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José Manuel Pérez de la Lastra,
(CSIC), Spain

REVIEWED BY

Sreedhar Chinnaswamy,
National Institute of Biomedical
Genomics (NIBMG), India
Hufeng Zhou,
Harvard University, United States

*CORRESPONDENCE

Barry Smith
ifomis@gmail.com
Luonan Chen
lnchen@sibcb.ac.cn
Yongqun He
yongqunh@med.umich.edu

†These authors share first authorship

SPECIALTY SECTION

This article was submitted to
Microbial Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 11 October 2022
ACCEPTED 14 November 2022

PUBLISHED 15 December 2022

CITATION

Yu H, Li L, Huffman A, Beverley J,
Hur J, Merrell E, Huang H-h, Wang Y,
Liu Y, Ong E, Cheng L, Zeng T,
Zhang J, Li P, Liu Z, Wang Z, Zhang X,
Ye X, Handelman SK, Sexton J,
Eaton K, Higgins G, Omenn GS,
Athey B, Smith B, Chen L and He Y
(2022) A new framework for host-
pathogen interaction research.
Front. Immunol. 13:1066733.
doi: 10.3389/fimmu.2022.1066733

COPYRIGHT

© 2022 Yu, Li, Huffman, Beverley, Hur,
Merrell, Huang, Wang, Liu, Ong, Cheng,
Zeng, Zhang, Li, Liu, Wang, Zhang, Ye,
Handelman, Sexton, Eaton, Higgins,
Omenn, Athey, Smith, Chen and He.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Hypothesis and Theory
PUBLISHED 15 December 2022

DOI 10.3389/fimmu.2022.1066733
A new framework for host-
pathogen interaction research

Hong Yu1,2†, Li Li3†, Anthony Huffman4†, John Beverley5,6†,
Junguk Hur7†, Eric Merrell5, Hsin-hui Huang4,8, Yang Wang1,2,4,
Yingtong Liu4, Edison Ong4, Liang Cheng9, Tao Zeng10,
Jingsong Zhang10, Pengpai Li11, Zhiping Liu11, Zhigang Wang12,
Xiangyan Zhang1,2, Xianwei Ye1,2, Samuel K. Handelman4,
Jonathan Sexton4, Kathryn Eaton4, Gerry Higgins4,
Gilbert S. Omenn4, Brian Athey4, Barry Smith5*,
Luonan Chen10* and Yongqun He4*†

1Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital and
National Health Commission (NHC) Key Laboratory of Immunological Diseases, People’s Hospital
of Guizhou Province, Guiyang, Guizhou, China, 2Department of Basic Medicine, Guizhou University
Medical College, Guiyang, Guizhou, China, 3Department of Genetics, Harvard Medical School,
Boston, MA, United States, 4University of Michigan Medical School, Ann Arbor, MI, United States,
5Department of Philosophy, University at Buffalo, Buffalo, NY, United States, 6Asymmetric
Operations Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States,
7Department of Biomedical Sciences, University of North Dakota School of Medicine and Health
Sciences, Grand Forks, ND, United States, 8Department of Biotechnology and Laboratory Science in
Medicine, National Yang-Ming University, Taipei, Taiwan, 9Department of Bioinformatics, Harbin
Medical University, Harbin, Helongjian, China, 10Key Laboratory of Systems Biology, Center for
Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese
Academy of Sciences, Shanghai, China, 11Center of Intelligent Medicine, School of Control Science
and Engineering, Shandong University, Jinan, Shandong, China, 12Department of Biomedical
Engineering, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union
Medical College and Chinese Academy of Medical Sciences, Beijing, China
COVID-19 often manifests with different outcomes in different patients,

highlighting the complexity of the host-pathogen interactions involved in

manifestations of the disease at the molecular and cellular levels. In this

paper, we propose a set of postulates and a framework for systematically

understanding complex molecular host-pathogen interaction networks.

Specifically, we first propose four host-pathogen interaction (HPI) postulates

as the basis for understanding molecular and cellular host-pathogen

interactions and their relations to disease outcomes. These four postulates

cover the evolutionary dispositions involved in HPIs, the dynamic nature of HPI

outcomes, roles that HPI components may occupy leading to such outcomes,

and HPI checkpoints that are critical for specific disease outcomes. Based on

these postulates, an HPI Postulate and Ontology (HPIPO) framework is

proposed to apply interoperable ontologies to systematically model and

represent various granular details and knowledge within the scope of the HPI

postulates, in a way that will support AI-ready data standardization, sharing,

integration, and analysis. As a demonstration, the HPI postulates and the HPIPO

framework were applied to study COVID-19 with the Coronavirus Infectious

Disease Ontology (CIDO), leading to a novel approach to rational design of

drug/vaccine cocktails aimed at interrupting processes occurring at critical
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host-coronavirus interaction checkpoints. Furthermore, the host-coronavirus

protein-protein interactions (PPIs) relevant to COVID-19 were predicted and

evaluated based on prior knowledge of curated PPIs and domain-domain

interactions, and how such studies can be further explored with the HPI

postulates and the HPIPO framework is discussed.
KEYWORDS

host-pathogen interaction, disease outcome, COVID-19, host-coronavirus
interaction, coronavirus infectious disease ontology (CIDO), bioinformatics,
COVID-19 cocktail, HPIPO framework
Introduction

Effectively combatting infectious diseases such as COVID-19

requires identifying the underlying causal molecular

mechanisms that drive disease outcomes. It is not enough to

know whether a patient has an infection or whether they exhibit

signs and symptoms of a disease. Similar infections can result in

distinct diseases, and identical diseases can, in turn, produce

distinct signs and symptoms. Focusing on pathogens at the

exclusion of hosts, or hosts at the exclusion of pathogens, is

also insufficient for identifying mechanisms driving disease

outcomes. Pathogen-centered approaches often struggle to

isolate specific pathogens, such as Candida albicans and

Staphylococcus aureus, that may co-colonize both symptomatic

and asymptomatic hosts (1). Host-centered approaches fill some

gaps in pathogen-centered strategies, but face difficulties in

accommodating pathogens like Staphylococcus epidemidis

which do not cause disease in all hosts. A complete picture of

pathogenesis will balance consideration of both host

and pathogen.

One step towards synthesizing host-centered and pathogen-

centered approaches is The Damage Response Framework (DRF),

proposed by Casadevall and Pirofski in 2003 (2). The DRF

provides a high-level classification of pathogens based on host-

pathogen interactions (HPIs) and rests on three tenets: (i)

Microbial pathogenesis is an outcome of an interaction between

a host and a microorganism. (ii) The host-relevant outcome of the

host–microorganism interaction is determined by the amount of

damage to the host. (iii) Host damage can result from both

microbial factors and host response (2). However, the DRF is

not fine-grained enough to identify causal mechanisms of disease

outcomes at the molecular level. Consequently, it is unclear how

exactly to understand “damage” in the DRF. What seems needed

is a framework for investigating mechanisms of disease outcomes

at the molecular level that – like DRF – emphasizes contributions

from both host and pathogen to varied disease outcomes.

We propose four HPI postulates to take a further step

towards a molecular level synthesis of host-centered and
02
pathogen-centered approaches to understanding and treating

disease. These postulates are intended to facilitate understanding

of complex molecular mechanisms involved in HPIs. That said,

researchers investigating infectious diseases are met with

another challenge in the presence of the continuously growing

stores of multidimensional, complex data. Perrin-Cocon et al.,

for example, recently assembled a large host-coronavirus

interactome representation covering 1,311 protein-protein

interactions (PPIs) documented in the literature (3). Similarly,

Gordon et al. performed comparative viral-human PPI and viral

protein localization analyses for SARS-CoV-1, SARS-CoV-2 and

MERS-CoV and found pan-viral disease mechanisms across all

three viruses (4). Such infectious disease data is often

heterogeneous, poorly integrated, and non-interoperable,

which prevents computer-assisted discovery, reasoning, and

analysis, especially because so many different components and

pathways are involved in different host-coronavirus interaction

processes (5). Fortunately, these problems can be addressed

through the use of carefully developed ontologies.

