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A dysregulated immune microenvironment at the maternal-fetal interface in early

pregnancy may lead to early pregnancy loss, fetal growth restriction, and

preeclampsia. However, major questions about how epigenetic modifications

regulate the immune microenvironment during the decidualization process and

embryo implantation remain unanswered. DNA methylation, the main epigenetic

mechanism involved in the endometrial cycle, is crucial for specific transcriptional

networks associated with endometrial stromal cell (ESC) proliferation, hormone

response, decidualization, and embryo implantation. Ten-eleven translocation

(TET) enzymes, responsible for catalyzing the conversion of 5-methylcytosine to

5-hydroxymethylcyosine, 5-formylytosine, and 5-carboxylcyosine to achieve the

DNA demethylation process, appear to play a critical role in decidualization and

embryo implantation. Here, we provide a comprehensive view of their structural

similarities and the commonmechanism of regulation in the microenvironment at

the maternal-fetal interface during decidualization and early pregnancy. We also

discuss their physiological role in the decidual immune microenvironment. Finally,

we propose a key hypothesis regarding TET enzymes at the maternal-fetal

interface between decidual immune cells and ESCs. Future work is needed to

elucidate their functional role and examine therapeutic strategies targeting these

enzymes in pregnancy-related disease preclinicalmodels, whichwould be of great

value for future implications in disease diagnosis or treatment.
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Introduction

The endometrium, regarded as one of the most dynamic

tissues in the human body, undergoes periodic changes,

including cell proliferation, differentiation, and apoptosis (1).

This tissue is composed of luminal and glandular epithelial cells,

stromal cells, immune cells, endothelial cells, and so on,

participating in the formation of the microenvironment at the

maternal-fetal interface and controlling the subsequent invasion

of trophoblast cells and the establishment of the maternal-fetal

interface immune tolerance (2, 3). Abnormal decidualization of

the endometrium can lead to infertility and a variety of

pregnancy-related diseases, including early pregnancy loss

(EPL), fetal growth restriction (FGR), and preeclampsia (PE)

(4, 5). At present, studies have shown that a variety of steroid

hormones, transcription factors, lipids and cell cycle–related

proteins regulate the process of decidualization and participate

in early embryo implantation and pregnancy maintenance.

Epigenetic modification is an important regulation mode that

affects gene expression and cell function. It can occur at

transcriptional, posttranscriptional, and posttranslational

levels, involving DNA methylation, histone methylation, and

histone acetylation and deacetylation. At present, there is a large

amount of evidence that epigenetic modification is involved in

the regulation of the decidualization process (6).

DNAmethylation is one kind of chemicalmodification ofDNA,

bywhich the cytosinenucleotide is converted into 5mCbya familyof

DNA methyltransferases (7). Whereas DNA demethylation is

generated by active enzymatic demethylation during which 5-

methylcytosine (5mC) undergoes a series of oxidation reactions

catalyzed by the methylcytosine dioxygenases ten-eleven

translocation (TET) enzymes (8). High levels of CpG islands and

methylationof these islandsmay result in transcriptional silencing or

repressing (7, 9, 10). Thus, DNA methylation is considered to be a

main mechanism behind many fundamental cellular processes,

including the endometrium’s cyclical changes (11). The tissue-

specific variation in DNA methylation content across the

menstrual cycle further suggests that DNA methylation regulates

gene expression during the endometrial cycle (7, 12, 13).

Of note, the creation of an appropriate immune

microenvironment is another key element for blastocyst

implantation (14, 15). The decidual immune cells are mainly

composed of lymphocytes (e.g., NK cells, T cells, dendritic cell

and NK-T cells, etc.) and macrophages, and their proportion

changes in the endometrial cycle (16). Dysregulation of the

immune response and immune cell distribution may lead to

placentation failure and reproductive decline (17, 18). Studies

have shown that the genes affected by decreased methylation

during decidualization were mainly associated with immune

response regulation (19, 20). Furthermore, DNA methylation also

plays a vital role in immune cell development and maturation,

which contributes to decidual immune homeostasis (21–23).

Altogether, we performed a comprehensive literature review
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concerning the roles of TET enzymes in the microenvironment at

the maternal-fetal interface during decidualization and

early pregnancy.
Common features of TET proteins

TET1, TET2, and TET3, which constitute a family of iron

(II)/2-oxoglutarate-dependent dioxygenase, are responsible for

catalyzing the conversion of 5mC to 5-hydroxymethylcyosine

(5hmC), 5-formylytosine (5fC), and 5-carboxylcyosine (5caC) to

achieve the DNA demethylation process (24–26). These

enzymes are associated with several conserved signaling

pathways in several kinds of organs or tissues during

development, especially in embryo and cancer development

(27, 28).
Structural similarities

TETs are all composed of an acatalytic region in their C-

terminal that is responsible for 5mC dioxygenase activity termed

the double-stranded b-helix domain and a conserved cysteine-

rich domain, which is thought to be essential for proper folding.

