophilic
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esophagitis (EoE) with hypereosinophilia and elevated IgE (4,

74). Hypertrophic cardiomyopathy observed in one patient

could be recapitulated in Erbin deficient mice (75).

Interestingly, these mice are more susceptible to experimental

colitis and spontaneously develop low grade intestinal

inflammation and epithelial injury over time but the role of

TGF-b signaling in these manifestations was not explored

(Table 2) (55). In primary CD4+ T lymphocytes from ERBIN

patients, reduced ERBIN expression did not affect total

pSMAD2/3 levels in response to TGF-b stimulation, but rather

resulted in increased nuclear accumulation of pSMAD2/3,

consistent with the role of ERBIN in segregating activated

pSMAD2/3 in the cytoplasm. In keeping with the increased

sensitivity to TGF-b conferred by ERBIN deficiency and with the

key role of TGF-b in Treg cells development, patients displayed

increased counts of peripheral Treg cells. Moreover, in vitro

differentiation of iTreg cells from naïve CD4+ T cells was

increased compared to controls. Dysregulation of TGF-b
signaling was associated with increased IL-4Ra expression and

increased activation of the IL-4-GATA3 axis upon weak TCR

stimulation of naïve ERBIN deficient CD4+ T lymphocytes.

Increased ex vivo production of TH2 cytokines (IL-4, IL-5 and

IL-13) by ERBIN deficient memory CD45RO+ CD4+

lymphocytes further suggest skewed type 2 immune responses

and might account for the allergic manifestations observed in the

patients. Accordingly, amelioration of the refractory allergic

eosinophilic inflammation could be achieved by IL-4Ra
blockade in a 16 yo ERBIN patient (74). Interestingly, IL-6/

STAT3 and IL-11/STAT3 activation suppresses TGF-b signaling

via formation of the STAT3-ERBIN-SMAD2/3 complex with

subsequent SMAD2/3 retention in the nucleus and inhibition of

the TGF-b signaling, thus highlighting the molecular

intersection between JAK-STAT pathway activation and

repression of TGF-b signaling (4, 76). Accordingly, enhanced

SMAD signaling is reported in patients carrying dominant-

negative STAT3 variants, who show, alike ERBIN patients,

elevated IgE and EoE. Overall these observations establish a

link between increased TGF-b activity, impaired STAT3

activation and immune dysregulation.
Impaired SMADs translocation due
to IPO8 deficiency causes Loeys-Dietz
like syndrome

Nuclear translocation to the nucleus of activated R-SMADs

is a regulated process which is key for transduction of TGF-b
signals. Some data have shown that the shuttling of SMADs

downstream TGF-b signal depends on a member of the

karyopherin family of nuclear transport receptors, importin 8

(IPO8) (77, 78). Karyopherins use RANGTP to translocate

cargos through the nuclear pore complexes and once in the

nucleus, they release the cargo and finally return to the
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cytoplasm (79). Three groups have concurrently reported

biallelic LOF variants as cause of a complex syndrome

overlapping with LDS, including early-onset thoracic aortic

aneurysm and structural cardiac defects, joint hypermobility,

skin laxity, and hernias, dysmorphic features, skeletal

abnormalities, and developmental delay (3, 56, 80). As in

LDS, immune dysregulation has been observed in some

patients, including predisposition to allergic or intestinal

inflammatory diseases, hyperIgE, hyperIgG, hypoIgA, and

hypereosinophilia (3). Evidence in zebrafish and in mouse

(Table 2), indicate that Ipo8 deficiency can disrupt TGF-b
and or BMP signaling and thereby explain the vascular, skeletal

and immunological anomalies observed in the patients. Yet,

whether IPO8 loss results in increased or decreased pSMADs

shuttling with consequent increased or decreased TGF-b
pathway activation is still unclear. Immunohistochemistry

analysis of ascending aortic sections in Ipo8-/- mice revealed

increased nuclear pSMAD2/3 as compared to WT animals.

Along with the observation of decreased expression of TGF-b
negative regulator Smad7, this might suggest increased

pathway activation (56). In contrast, decreased pSMAD1/5/9

nuclear accumulation was found in ipo8-/- zebrafish embryos.