Ontologies are controlled, structured vocabularies representing

entities and the relations among them. For two decades, ontologies

have played an important role in standardizing the representation,

integration, discovery, sharing, and analysis of knowledge and data

(6–12). A major field of artificial intelligence (AI) research is

knowledge representation and reasoning (KR², or KR&R), of

which ontology is a foundational discipline. In the early years of

KR&R, small ontologies were developed. In the era of big data,

interoperable ontologies are needed to support big data

standardization and integration (13–16). Interoperable ontologies

are also critical to support data FAIRness, i.e., having data Findable,

Accessible, Interoperable and Reusable (17, 18). Significant progress

has been made in the construction of ontologies covering

pathogens, hosts, and the molecular constituents of associated

mechanisms of interaction. As an example, we recently developed

and employed the Coronavirus Infectious Disease Ontology

(CIDO) (19–21) to identify potential treatment options based on

an analysis of molecular mechanisms identified as being linked with

specific disease outcomes (22).
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Given the successes of ontologies in addressing big data

problems in the biomedical domain, we chose to implement our

HPI postulates using ontologies. The HPI postulates may be

implemented using alternative strategies, but for our purposes

we implement the postulates in what we will call the Host-

Pathogen Interaction Postulates and Ontology (HPIPO)

framework. Doing so ensures the data generated through the

application of the HPI postulates will remain well-organized and

interoperable across a wide range of existing ontologies. In what

follows we present the HPI postulates and illustrate how they can

be used to incorporate host centered and pathogen centered

approaches to the understanding of disease outcomes. We also

show how the Postulates and applied ontologies come together

in the HPIPO framework, using the CIDO to represent COVID-

19 outcomes.
Fundamental Host-Pathogen
Interaction Postulates

To determine Host-Pathogen Interaction (HPI) mechanisms

of infectious disease outcomes, we propose four fundamental

HPI Postulates as guides (Figure 1):
Fron
1. HPI evolutionary dispositions: Hosts (pathogens) have

evolutionarily selected for dispositions to react to

pathogens (hosts) to achieve the best possible outcome

for the host (pathogen). This is the root cause of HPI

dynamics and explains associated outcomes.

2. HPI dynamic outcomes: Host (pathogen) outcomes are

mechanistically determined by the dynamic HPIs at the

molecular and cellular levels. The host (or pathogen)

genetic and phenotypic profile (such as the direct and

co-morbid susceptibility factors of the host) affect HPIs

in ways relevant to disease outcomes. Different

conditions such as age and sex may also affect the

disease outcomes.

3. HPI roles: Molecular parts of hosts and pathogens are

relevant to HPI outcomes. These host/pathogen molecules

and their molecular interactions in the HPI network play

specific roles in determining disease outcomes.

4. HPI checkpoints: Certain HPI components – which we

call HPI checkpoints – are critical for the progression of

HPI processes that result in HPI outcomes. Internal or

external interruption of processes occurring at HPI

checkpoints, such as by administering a drug or

vaccine to a host, may change disease outcomes by

altering manifested HPI networks. Rational drug and

vaccine design targeting HPI checkpoint intervention

may promote positive host outcomes. Molecules may

participate in checkpoint stages across a range of

dynamic HPI processes.
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Postulate 1 characterizes the root cause of HPI dynamics on

the part of both the host and the pathogen as a disposition that is

selected for by evolution (23). Here, pathogens include cell-

derived organisms (e.g., bacteria and parasites) as well as viruses.

For example, viruses such as SARS-CoV-2 evolved to have the

disposition to replicate through interactions with a host.

Meanwhile, the host has an evolutionarily selected for

disposition to destroy invading pathogens and prevent their

replication, often through sophisticated mechanisms evolved to

ward off infection. Nevertheless, host defense mechanisms

sometimes fail. For example, the evasion or hijacking of the

host immune response is crucial to the spread of SARS-CoV-2

(24). In such cases, host immune responses may occur too late,

so that the viral spread is already out of control and the host

immune response leads to host death (25, 26). However, the host

also has the opportunity to develop a protective resistance

against infection (27), illustrating a metaphorical tug-of-war or

arms race between host and pathogen.

Postulate 2 states that the disease outcomes derive from

dynamic host-pathogen interactions. The interactions between

host and pathogen may generate a cascade of molecular

interactions inside the host or pathogen, and the variations

associated with various elements in the interactions may

change the disease outcomes. For example, comorbidities (e.g.,

hypertension) may influence COVID-19 disease outcomes by

affecting molecular and cellular HPI dynamics. An illustration of

the postulate can be seen in the deployment of individual- or

population-based public health measures that reduce infection

or disease severity by influencing how frequently humans are

exposed to the virus, resulting in different outcomes of

the disease.

Given the complexity of the dynamic HPI-outcome

mechanisms, the traditional approach of simply identifying the

complex HPI networks, such as the network in Figure 1, is

insufficient for analyses of mechanisms of diverse disease

outcomes. As a novel strategy, Postulate 3 proposes that different

components during the HPI dynamics have differential evolving

roles in affecting the ways in which dynamic host-pathogen

interactions contribute to disease outcomes. Each specific HPI

initiates a dynamic interaction network involving both the host

and the pathogen, and each interaction or element in the interaction

has its role in the network. The HPI may change a cascade of

molecular interactions inside the host or pathogen. Postulate 3 tells

us that roles of different molecules and interactions in the network

should be carefully studied to precisely investigate the mechanisms

of different disease outcomes.

Inspired by the “immune checkpoint theory” (28) that

guides cancer immunotherapy development, we postulate that

interrupting molecular interactions at specific checkpoints – by

targeted drug or treatment – could promote the immune

response of a host or the pathogenicity of a pathogen.

Checkpoint roles involve molecular interactions on the side of
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FIGURE 1

HPI Postulates. The network image is a symbol of the resulting huge interaction network we usually see. To better study such netwo
outcomes, we propose four HPI postulates (HPIP), including HPI evolutionary dispositions (P1), HPI dynamic outcomes (P2), HPI role
postulates suggest the identification and definition of the roles of different nodes and edges in the network and how they are related
knowledge representation and reasoning, leading to our proposed HPIPO framework.
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either host or pathogen and may be initiated naturally or by

administered drugs or vaccines. Note that, as in the case of

immune checkpoints in cancer immunotherapies, there is also

evidence that checkpoints play an important role in promoting

the host immune response to pathogens (29).

The four HPI Postulates are interlinked. Postulate 1 lays out

how observed HPIs have emerged owing to evolutionary

pressures. Postulate 2 describes the relationship between

dynamic HPIs and outcomes. Postulate 3 emphasizes the

importance of evolving roles of HPI components to HPI-

outcome dynamics. Postulate 4 extends Postulate 3 by

highlighting how disruption of HPI components may affect

HPI-outcome networks. Overall, the four postulates provide a

foundation for effectively studying HPI mechanisms.
Illustration of the HPI postulates
with host-coronavirus interaction

In this section, we illustrate how the four HPI postulates may

aid in the understanding of the HPI mechanisms effecting

different outcomes of COVID-19.

In accordance with Postulate 1, coronaviruses and hosts

have their respective root evolutionary dispositions to achieve

their best outcomes during the host-coronavirus interactions.

On the pathogen side, coronaviruses have the evolutionary

disposition to infect and replicate inside host cells and then

spread to infect additional hosts. The viruses have evolved to

efficiently use the host’s genetic material replication mechanism

to replicate their own genetic materials. On the host side, the

host has the evolutionary disposition to increase its ability to

defend against the virus infection. The host mechanisms include

innate and adaptive responses. Host innate responses include

rapid cytokine production to combat virus infection. Host

adaptive responses, including antibody and cell-mediated

immune responses, take time to arise, but they can stimulate

virus-specific immune responses. These innate and adaptive

immune responses have developed over eons of evolution. As

such, a comprehensive understanding of diseases like COVID-

19 must take into account both the host and the pathogen.

As defined in the Postulate 2, the host (and pathogen)

outcomes are mechanistically determined by, in this case, the

dynamic host-coronavirus interactions at the molecular and

cellular levels. This process is illustrated in Figure 2, which

represents an integrative host-coronavirus interaction

progression constructed on the basis of the HPI postulates.

Progression includes four major viral processes and three

major host processes. For coronaviruses, the four crucial

processes are: (i) viral entry to host cell, (ii) viral replication,

(iii) viral release from the infected cell, and (iv) modulation of

host responses. Also – and sometimes dramatically – viral

variants may be the result of host-virus interactions and viral

reproduction (30, 31). For the host, the three responses include:
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(i) naïve immune response, (ii) innate immune response, and

(iii) adaptive immune response. Each of these major processes

includes many subprocesses, and disease outcomes can be

explained by the degree to which host-pathogen interactions

impact these subprocesses. If the virus “wins”, the result will be

viral survival and replication; if the host “wins”, the host will

eventually control viral replication and kill the viruses.