However, TET1 and TET3 carry a CXXC domain at the N-

terminal region, which is not present in TET2. As a result, CXXC

was separated and originates the IDAX gene, which acts as a

negative regulator for TET2 (29).
Functions in DNA demethylation and
decidualization and early pregnancy

During the DNA demethylation process, TET enzymes

oxidize the methyl group to 5hmC, 5-formylcytosineand 5-

carboxylcytosine (30–33). After being recognized and excised

by the enzyme thymine DNA glycosylase, these bases are

substituted by an unmodified cytosine by base excision repair

and lose their indicated function (33). In other words, TET

enzymes work as erasers in the DNA methylation machinery

during the whole endometrial cycle (34). All three TET enzymes

are detectable in both epithelium and stroma tissues during the

cycle. Besides this, recent studies show that TET1 and TET3 are

preferentially expressed in the midsecretory phase over the other

phases (27). Moreover, progesterone induces expression levels of

all TET enzymes in endometrial epithelial cells, whereas

estradiol plus progesterone treatment increases the expression

of TET3 in the same cell type, but estradiol only induces the

expression of TET1 in stromal cells, indicating that sex

hormones regulate the expression of TET genes in a dynamic

and cell-specific manner in the human endometrium (27). Our

previous study found that the expression of TET3 gradually

decreases in the endometrial tissues of women in the
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proliferative and secretory phases of the menstrual cycle as well

as in the decidual tissues of early pregnancy, whereas it increases

in the decidual tissues of women with EPL. Further mechanism

studies indicate that TET3 negatively mediates miR-29a’s role in

promoting the decidualization of endometrial stromal cells

(ESCs) in vitro and maintaining pregnancy in vivo, suggesting

that TET3 inhibits decidualization of ESCs, which may be

involved in the pathogenesis of EPL caused by abnormal

decidualization (35).

It is worth noting that miR-29a can upregulate the levels of

decidualization markers IGFBP1 and PRL, whereas TET3

inhibits this effect (35). The specific mechanism remains to be

further explored. At present, there are two main mechanisms of

action of TET3: first, TET3 a-ketoglutaric acid (a-ketoglutarate,
a-KG) and Fe2+catalyze the conversion of 5mC to 5hmC,

mediate the demethylation process, and finally promote gene

expression (36). In addition to the above mechanisms, TET3 also

combines O-linked b-N-acetylglucosamine (O-GlcNAc)

transferase (OGT), catalyses the O-GlcNAc glycosylation of

histone serine and threonine residues (O-GlcNAcylation), and

the final effect is to promote the downstream target genes

transcription (37). However, these mechanisms are not enough

to explain the phenomenon that TET3 downregulates the levels

of IGFBP1 and PRL. There should be other mechanisms by

which TET3 regulates the decidualization process of ESCs.

Based on the epigenetic modification mechanism, it can

reduce or enhance the degree of DNA aggregation, thus

regulating the expression of target genes at the transcriptional

level (38–40). At the same time, other members of the TET

family, TET1 and TET2, bearing certain structural homology

with TET3, are also proved to be able to combine with multiple

epigenetic regulatory molecules, for example, TET1 combines

SIN3A, MeCP2, HDAC1/6/7, EZH2, LSD1, etc. (41, 42); TET2

combines Smarcb1/c2/e1, HDAC1/2, Ncor1/2, Baz1a/1b,

Top2a/2b, Mbd2, Phf2, Ino80, Sap30bp, Trrap, Wdhd1, Chd8,

Chaf1a, and Dnmt3a, etc. (43). At present, studies have shown

that multiple molecules interacting with TETs play a role in the

decidualization of ESCs, including SIN3A, EZH2, Dnmt3a, etc.

(11, 44, 45), suggesting that members of the TET family can not

only act as catalytic enzymes to affect epigenetic modification,

but also act as anchor proteins for a variety of epigenetic

modification enzymes.

Besides this, some studies also show TET expression in

endometrial pathology. For example, a higher level of TET3

and lower levels of TET1 and TET2 were found in endometrial

cancer compared with the normal endometrium, whereas

endometrial cancer tissues showed lower levels of global

hydroxymethylation at the same time (46). TET gene

expression was also found dysregulated in the ectopic

endometrial tissue of women with endometriosis, including

decreased TET1 levels (47). However, the expression and

regulation of TETs in the endometrium is still not clear.