Accordingly, expression of transcripts encoding smad7 and

other TGF-b dependent genes were reduced in 13 hpf and 24

hpf zebrafish embryos, pointing to decreased - rather than

increased - pathway activation in this model (3). Taken

together, defective SMAD translocation might be considered

as an early event underlying disease development, as it can be

observed in undifferentiated cell types, while compensatory

mechanisms acting overtime might lead to increased SMADs

phosphorylation in end-stage tissues. Of note, the development

of thoracic aortic aneurysms development is recapitulated in

Ipo8 deficient mice but their immune system has not been

studied (56). Further investigation will be necessary to define

whether and how defective IPO8-dependent nuclear

translocation may underlie immune dysregulation in IPO8

deficient patients.
Impaired JNK1-dependent MAPK
signaling pathway cause chronic
mucocutaneous candidiasis and
connective tissue disorder

A heterozygous LOF variant in MAPK8, the gene encoding

the c-Jun N-terminal kinase 1 (JNK1) was recently reported in

a three-generation kindred with a complex syndrome

combining chronic mucocutaneous candidiasis and a

connective tissue disorder but no evidence of aortic

aneurysm or dissection (5). JNK1 is one of the three kinases

of the JNK family and a member of the mitogen-activated

protein kinase (MAPK) pathway (81). As shown in Figure 1,

TGF-b can induce the activation of MAPK kinases (specifically
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MKK4 and MKK7) resulting in JNK1 phosphorylation. In turn,

JNK1 phosphorylates activator protein-1 (AP-1) transcription

factors, including c-Jun and ATF-2, and ultimately triggers

SMAD2/3-independent transcription (82). Accordingly,

fibroblasts derived from patients carrying heterozygous

MAPK8 LOF variants showed impaired c-Jun/ATF-2

signaling in response to TGFb but normal ERK1/2, p38, and

SMAD2/3 activation. Dysregulation of TGF-b-dependent
signals was suggested to account for the connective tissue

disorders. Of note, patients also displayed higher proportions

of TH1 cells and lower proportions of TH17 cells than controls,

while frequencies of TH2 and Treg cells were normal. In

addition, naïve CD4+ T cells from patients carrying the

heterozygous MAPK8 variant produced less IL-17A and IL-

17F in TH17-polarizing conditions in vitro. Overall these

results are consistent with the role played by JNK1 in TH17-

cell activation and differentiation in mice (Table 2) (57, 83) and

with TGF-b requirement for TH17 differentiation in both mice

(84) and humans (85–87) and suggest that impaired TH17

development underlies the predisposition to chronic

mucocutaneous candidiasis.
Conclusions

Patients carrying single gene defects in individual

components of the TGF-b signaling machinery are

invaluable resources to dissect the relative contribution,

signaling cross-talks, specificity and redundancy of each of

those components in the orchestration of the immune

response. Human TGF-b1 deficiency results in very early

onset severe IBD, demonstrating the non-redundant role of

TGF-b1 in suppressing intestinal inflammation and

supporting the hypothesis that the aberrant TGF-b1/SMAD

signaling observed in active lesions of IBD patients

participate in disease pathogenesis (88). Increased Smad7

associated with downregulation of the TGF-b signaling,

shown to amplify gut inflammatory responses in those

patients (89), could be targeted by specific antisense

oligonucleotides (mongersen), which however provided

confl ict ing results in phase II/III studies (89–91) .

Pathogenic monoallelic variants in TGFBR1/2 as well as in

SMAD3 predispose to IBD, strengthening the key role of the

SMAD3 canonical pathway for maintaining intestinal

homeostasis, a role previously supported by GWAS studies

in common multifactorial forms of IBD (1) as well as by

Smad3 inactivation in mice (53, 54). Strikingly, these gene

defects also predispose to allergy, overall suggesting that

TGF-b is instrumental in humans to control immune

responses to environmental triggers. While TGF-b1
deficiency may benefit from supplementation by this

cytokine, the complexity of TGF-b signaling remains a

major challenge to define appropriate therapeutic strategies
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in other defects impairing either chains of the receptor or

downstream elements of the signaling cascade.
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