During the circulation and evolution of the virus in the host

population, viral mutations, such as the D614G mutation in the

spike (S) protein of SARS-CoV-2 (32), emerge to permutate their

viral infectivity and pathogenicity, leading to different viral and

host outcomes. Multiple genetic viral mutations may also co-

exist and co-evolve with the host population (31). Our recent

study of 6698 SARS-CoV-2 whole-genome sequences revealed

four dominant mutations, including 5’UTR_c-241-t, NSP3_c-

3037-t, NSP12_c-14408-t, and S_a-23403-g (33). These

mutational changes in viral genomes all contribute to the

rapid viral evolution and enhance viral transmission and long-

term survival rates. In accordance with Postulate 2, these

mutations change the host-coronavirus interactions at different

stages. Also, as derived from Postulate 1, the viruses evolve to

make various genetic mutations to achieve the best viral

replication. Accordingly, the evolutions of the coronaviruses

focus on increasing viral transmission, as demonstrated by the

more transmissible Delta strain and then even more

transmissible Omicron. Such a trend of increasing

transmission supports increasing viral replications. Meanwhile,

the pathogenesis of the SARS-CoV-2 in human hosts appears to

vary, as shown by the more virulent Delta strain but less virulent

Omicron compared to the original SARS-CoV-2 strain.

Host differences may result in different disease outcomes.

For example, hosts exhibiting the angiotensin converting

enzyme 1 (ACE-1) II genotype, which is more prevalent in

Western Europe and steadily decreases in frequency towards

Eastern Asia, appears to negatively correlate with the

manifestation of COVID-19, and thus related mortality rates

(34). Additionally, the C allele of SNP rs12242 in interferon-

induced transmembrane protein 3 (IFITM3) was found to be

associated with more severe COVID-19 disease in an age-

dependent manner (35). Lastly, the COVID-19 severity is

positively correlated with the hypertension comorbidity (36). If

a patient already has hypertension, the further increased blood

pressure due to the interactions would exacerbate the underlying

comorbidity, which may explain the increased death rate of

patients with superimposed COVID-19 and hypertension.

As described in Postulate 3, to better study the host-

coronavirus interactions (HCI) and their relations with

different disease outcomes, it is critical to identify the

different roles of all HCI components. For example, the

binding of the SARS-CoV-2 S protein to human angiotensin

converting enzyme 2 (ACE2) leads to the viral invasion. Here

the viral S protein plays the viral ligand role, and the human

ACE2 protein plays the host receptor role. We can also go
frontiersin.org
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further to investigate the different parts of the S glycoprotein,

which includes S1 and S2 regions. The S1 region also includes a

receptor-binding domain that plays the specific role of binding

to ACE2. As detailed later in this manuscript, based on prior

knowledge of curated protein-protein interactions (PPIs) and

domain-domain interactions (DDIs) (37, 38), we developed

computational predictions based on host-coronavirus

interactions, leading to the identification of potential effects

of SARS-CoV-2 infection on different tissues and organs. Note

that such potential effects may not be realized in all patients

infected with SARS-CoV-2.

As another example illustrating Postulate 3, consider the

differential roles of cytokines in COVID-19 disease progression.

Although cytokines are known to play a critical positive role in

defending against viral infection, they may also play negative

roles. A cytokine storm is an excessive immune response to

external stimuli associated with high levels of cytokine

production (39). Cytokine storms are a major cause of acute

respiratory distress syndrome and multiple-organ failure in

severe COVID-19 patients, resulting in death within a short

time (40). By identifying the different roles of these elements in

the HCI-outcome networks, we can better understand the

disease mechanisms under different conditions.

According to Postulate 4, some roles identified in the HPI

processes can be defined as checkpoints critical to determining

disease outcomes. For example, from the viral side, the SARS-

CoV-2 S protein and its receptor-binding domain play a

checkpoint role that facilitates viral invasion of host cells. Any

mutation in the protein, esp. in its receptor-binding domain,

may significantly affect the viral invasion and disease outcomes.

Existing Pfizer-BioNTech and Moderna COVID-19 vaccines use

the mRNA of the S protein for COVID-19 vaccine development.

The COVID-19 vaccines can stimulate S protein-specific

neutralizing antibody and thus block viral invasion. Similarly,

therapeutical monoclonal neutralizing antibodies targeting the
Frontiers in Immunology 06
receptor binding domain of the S protein has also been found to

substantially reduce the viral infection (41, 42).

From the host side, IL-6 is a checkpoint cytokine that is

critical to regulating cytokine immune responses (39).

Tocilizumab, a recombinant humanized anti-human IL-6

receptor monoclonal antibody, can bind to the IL-6 receptor

with high affinity, and thus prevent IL-6 from binding to its

native receptor and inducing downstream immune damage. It

was recently reported that Tocilizumab improved the clinical

outcome in severe and critical COVID-19 patients and

effectively reduced mortality (43).
Comparison: HPI postulates vs
nearby postulates and theories

The HPI postulates are designed to aid in systematic

modeling of HPIs and, in particular, illuminate why different

people infected with the same pathogens have different

outcomes. We emphasize that underlying HPIs at the

molecular and cellular levels explain observed differential

disease outcomes across hosts of the same pathogen. These

postulates complement but differ significantly from existing

postulates and theories as detailed below.

Koch’s postulates and its refinements (44–48) aim to

confirm whether a pathogen is the cause of a disease.

Specifically, Koch’s postulates require: (1) The microbe must

be found in all organisms suffering from the disease but should

not be found in healthy organisms. (2) The microbe must be

isolated from a diseased organism and grown in pure culture. (3)

The cultured microbe should cause the same disease when

introduced into a healthy organism. (4) The microbe must be

reisolated from the inoculated, diseased experimental host and

be identical to the original causative agent. Koch’s postulates

aimed to establish the causal relationships between exposure to a
FIGURE 2

Model of host-coronavirus interactions and associated disease outcomes. The viruses enter, survive in, replicate in host cells, and may have
genetic variations during the process. After initial naïve acceptance of viral entry without triggering an immune reaction (a naïve response), the
host initiates active innate and adaptive responses. The host disease outcome will be determined by the dynamic host-coronavirus interactions.
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microbe and the emergence of a disease (44, 45, 47). Different

from Koch’s postulates, our HPI postulates assume the microbial

cause of a disease is known. Using technologies such as RT-PCR,

we can now easily diagnose cases of COVID-19. The HPI

postulates go further to determine why different outcomes

result from the dynamic molecular and cellular interactions

between the host and pathogen (Figures 1, 2).

The Bradford Hill criteria aim to establish epidemiological

evidence of causality between a presumed cause and an observed

effect (49, 50). These criteria include a group of nine principles

developed to establish epidemiological evidence of the causality

between a presumed cause and an observed effect (49). In

comparison, the identification of epidemiological evidence for

such causality is not the focus of the HPI postulates. Instead, the

HPI postulates are developed with the assumption that we

already know the microbial cause of a disease. Importantly,

the HPI postulates focus on the direct molecular and cellular

host-pathogen interactions, rather than on the epidemiological

evidence at the population level. There is, therefore, no conflict

between these sets of frameworks and they serve to complement

each other by addressing two different issues.

As was stated in the Introduction, the Damage-Response

Framework (DRF) of microbial pathogenesis includes three

tenets with the focus on understanding microbial pathogenesis

based on the concepts of microbial pathogenesis, host damage,

and microbial factors vs. the host response (2). Considering that

the nature and mechanisms of microbial pathogenesis and

damage are difficult to understand and characterize rigorously,

we suggest the tenets of the DRF cannot serve as the most basic

axioms or primitives for broad host-pathogen interaction

studies. In contrast, our HPI postulates provide a more basic

set of postulates and as such are a foundation that can, indeed, be

used to explain the DRF.
HPIPO: The hpi postulate and
ontology framework applied to
COVID-19

As illustrated in the embedded network shown in Figure 1,

data and systems networks generated by in vivo and in vitro

studies of complex host-pathogen interactions are often

impressively large and detailed. Such networks include many

nodes (entities) and edges (interactions), but the interaction

types underlying each edge are usually unclear, and the roles

played by the nodes and edges in the final disease outcomes are

usually unknown. The data generated in conventional systems

network representations are unintegrated, non-interoperable,

and not machine-readable and thus form a hindrance to

computer-assisted semantic analysis (51, 52). The pathways

leading to specific disease outcomes and the measures to

interrupt these pathways thus remain obscure.
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To create more adequate representations of the vast stores of

HPI data, we turn to ontologies. These are standardly built

around an is_a relation linking one class of entities to its parent

class. Ontologies are not, however, mere taxonomies; they

provide additional relations between entities under different

hierarchies. For example, an ontology might include a ‘capable

of ’ relation, which links the class ‘Homo sapiens’ under the

organism taxonomy hierarchy to the class ‘thinking’ in the

Mental Functioning Ontology (53). Similarly, we can include a

‘capable of binding to’ relation to link the class ‘spike glycoprotein

(SARS-CoV-2)’ to the class ‘ACE2 angiotensin converting enzyme

2 (human)’ in the Coronavirus Infectious Disease Ontology

(CIDO) (19, 22).