Therefore, further studies are required to explore the
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mechanism by which and how TETs regulate the key

processes during decidualization, embryo implantation, and

placental growth.
Additional biological roles of
TET enzymes in decidual
immune tolerance

Decidual immune microenvironment and
DNA methylation levels

Decidual immune cells are mainly composed of natural killer

(NK) cells, macrophages, T cells, dendritic cells, and so on.

Decidual NK (dNK) cells represent the largest population (50%–

70%), whereas macrophages comprise approximately 10%–20%

of whole decidual leukocyte populations, and the others are a

very small minority (48–50). These immune cells, together with

decidual stromal cells, cooperate to modulate trophoblast

invasion, promote fetal growth, and regulate immune

tolerance. Epigenetic modifications, including DNA

methylation, are a key avenue for controlling immune

responses, which can change the gene expression level without

altering the underlying DNA sequence, thus allowing for a rapid

adaptation of cells to the surrounding environment (51, 52).

DNA methylation also provides an unexplored mechanism for

immune regulation of decidual immune cells during the

endometrial cycle, which could help explain how decidual

immune cells are able to adapt and respond to the dynamic

changes throughout the decidualization process. Interestingly,

one recent study has identified low expression levels of genes

that are related to NK cell function, such as KIR2DL3 and

KLRC3, at the late proliferative phase, suggesting a decreased

immune response mediated by NK cells at this phase of the

endometrial cycle, which is consistent with the modulation of

the immune response to favor embryo implantation (53).

Besides this, another study also found the genes affected by

decreased methylation were mainly associated with immune

response regulation (FYN, BCL3, PVR, JAK3, IL1RL1, RFTN1,

MYO1G, CXCL13, and C1S) (19).
Roles of TET enzymes in immune cell
development and function

Whereas the implication of TET proteins in DNA

demethylation is well-established, the mechanisms underlying

TET proteins in immune cells is yet to be explored. Strikingly,

TET loss of function is strongly associated with hematological

malignancies. For example, TET2 loss-of-function mutations are

frequently observed in myelodysplastic syndromes and myeloid

malignancies as well as in certain peripheral T-cell lymphomas

(54–57). The biological roles of TET proteins in immune cell
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development, function, and malignant transformation have been

unraveled in these studies.
T cells

In T cells, the loss of TET proteins may result in compromised

immune function or malignant transformation. Of note, TET2/3

are preferentially expressed in T cells compared with TET1 and

play central roles in 5hmC modification in these cells (58).

Deletion of TET2 alone in the hematopoietic system or in T

cells did not result in any defect in T-cell lineage fate, indicating a

compensative relationship between TET2 and TET3 (59, 60).

However, it is reported that lack of TET2 enhanced CD8+ T-cell

memory formation and differentiation (60). Although deletion of

TET2 in CD4+ T cells in mice have intact thymic and peripheral

T-cell subpopulations, typical cytokine expression was found

decreased, including IL-17, IL-10, and IFN-g (59). The most

profound phenotypes have been found in T cells upon

codeletion of at least two TET members. For instance, TET2/

TET3 DKO mice exhibited a striking increase of iNKT cells with

impaired function and enhanced stemness (59, 61, 62).

Surprisingly, genome-wide DNA methylation remains

unchanged in response to the loss of TET proteins, but the

deposition of 5hmC across specific genes, such as Tbx21 and

Zbtb7b, is affected, suggesting a focal regulation role of TET

members. These TET2/3 DKO iNKT cells can produce large

amounts of immune response–related cytokines and drive other

immune cell subset expansion and responses. In addition, TET

enzymes are also required for the homeostasis of T regulatory

(Treg) cells by modulating the expression of the transcriptional

factor FOXP3. TET2 and TET3 are able to demethylate two

intronic enhancers, termed conserved noncoding sequence

(CNS) 2, which is critical for maintenance of FOXP3 expression

(63–65). Deleting TET2 and TET3 specifically in Tregs not only

results in compromised Treg lineage, but also a gain of aberrant

activation and effector function in those cells, which enhances

whole-body inflammation and ultimately accelerates death.