To better represent HPI-outcome and pathogenesis

mechanisms, we build on the HPI postulates to propose the

Host-Pathogen Interaction Postulates and Ontology (HPIPO)

framework, which uses the HPI postulates to guide the creation

of ontological representations. HPIPO rests on the following

three basic tenets:
- HPI postulates as the basis: The framework of the

ontological representation of HPIs shall be rooted in

the HPI postulates. Interoperable ontologies shall be

used to semantically represent the entities and relations

of specific molecular and cellular host-pathogen

interactions and their associated participants,

motivations, outcomes, roles, and checkpoints.

- Ontology usage: Consensus-based reference ontologies

shall be used to logically represent HPIs and complex

molecular and cellular interactions leading to various

disease outcomes under specific conditions.

- Ontology interoperability: Terms, relations, and design

patterns in the ontologies shall be aligned under the

same interoperable ontology framework to achieve

seamless data integration, sharing, and analysis.
Large-scale data interoperability is needed to apply the

HPIPO framework and rely on the reuse of interoperable

reference ontologies. Many well-curated ontologies covering

nearby domains already exist, most notably in the Open

Biomedical and Biological Ontologies (OBO) Foundry library,

initiated in 2007 to support ontology interoperability through

the adoption of a set of ontology development principles such as

collaboration, openness and faithfulness to advances in scientific

knowledge (54).

We envision that our proposed integrative HPIPO

framework will serve as a foundation for ongoing and deeper

studies of the COVID-19 disease. We initiated the development

of the CIDO to serve as a logical framework for the systematic

representation of the HCIs, disease outcomes, and the relations

between the HCIs and disease outcomes (55). CIDO is

interoperable with other ontologies such as the community-
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based Infectious Disease Ontology (IDO) (56) and Ontology of

Host-Pathogen Interactions (OHPI) (38). The CIDO is an OBO

library ontology that includes terminological content specific to

coronaviruses, viral variations, hosts, phenotypes, host-

coronavirus interactions, vaccines, drugs, and how these

entities relate to each other (19, 22). In addition to asserting

over 1,500 new terms, CIDO reuses over 10,000 terms from

more than 30 other interoperable ontologies all aligned under

the Basic Formal Ontology (BFO) (57), an upper-level ontology

that is an International Organization for Standardization

standard (ISO/IEC 21838-2:2021). As BFO has been widely

used in over 450 ontologies, its adoption allows us to align

imported and new terminological content under a unified

ontology framework.

Figure 3 illustrates how CIDO imports terms from many

existing reference ontologies to represent coronaviral knowledge

from different aspects. Specifically, the taxonomic hierarchies of

various coronaviruses and their hosts are extracted from the

NCBI Taxonomy ontology (NCBITaxon) (60) (Figures 3A-C),

and the representative COVID-19 symptoms are represented

using Human Phenotype Ontology (HPO) (61) terms

(Figure 3D). Our ontology-based analysis also found that those

patients with many comorbid conditions (e.g., chronic kidney

disease, hypertension, and diabetes) are at heightened risk for

severe symptoms and death (36) (Figure 3D).

CIDO defines new axioms to link different kinds of entities

(19, 22). For example, the process ‘SARS-CoV-2 S-ACE2 binding’

is defined in CIDO by three logical axioms expressed in the Web
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Ontology Language (OWL) (expressions in bold are logical

connectives; expressions in italics are classes or relations):
has participant some SARS-CoV-2 S protein and (has role

some ligand role)

has participant some ACE2 and (has role some receptor

role)

activated by some TMPRSS2 and (has role some enzyme

activator role)
The above axioms define logical relations obtained when a

SARS-CoV-2 S protein-human ACE2 binding process has two

participants: a SARS-CoV-2 S protein that serves as a ligand role,

and a human Angiotensin-Converting Enzyme 2 (ACE2)

protein that serves as a receptor role. This binding is activated

by TMPRSS2, a type 2 transmembrane serine protease 2 that

activates the binding between S protein and ACE2 by priming

the S protein through S protein cleavage, allowing the fusion of

the viral and cellular membranes (62). This binding process

provides the molecular mechanism for the coronavirus to invade

host cells.

Using semantic axioms as illustrated above, we can query the

CIDO ontology to extract various types of knowledge. For

example, we can recursively query the CIDO triple store using

SPARQL query scripts (63) to find those drugs and biological

processes where the drugs are capable of interrupting specific

protein targets participating in specific biological processes in

host-coronavirus interactions. Figure 4 presents CIDO-based
A
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FIGURE 3

Ontological representation of coronaviruses, hosts, and phenotype outcomes of host-coronavirus interactions. (A) A general scheme. (B) The
NCBITaxon taxonomical hierarchy of representative human coronaviruses. (C) The taxonomical hierarchy of representative hosts of
coronaviruses. (D) Human Phenotype Ontology (HPO) hierarchy of representative human phenotypes commonly seen in COVID-19 patients.
Representative comorbidity phenotypes and associated phenotype frequency in mild and severe COVID-19 patients are also represented. For
example, “0.14, 0.30” in (D) indicates that superimposed hypertension is found in 14% of mild symptom patients and 30% of severe symptom
patients. The results were summarized from reported literature (58, 59).
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SPARQL query results identifying 133 biological processes, such

as ‘positive regulation of vasoconstriction’ (GO_0045907),

‘response to glucocorticoid’ (GO_0051384), and ‘peptidyl-

tyrosine phosphorylation’ (GO_0018108), which involve

proteins as the inhibitory targets of chemicals/drugs that

inhibit coronaviral infection in vivo or in vitro. Supplemental

File 1 and Supplemental File 2 provide more details about the

identified 133 processes, 125 proteins that participate in these

processes, and 52 chemicals/drugs that play the inhibitor role.

Using the postulates, we can identify and link specific roles

and checkpoints to specific entities in the HPI interactions

leading to disease outcomes. We can also use this ontological

representation to interpret conventional systems networks such

as that embedded in Figure 1, making these networks amenable

to computer-assisted reasoning. With new results reported, we

could use the eXtensible ontology development (XOD)

principles and related tools (52) to recursively update CIDO as

illustrated in our recent study (64).

Lastly, it is worth noting that the ontology data

representation model in the HPIPO framework is a departure

from, but improvement on, the traditional use of ontologies for

annotation. Gene products, for example, are frequently

annotated with terms from GO (65), resulting in interoperable

annotations of components in molecular interactions. Guided by

the HPI postulates, the CIDO ontology goes further by

representing how coronaviruses infect host organisms, induce

specific molecular interactions, and thereby cause different

disease outcomes. CIDO thus provides a direct ontological
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representation of specific interactions. CIDO modeling shares

similarities with the GO Causal Activity Modeling (GO-CAM)

(66), which provides a framework for representing qualitative

causal models for how gene products act together to conduct a

biological program. With CIDO, however, modeling aims to

represent ontologically the whole HPI cycle from pathogen

infection to disease outcomes.

In each respect, we intend the HPIPO framework to either

complement or be compatible with existing nearby approaches

to investigating disease outcomes. As should be clear, however,

HPIPO differs in significant ways from nearby proposals.
Applications: Rational COVID-19
Cocktail Design and Granular PPI
Analysis

In this section, we first demonstrate how the HPI postulates and

their ontological representation (HPIPO) can be used to support

rational drug and vaccine design. Given the complex host-COVID-

19 interactions, we propose a drug cocktail strategy and a vaccine

cocktail strategy for enhanced drug/vaccine design, and ontology

modeling can help such rational design. Following this application –

and building on previous work involving human-coronavirus

protein-protein interaction network analyses – we identify how

the HPIPO framework can aid researchers in highlighting

important mechanisms within a PPI interaction network.
FIGURE 4

SPARQL query of CIDO for anticoronaviral chemicals/drugs out of host-coronavirus interactions. This SPARQL identified 125 biological
processes having participant of proteins that are the targets of chemicals/drugs that inhibit coronaviral infection in vivo or in vitro, illustrating
how the relations (red circles) and classes (blue circles) are associated and interlinked. The SPARQL was performed using Ontobee SPARQL
endpoint (http://www.ontobee.org/sparql). The detailed information about these 125 biological processes and their associated proteins and
chemicals/drugs is provided in Supplemental Files 1, 2.
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No single drug has been proven to be exceedingly effective

against COVID-19. Remdesivir (Veklury) is the first FDA-

approved antiviral drug to treat COVID-19 in patients who

are aged 12 or older. Remdesivir interferes with the action of

viral RNA-dependent RNA polymerase (RdRp), decreasing the

viral RNA production. Paxlovid and molnupiravir are two more

drugs authorized by FDA for emergency use (67). Paxlovid

includes two active ingredients: nirmatrelvir and ritonavir.

Nirmatrelvir blocks Mpro, an enzyme needed for SARS-CoV-2

virus to replicate. Ritonavir helps slow the breakdown of

nirmatrelvir in the body. Molnupiravir is the isopropyl ester

prodrug of the r ibonucleos ide analogue b -D-N4-

hydroxycytidine (NHC), which inhibits viral reproduction by

promoting mutations in the viral RNA replication by RdRp.

Several monoclonal antibodies, such as bebtelovimab and

sotrovimab that target the spike protein of SARS-CoV2, have

also been authorized for emergent usage against COVID-19.

Each of these drugs is partially effective, and it is highly desired

to develop a treatment recipe to fully treat the disease.

Aligned with the HPIPO, we have previously proposed a

related “Host-Coronavirus Interaction (HCI) checkpoint drug

cocktail” strategy (22). Basic to this strategy is the thesis that

drugs can be developed to interrupt specific ‘checkpoints’ and so

block the emergence of severe disease outcomes. Since HCIs

often result in distinct outcomes under similar conditions, and

since no single drug intervention has yet had dramatically

positive effects in the case of COVID-19, we hypothesize that a

drug cocktail to block the formation of specific outcomes will be

more effective. The individual drugs in such a cocktail would

interrupt specific HCI pathways at different disease stages, and

thereby lead to more favorable outcomes. Such a cocktail

strategy is also inspired by HIV research. To treat HIV

patients (68, 69), the combination drug treatment known as

the highly active antiretroviral therapy (HAART), or simply

“AIDS cocktail”, was initiated in 1995, and since then has made

AIDS a manageable disease.

Based on the cocktail drug design strategy, it would be

reasonable to repurpose drugs that might interrupt important

checkpoints in the dynamic HCI network. Based on this strategy,

we have developed a cocktail drug screening algorithm in the

DrugXplore program (70). Using this algorithm, we identified a

total of 232 drugs that have their drug protein targets involving

coronavirus entry, coronavirus genome replication, and host

cytokine activity against COVID-19 (Figure 5). Two drugs (i.e.,

copper and artenimol) were also found to have protein targets

involved in all the three processes. Although individual cocktail

drugs do not have to target multiple HCI processes

simultaneously, this study provides a proof-of-concept

demonstration on how to develop cocktail drugs against

COVID-19.

For successful cocktail drug design, we will require

systematic semantic understanding of HCI-outcome pathways,

individual interactions in the pathways, and the roles of the
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components in the interactions and pathways. To achieve this,

the HPIPO framework applied to host-coronavirus interactions

is advantageous as it aids the representation of HCI-outcome

pathways, highlighting important steps in these complex

processes. Moreover, our previous studies (15, 22, 36, 71)

provide a demonstration of how the CIDO can be used to

semantically represent various HCIs, HCI-associated entities,

and drugs that interrupt specific entities in the HCIs. Such

representation provides the foundations needed for the

development of tools supporting intelligent queries (22, 72, 73)

and enhanced computational predictions (11, 74, 75) from

ontology-represented data. For example, using the semantic

patterns illustrated by axioms defined in the ontology, we were

able to recursively query the ontology CIDO itself to find those

drugs and biological processes where the drugs (e.g.,

amodiaquine (76), dasatinib (77), imatinib (78), nilotinib (79),

and ouabain (80) are capable of interrupting specific protein

targets participating in specific biological processes in HCIs (22).

HPIPO provides a logical and effective framework to

further develop the CIDO to include the large volume of

new findings in HPI-outcome and drug responses. It is also

noted that not all the HPI relationships identified in

experimental and clinical studies will reflect the causal

mechanisms of disease outcomes. Many show just the

correlation between these outcomes and the infection by a

microbe. Since the HPI postulates emphasize the annotation

of roles of different components in the HPI-outcome

processes, the HPIPO framework provides a feasible path

toward tackling such issues.

Meanwhile, we have also used reverse vaccinology and

machine learning strategy to predict protective antigen

candidates for COVID-19 vaccine development (71). Our

study independently predicted the S-protein as the top-ranked

protective antigen. Furthermore, we predicted that nonstructural

proteins (Nsps) Nsp3 and Nsp8, are also effective protective

antigens, and we found that nonstructural proteins Nsp3, 3CL-

pro and Nsp8 are adhesins critical for viral adherence and

invasion (71). Nsp3 is a key component of the viral

replication. We further demonstrated that Nsp3 can stimulate

both MHC class I and II epitopes as well as B-cell epitopes (71).

In addition, there are experimental studies that confirm our

computational predictions. For example, the papain-like

protease PLpro, a sub-domain of Nsp3, regulates SARS-CoV-2

viral spread and innate immunity (81), and Nsp3 induces both

strong CD4+ helper T cells and CD8+ cytotoxic T-cell responses

(82). Based on these results, we proposed to develop a “Sp/Nsp

cocktail vaccine”, which would include both the structural S

protein and either nonstructural protein Nsp3 or Nsp8. Such a

cocktail is likely to induce a stronger and more sustained cell-

mediated and humoral immunity necessary to prevent viral

invasion and replication, avoid immune evasion, and control

the viral infection (71). Such a cocktail vaccine strategy is also

aligned and can be better studied with the HPIPO framework.
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Furthermore, it is possible to combine the “Host-

Coronavirus Interaction (HCI) checkpoint drug cocktail”

strategy and the “Sp/Nsp cocktail vaccine” strategy to form a

complementary cocktail drug/vaccine strategy in our systematic

design against the highly transmissible and deadly COVID-19

disease. The cocktail vaccine would stimulate both humoral and

cell-mediated host immune responses against viral invasion and

vial immune evasion. The vaccine-targeted viral targets should

be specific checkpoints of the host-coronavirus interaction

(HCI) network. The drug cocktail would further treat the

patients at the critical checkpoints of the HCI network. Both

vaccine- and drug-targeted HCI checkpoints may be considered

simultaneously. Our HPIPO framework will help us to identify

roles and checkpoints for different components in the HCI-

outcome analysis. The CIDO ontology can be leveraged to

semantically represent the large amounts of knowledge and

data. Computational machine learning methods can also be

further developed. New hypotheses will also be generated for

experimental evaluations.

In addition to facilitating the creation of vaccines and drug

cocktail, the HPIPO framework can be used to help predict how a

set of proteins might interact. Figure 6 represents computational
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predictions of human-coronavirus protein-protein interactions

(PPIs) based on prior knowledge of curated PPIs, domain-

domain interactions (DDIs) (37, 38) and sequence similarity

(83–86). Focusing on DDIs, we were in particular able to infer

potential interactions between proteins if one domain in a

pathogen protein A interacted with another domain in a host

protein B. For example, when applying this strategy to analyze

human sequences and virus sequences, we identified 332 human

domain and 22 virus domain pairings. After filtering using prior

knowledge of confirmed DDIs, we were able to predict 1,001

interactions that involve 27 virus proteins and 233 human

proteins (See Supplemental File 3). The interacting human

proteins are annotated with tissue-specific expression profiles

from the Human Protein Atlas (37, 87), downloaded at 2020-4-

18. In the last image of Figure 6, nodes in the middle are virus

proteins, nodes in the outer circle are human proteins, and

proteins enriched in different tissues are marked with different

colors. The tissue specificity results are provided in the

Supplemental File 4.