Double TET1/2 deletion may also result in impaired Treg

inactivation and differentiation due to hypermethylation of the

CNS locus (66). Given the importance of all kinds of T cells

involved in the endometrial cycle and decidualization process,

future pharmacological methods specifically targeting TET

proteins to modulate T-cell activity may employ a strong

biological effect in the endometrial cycle.
B cells

TET-dependent DNA demethylation is essential for B-cell

differentiation, maturation, and function. TET protein

expression levels are dynamically regulated during B-cell

development. TET1 is significantly reduced in pro-B-cells,
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whereas TET2 and TET3 is increased during B-cell maturation

and activation, suggesting a critical role of TET proteins in B-cell

biology (67). In vitro analysis of TET1 KO cells showed a

promoted status of lymphoid bias differentiation with more

self-renewing pro-B-cell colonies compared with pre-B-cells

(68). Long-term lack of TET1 resulted in lymphocytosis in

mice by 18–24 months of age. TET2, one of the most

frequently mutated genes in diffuse large B-cell lymphoma,

works as a tumor-suppressor gene. Based on previous studies,

TET2 was shown to be required for CSR and affinity maturation

of antibodies, and disruption of TET2 may result in germinal

hyperplasia. Mechanically, TET2 can preferentially strengthen

the activity of enhancers (Igk and Aicda) (69). Compared with

TET2 deletion, codeletion of TET2 and TET3 may cause more

severe B-cell phenotypes during bone marrow development,

including halting the pro-B-cell to pre-B-cell transition process

and decreasing mature B cells in mice, and it diminishes the

rearrangement of the Igk locus by increasing CpG methylation

levels at the Igk3′ and distal enhancers (70). Future studies are

needed to examine how TET proteins epigenetically affects B-cell

biology in the decidual microenvironment.
Myeloidcell

Compared with other TET proteins, TET2 is preferentially

abundantly expressed in myeloid cells and further required for the

myeloid cell–mediated innate immune response and surely critical

in the decidual immunemicroenvironment (71, 72). TET2 deletion

does not dramatically alter alternative macrophage (M2) gene

expression levels, but indeed decreases the immunosuppressive

function of these cells. TET2-KO macrophages and DCs produce

more proinflammatory cytokines, such as IL-6, in response to

bacterial activation (43, 73). Compared with wild-type mice, Tet2-

KO mice show increased susceptibility to endotoxin-induced

shock, DSS induced colitis, and so on, all suggesting the anti-

inflammatory function of TET2 (43). Notably, during tumor

growth, TET2 expression was found increased in myeloid-

derived suppressor cells and tumor-associated macrophages and

preserved immunosuppressive gene expression levels. TET2

deficiency in tumor-associated macrophages results in defective

immunosuppressive capacity and an altered cytokine expression

profile (74, 75). However, the role of TET2 in the myeloid-

mediated decidualization process awaits further investigation.
NK cells

NK cells play central roles in boosting inflammation and

decidualization, but the evidence is lacking regarding whether

and how TET proteins function in NK cells and, thus, have an

effect during the endometrial cycle (3, 48). Continued efforts are

needed to investigate the possible role of TET proteins in dNK
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cells, and this will shed light on the current understanding of the

biological role of TET enzymes in decidual immune tolerance.
Macrophages

Macrophages are highly diverse cells and the major antigen-

presenting cells at the maternal-fetal interface. In addition to

protection of the embryo from the attack of the maternal

immune system, decidual macrophages also play a key role in

embryo implantation, trophoblastic invasion, spiral artery

remodeling, and placentation. Recently, new concepts have

emerged to explain how macrophage polarization and function

are regulated, including immune metabolism and epigenetics (76,

77). Macrophages are divided into M1-like macrophages and M2-

like macrophages. M1 macrophages secrete a variety of cytokines

including IL-2, IL-6 and TNF-a, which involved in pro-

inflammatory responses, whereas M2 macrophages are mainly

involved in anti-inflammatory responses (78). The balance of M1

macrophages and M2 macrophages is critical for various processes

in both normal and pathological pregnancy (79). However, the

functions of TETs in decidual macrophages are largely unknown.

Although only a few studies showed epigenetic regulation in the

differentiation and function of decidual macrophages, emerging

studies reported the role of epigenetic modulating by TETs in

macrophages in other fields (43, 73, 80), which may shed new

insights for further studies on decidual macrophages.
Conclusions and future perspectives

Collectively, TET proteins are critical to 5hmC/5Mc/5fC/

5caC modification in various decidual immune and stromal

cells, which is essential for the decidualization process and early

pregnancy. It is expected that using specific compounds

modulating TET activity may be useful in pregnancy-related

diseases and for modulating immune cell responses during the

decidualization process. Thus, it is critical to elucidate the

functional role of TET proteins for modulating 5hmC/5mC/

5fC/5caC levels in decidual stromal and immune cells, which
Frontiers in Immunology 05
requires further understanding of the possible underlying

molecular mechanism in various cell types. Future work may

also be required to explore how to discover and utilize novel TET

interactors to modulate immune responses during

decidualization and early pregnancy. The elucidation of these

aspects will open an exciting field for future work.
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