To verify our predicted PPIs, a computational assessment

(88) was implemented. Specifically, semantically enriched Gene

Ontology (GO) (65) terms representing host proteins predicted
FIGURE 5

Venn Diagram of potential COVID-19 drugs based on the HPI Postulate drug cocktail strategy. A total of 232 drugs were identified to have their
protein targets involving coronavirus entry, coronavirus genome replication, and host cytokine activity against COVID-19. Two drugs (i.e.,
copper and artenimol) were shared to have protein targets involved in all three processes. The drug screening study was performed using the
DrugXplore program (70).
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to be targeted by pathogens were used to evaluate the functional

relevance of predicted host-pathogen PPIs (89). We evaluated

the consistency of the enriched GO terms of experimental

validated PPIs and our predicted PPIs. The experimental PPIs

were collected from 332 high-confidence protein-protein

interactions between SARS-CoV-2 and human proteins which

were identified by affinity-purification mass spectrometry (90).

As shown in Figure 7, the enriched GO terms from experimental

PPIs and our PPI largely overlapped, which provides strong

evidence that our prediction is accurate and meaningful.

Important for our purposes is that the complexity of the

domain of DDI research tends to result in protein domain

interactions represented in large, unwieldy, webs of nodes and

edges which are difficult to parse and challenging to analyze. As

we have illustrated, ontologies are useful tools for highlighting

important connections exhibited by complex domains. DDI

research is not presently represented in any semantically

interoperable ontology. Standardizing existing DDI knowledge

in an ontology will, we suggest, provide a firm foundation on

which to add novel DDI knowledge, and so potentially provide

more accurate and reliable predictions of important PPIs. New

DDI-based human-pathogen PPI prediction methods can be

developed to overcome many issues such as domain sequence

variations and the huge differences in the interaction interface

(85). It is also possible to ontologically model and represent the

sequence variations and interaction interfaces, leading to more

advanced PPI predictions.
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Formally representing PPI knowledge would, moreover,

bring such research within the scope of our HPIPO

framework. We have, for example, emphasized the importance

of molecular roles in disease outcomes, but our postulates may

apply equally at the level of protein domains, as well as

constituent proteins. Put another way, protein domains too

might be said to bear HPI roles, acquired from the relevant

molecular parts of hosts and pathogens as described in

Postulate 3.
Discussion and future work

Three major contributions are made in this study. First, we

proposed four HPI postulates as the basis for thorough and

systematic understanding of the molecular mechanisms of diverse

disease outcomes. Second, we proposed the HPIPO framework to

semantically model, represent, and analyze the HPI details derived

from the application of the HPI Postulates. Third, we have applied

the HPIPO framework to study the COVID-19 disease and the

host-coronavirus interactions, and further proposed a

complementary drug and vaccine cocktail strategy against

COVID-19, while motivating potential utility of characterizing

PPI research within the scope of the HPIPO framework.

The driving scientific question motivating our HPI

postulates and HPIPO framework concerns why people

infected with the same SARS-CoV-2 virus may manifest
A

B

FIGURE 7

Verification of predicted human-coronavirus protein-protein interactions (PPIs) with experimentally validated PPIs. (A) Enriched GO terms of
experimentally validated PPIs. (B) Enriched GO terms of our predicted PPIs. Our predicted PPIs (Figure 6) have coherent informative GO term
annotations with the experimentally validated PPIs.
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different symptoms and disease outcomes. This is not

addressable by Koch’s Postulates, which aim to build up a set

of criteria to establish whether a specific organism is the cause of

a specific disease. The Damage Response Framework (DRF) (2)

emphasizes the amount of damage caused by microorganism to

the host and its role in the host-relevant outcome, but it cannot

evaluate how or why a pathogen causes the amount of damage

that it does cause from a granular perspective of HPI

mechanisms. In comparison, our HPI postulates address the

issue of deep understanding of specific molecular HPI

mechanisms. It is possible to use the HPI postulates to explain

the microbial pathogenesis and damage, further supporting the

DRF applications.

The four HPI postulates provide rich details of HPI

mechanisms. First, the postulate of HPI evolutionary dispositions

addresses the issue of the root cause of the pathogen and host

behaviors in the HPI. The postulate of HPI dynamic outcomes lays

out the HPI dynamic processes leading to specific disease outcomes.

Various conditions (e.g., biological sex and age) in the HPI

dynamics may affect the disease outcomes. Furthermore, we

propose two novel postulates of HPI roles and HPI checkpoints.

The postulate of HPI roles explains the HPI-to-outcome dynamics

by assuming that different HPI components have specific roles.

Furthermore, the postulate of HPI checkpoints assume that some

HPI components have specific checkpoint roles, which are critical

roles to the realization of critical disease outcomes. To undercover

the fundamental HPI-to-outcome mechanisms, it is important to

identify those checkpoint molecules. Like the inhibition of immune

checkpoint molecules leading to cancer immunotherapy (28), the

HPI checkpoint molecules can also be interrupted for translational

prevention or therapy purpose.

While the set of four HPI postulates explain the molecular HPI-

to-outcome mechanisms well, a specific strategy is needed to fully

apply the postulates for deep HPI studies. This is why we propose

the HPIPO framework, in which interoperable ontologies are used

to implement the HPI postulates, in the interest of supporting

standardized knowledge representation, data annotation and

sharing, and computer-assisted data analysis. It is also noted that

as the core of the HPIPO framework, the HPI postulates can exist

independently and be used for other purposes such as the

explanation of different HPI-to-outcome phenomena. It is feasible

to use the HPI postulates to explain the Damage Response

Framework (DRF). It is also likely that we can apply the HPI

postulates for developing ontology-independent technical strategies.

The HPIPO framework is illustrated by focusing on human-

coronavirus interactions in this manuscript. In such interactions,

the hosts and patients have different evolutionary dispositions,

which form the basis of the interactive human and coronavirus

response profiles. Analyses of relevant underlying molecular and

cellular HPIs frequently result in extensive, difficult to analyze,

networks of interactions from both the host and coronavirus

sides. To better understand these extensive networks and

interactions, using the HPIPO framework we emphasize roles
Frontiers in Immunology 14
of molecules in specific pathways of coronaviral pathogenesis.

Moreover, our application of the HPIPO framework reveals the

importance of certain checkpoints in such pathways, where

importance stems from the fact that had these checkpoints

been different, the pathway itself would have been substantially

altered. Just as we see in cancer immune checkpoint theory

applications, identification of such checkpoint molecules will

allow more effective rational COVID-19 drug design, therapeutic

treatments, and preventative measures.

As noted, PPI networks, such as that represented in Figure 1

and found in various systems network studies (91–93), are often

challenging to integrate and use in an automated way. Our

proposed HPIPO framework provides a novel approach to such

research, and one which will overcome interoperability

challenges. PPI network entities represented in well-designed,

curated, ontologies such as those extending from BFO, would

already be interoperable with a wide range of biomedical and

biological ontologies and associated data. Once standard PPI

network entities and relations have been represented in such

ontologies, the results of new network research could be

connected – using computational methods – to the results of

existing network research represented in ontologies.

Computational predictions of HPIs at the proteome, genome,

and epigenome level (94–96) have accumulated large amounts of

prior knowledge and principles. However, it is often unclear how

useful the identification of large numbers of host-pathogen PPIs

might be to researchers due to many technical issues (95). Various

factors may affect the prediction outcomes. Our study (Figures 6,

7) showed that DDIs can be further studied and used for PPI

analysis. However, factors such as domain sequence variations,

interaction interface differences, promoters and transcription

factors (97), and general host environmental conditions may

also influence PPIs and disease outcomes. Furthermore,

experimental results may also vary in apparently similar

experimental designs (98–100). These phenomena indeed align

with our postulate of HPI dynamic outcomes in that various

conditions may affect the HPI dynamics and disease outcome. To

address these issues, it is possible to develop and follow minimal

information standards (9, 101), dissect different conditions and

variables in specific experimental and computational studies, and

model and represent these conditions and variables using

interoperable ontologies (9, 51, 98, 99, 102–104). Ontology-

based knowledge bases (38, 100, 105) can also be used and

applied. The usage of these standards and ontologies will

significantly improve our reproducible and interoperable HPI

studies, and help develop more advanced prediction methods.

There are many other possible applications of the HPI

postulates and HPIPO framework, such as investigation into

novel emerging diseases and associated disease pathways.

Identifying the molecular constitution of a novel pathogen is

an important first step in combatting future infections. We must

also understand how novel emerging pathogens spread, as well

as the underlying mechanisms that result in observed disease
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outcomes. Our strategy emphasizes curating and leveraging

known molecular information relevant to pathogens and hosts

in the interest of identifying checkpoints pivotal to observed

disease outcomes. We wager that such careful curation will result

in much easier and efficient strategies for predicting disease

outcomes and designing drugs, treatments, and vaccines.

There is, of course, much more work to be done in developing,

refining, and applying the HPIPO framework. We would like to

ask the ontology and HPI communities to aid in our efforts in

applying and refining the HPIPO framework. Areas in need of

further development include: the annotations of roles relevant to

HPI outcomes in conventional network analyses, implementation

of the HPIPO framework in data analyses and software

development, as well as continued term development in CIDO

(19) following OBO Foundry principles (54).
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding authors.
Author contributions

HY and YW: COVID-19 domain expert and CIDO

development. LL, TZ, JZ, PL, Z-PL, and LChen: Protein-Protein

Interaction (PPI) analysis and prediction. AH: CIDO development

and data analysis. JB, EM, and BS: Evaluation of CIDO ontology,

postulates, and frameworks. JH and H-HH: Host-coronavirus

interaction (HCI) knowledge mining, postulate evaluation, and

result interpretation. YL and ZW: COVID-19 drug analysis. EO

and LCheng: Statistical data analysis expert. XZ, XY: COVID-19

clinical domain experts. SH, JS, KE, GH, GO, and BA: Biomedical

domain experts, postulation evaluation and result interpretation.

YH: Project design, initiation of proposed HPI postulates and

HPIPO framework, microbiology expert, and CIDO and

SPARQL script development. YH, HY, LL, AH, and JH drafted

the first manuscript draft. All authors contributed to the article and

approved the submitted version.
Funding

This project is supported by NIH grants UH2AI132931 (to

YH), U24AI171008 (to YH and JH), U24CA210967 and
Frontiers in Immunology 15
P30ES017885 (to GSO), P20GM113123 (to JH), and

1UL1TR001412 and T15LM012495 (BS, JB, EM). It is also

supported by the non-profit Central Research Institute Fund

of Chinese Academy of Medical Sciences 2019PT320003 (to

HY), a University of Michigan Medical School Global Reach

award (to YH), and COVID-19 discovery award from Michigan

Medicine – Peking University Health Sciences Center Joint

Institute for Clinical and Translational Research (to YH).
Acknowledgments

This project is supported by NIH grants UH2AI132931 (to

YH), U24AI171008 (to YH and JH), U24CA210967 and

P30ES017885 (to GSO), P20GM113123 (to JH), JST Moonshot

R&D JPMJMS2021 (to LC), and 1UL1TR001412 and

T15LM012495 (BS, JB, EM). It is also supported by the non-

profit Central Research Institute Fund of Chinese Academy of

Medical Sciences 2019PT320003 (to HY), a University of

Michigan Medical School Global Reach award (to YH), and

COVID-19 discovery award from Michigan Medicine – Peking

University Health Sciences Center Joint Institute for Clinical and

Translational Research (to YH).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.1066733/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1066733/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1066733/full#supplementary-material
https://doi.org/10.3389/fimmu.2022.1066733
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2022.1066733
References
1. Todd OA, Peters BM. Candida albicans and staphylococcus aureus
pathogenicity and polymicrobial interactions: Lessons beyond koch's postulates. J
Fungi (Basel) (2019) 5:1–14. doi: 10.3390/jof5030081

2. Casadevall A, Pirofski LA. The damage-response framework of microbial
pathogenesis. Nat Rev Microbiol (2003) 1:17–24. doi: 10.1038/nrmicro732

3. Perrin-Cocon L, Diaz O, Jacquemin C, Barthel V, Ogire E, Ramiere C, et al.
The current landscape of coronavirus-host protein-protein interactions. J Transl
Med (2020) 18:319. doi: 10.1186/s12967-020-02480-z

4. Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, et al.
Comparative host-coronavirus protein interaction networks reveal pan-viral
disease mechanisms. Science (2020) 370(6521):eabe9403. doi: 10.1126/
science.abe9403.

5. Fung TS, Liu DX. Human coronavirus: Host-pathogen interaction. Annu Rev
Microbiol (2019) 73:529–57. doi: 10.1146/annurev-micro-020518-115759

6. Bodenreider O. Biomedical ontologies in action: role in knowledge
management, data integration and decision support. Yearb Med Inform (2008)
17(01)67–79. doi: 10.1055/s-0038-1638585

7. Schulz S, Balkanyi L, Cornet R, Bodenreider O. From concept representations
to ontologies: A paradigm shift in health informatics? Healthc Inform Res (2013)
19:235–42. doi: 10.4258/hir.2013.19.4.235

8. Stodden V, Guo P, Ma Z. Toward reproducible computational research: An
empirical analysis of data and code policy adoption by journals. PloS One (2013) 8:
e67111. doi: 10.1371/journal.pone.0067111

9. Dugan VG, Emrich SJ, Giraldo-Calderon GI, Harb OS, Newman RM, Pickett
BE, et al. Standardized metadata for human pathogen/vector genomic sequences.
PloS One (2014) 9:e99979. doi: 10.1371/journal.pone.0099979

10. Gonzalez-Beltran A, Maguire E, Sansone SA, Rocca-Serra P. linkedISA:
semantic representation of ISA-tab experimental metadata. BMC Bioinf (2014) 15
Suppl 14:S4. doi: 10.1186/1471-2105-15-S14-S4

11. Hoehndorf R, Schofield PN, Gkoutos GV. The role of ontologies in
biological and biomedical research: a functional perspective. Brief Bioinform
(2015) 16(6):1069–80. doi: 10.1093/bib/bbv011

12. Malladi VS, Erickson DT, Podduturi NR, Rowe LD, Chan ET, Davidson JM,
et al. Ontology application and use at the ENCODE DCC. Database (Oxford)
(2015) 2015:1-11. doi: 10.1093/database/bav010

13. Haendel MA, Chute CG, Robinson PN. Classification, ontology, and precision
medicine. N Engl J Med (2018) 379:1452–62. doi: 10.1056/NEJMra1615014

14. Ong E, Wang LL, Schaub J, O'toole JF, Steck B, Rosenberg AZ, et al. Modelling
kidney disease using ontology: insights from the kidney precision medicine project. Nat
Rev Nephrol (2020) 16:686–96. doi: 10.1038/s41581-020-00335-w

15. Wang Z, He Y. Precision omics data integration and analysis with
interoperable ontologies and their application for COVID-19 research. Brief
Funct Genomics (2021) 20:235–48. doi: 10.1093/bfgp/elab029

16. He Y. Development and applications of interoperable biomedical ontologies
for integrative data and knowledge representation and multiscale modeling in
systems medicine.Methods Mol Biol (2022) 2486:233–44. doi: 10.1007/978-1-0716-
2265-0_12

17. Rodriguez-Iglesias A, Rodriguez-Gonzalez A, Irvine AG, Sesma A, Urban
M, Hammond-Kosack KE, et al. Publishing FAIR data: An exemplar methodology
utilizing PHI-base. Front Plant Sci (2016) 7:641. doi: 10.3389/fpls.2016.00641

18. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak
A, et al. The FAIR guiding principles for scientific data management and
stewardship. Sci Data (2016) 3:160018. doi: 10.1038/sdata.2016.18

19. He Y, Yu H, Ong E, Wang Y, Liu Y, Huffman A, et al. CIDO, a community-
based ontology for coronavirus disease knowledge and data integration, sharing,
and analysis. Sci Data (2020) 7:181. doi: 10.1038/s41597-020-0523-6

20. He Y, Yu H, Huffman A, Lin AY, Natale DA, Beverley J, et al. A
comprehensive update on CIDO: the community-based coronavirus infectious
disease ontology. J BioMed Semantics (2022) 13:25. doi: 10.1186/s13326-022-
00279-z

21. He Y, Yu H, Ong E, Wang Y, Liu Y, Huffman A, et al. CIDO: The
community-based coronavirus infectious disease ontology. In: Proceedings of the
11th international conference on biomedical ontologies (ICBO) and 10th workshop
on ontologies and data in life sciences (ODLS). CEUR Workshop Proceedings
(2021). p. E.1–10.

22. Liu Y, Hur J, Chan WKB, Wang Z, Xie J, Sun D, et al. Ontological modeling
and analysis of experimentally or clinically verified drugs against coronavirus
infection. Sci Data (2021) 8:16. doi: 10.1038/s41597-021-00799-w

23. Castle SD, Grierson CS, Gorochowski TE. Towards an engineering theory of
evolution. Nat Commun (2021) 12:3326. doi: 10.1038/s41467-021-23573-3
Frontiers in Immunology 16
24. Kikkert M. Innate immune evasion by human respiratory RNA viruses. J
Innate Immun (2020) 12:4–20. doi: 10.1159/000503030

25. Tay MZ, Poh CM, Renia L, Macary PA, Ng LFP. The trinity of COVID-19:
immunity, inflammation and intervention. Nat Rev Immunol (2020) 20(6):363–74.
doi: 10.1038/s41577-020-0311-8

26. Cheng L, Zhu Z, Wang C, Wang P, He YO, Zhang X. COVID-19 induces
lower levels of IL-8, IL-10, and MCP-1 than other acute CRS-inducing diseases.
Proc Natl Acad Sci U.S.A. (2021) 118:1–2. doi: 10.1073/pnas.2102960118

27. Goldfain A, Smith B, Cowell LG. Towards an ontological representation of
resistance: the case of MRSA. J BioMed Inform (2011) 44:35–41. doi: 10.1016/
j.jbi.2010.02.008

28. Cheng F. In silico oncology drug repositioning and polypharmacology. In:
Cancer bioinformatics. Springer (2019). p. 243–61.

29. Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases.
Nat Rev Immunol (2018) 18:91–104. doi: 10.1038/nri.2017.112

30. Mascola JR, Graham BS, Fauci AS. SARS-CoV-2 viral variants-tackling a
moving target. JAMA (2021) 325:1261–2. doi: 10.1001/jama.2021.2088

31. Zhang J, Zhang Y, Kang JY, Chen S, He Y, Han B, et al. Potential
transmission chains of variant B.1.1.7 and co-mutations of SARS-CoV-2. Cell
Discovery (2021) 7:44. doi: 10.1038/s41421-021-00282-1

32. Mercatelli D, Giorgi FM. Geographic and genomic distribution of SARS-
CoV-2 mutations. Front Microbiol (2020) 11:1800. doi: 10.3389/fmicb.2020.01800

33. Zhang J, Kang J, Liu M, Han B, Li L, He Y, et al. Multi-site co-mutations and
5’UTR CpG immunity escape drive the evolution of SARS-CoV-2. bioRxiv (2020)
1–16. doi: doi.org/10.1101/2020.07.21.213405

34. Yamamoto N, Ariumi Y, Nishida N, Yamamoto R, Bauer G, Gojobori T,
et al. SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with
ACE1 I/D genotype. Gene (2020) 758:144944. doi: 10.1016/j.gene.2020.144944

35. Zhang Y, Qin L, Zhao Y, Zhang P, Xu B, Li K, et al. Interferon-induced
transmembrane protein 3 genetic variant rs12252-c associated with disease severity in
coronavirus disease 2019. J Infect Dis (2020) 222:34–7. doi: 10.1093/infdis/jiaa224

36. Wang Y, Zhang F, Byrd JB, Yu H, Ye X, He Y. Differential COVID-19
symptoms given pandemic locations, time, and comorbidities during the early
pandemic. Front Med (Lausanne) (2022) 9:770031. doi: 10.3389/fmed.2022.770031

37. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu
A, et al. Proteomics. tissue-based map of the human proteome. Science (2015)
347:1260419. doi: 10.1126/science.1260419

38. Sayers S, Li L, Ong E, Deng S, Fu G, Lin Y, et al. Victors: a web-based
knowledge base of virulence factors in human and animal pathogens. Nucleic Acids
Res (2019) 47:D693–700. doi: 10.1093/nar/gky999

39. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease
pathogenesis. Semin Immunopathol (2017) 39:517–28. doi: 10.1007/s00281-017-
0639-8

40. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine
storm' in COVID-19. J Infect (2020) 80(6):607–13. doi: 10.1016/j.jinf.2020.03.037

41. Yu F, Xiang R, Deng X, Wang L, Yu Z, Tian S, et al. Receptor-binding
domain-specific human neutralizing monoclonal antibodies against SARS-CoV
and SARS-CoV-2. Signal Transduct Target Ther (2020) 5:212. doi: 10.1038/s41392-
020-00318-0

42. Kim C, Ryu DK, Lee J, Kim YI, Seo JM, Kim YG, et al. A therapeutic
neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike
protein. Nat Commun (2021) 12:288. doi: 10.1038/s41467-020-20602-5

43. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe
COVID-19 patients with tocilizumab. Proc Natl Acad Sci U.S.A. (2020) 117:10970–5.
doi: 10.1073/pnas.2005615117

44. Rivers TM. Viruses and koch's postulates. J Bacteriol (1937) 33:1–12. doi:
10.1128/jb.33.1.1-12.1937

45. Falkow S. Molecular koch's postulates applied to microbial pathogenicity.
Rev Infect Dis (1988) 10 Suppl 2:S274–276. doi: 10.1093/cid/10.Supplement_2.S274

46. Fredricks DN, Relman DA. Sequence-based identification of microbial
pathogens: a reconsideration of koch's postulates. Clin Microbiol Rev (1996)
9:18–33. doi: 10.1128/CMR.9.1.18

47. Osterhaus AD, Fouchier RA, Kuiken T. The aetiology of SARS: Koch's
postulates fulfilled. Philos Trans R Soc Lond B Biol Sci (2004) 359:1081–2. doi:
10.1098/rstb.2004.1489

48. Lipkin WI. Microbe hunting in the 21st century. Proc Natl Acad Sci U.S.A.
(2009) 106:6–7. doi: 10.1073/pnas.081142010

49. Hill AB. The environment and disease: Association or causation? Proc R Soc
Med (1965) 58:295–300. doi: 10.1177/003591576505800503
frontiersin.org

https://doi.org/10.3390/jof5030081
https://doi.org/10.1038/nrmicro732
https://doi.org/10.1186/s12967-020-02480-z
https://doi.org/10.1126/science.abe9403
https://doi.org/10.1126/science.abe9403
https://doi.org/10.1146/annurev-micro-020518-115759
https://doi.org/10.1055/s-0038-1638585
https://doi.org/10.4258/hir.2013.19.4.235
https://doi.org/10.1371/journal.pone.0067111
https://doi.org/10.1371/journal.pone.0099979
https://doi.org/10.1186/1471-2105-15-S14-S4
https://doi.org/10.1093/bib/bbv011
https://doi.org/10.1093/database/bav010
https://doi.org/10.1056/NEJMra1615014
https://doi.org/10.1038/s41581-020-00335-w
https://doi.org/10.1093/bfgp/elab029
https://doi.org/10.1007/978-1-0716-2265-0_12
https://doi.org/10.1007/978-1-0716-2265-0_12
https://doi.org/10.3389/fpls.2016.00641
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/s41597-020-0523-6
https://doi.org/10.1186/s13326-022-00279-z
https://doi.org/10.1186/s13326-022-00279-z
https://doi.org/10.1038/s41597-021-00799-w
https://doi.org/10.1038/s41467-021-23573-3
https://doi.org/10.1159/000503030
https://doi.org/10.1038/s41577-020-0311-8
https://doi.org/10.1073/pnas.2102960118
https://doi.org/10.1016/j.jbi.2010.02.008
https://doi.org/10.1016/j.jbi.2010.02.008
https://doi.org/10.1038/nri.2017.112
https://doi.org/10.1001/jama.2021.2088
https://doi.org/10.1038/s41421-021-00282-1
https://doi.org/10.3389/fmicb.2020.01800
https://doi.org/doi.org/10.1101/2020.07.21.213405
https://doi.org/10.1016/j.gene.2020.144944
https://doi.org/10.1093/infdis/jiaa224
https://doi.org/10.3389/fmed.2022.770031
https://doi.org/10.1126/science.1260419
https://doi.org/10.1093/nar/gky999
https://doi.org/10.1007/s00281-017-0639-8
https://doi.org/10.1007/s00281-017-0639-8
https://doi.org/10.1016/j.jinf.2020.03.037
https://doi.org/10.1038/s41392-020-00318-0
https://doi.org/10.1038/s41392-020-00318-0
https://doi.org/10.1038/s41467-020-20602-5
https://doi.org/10.1073/pnas.2005615117
https://doi.org/10.1128/jb.33.1.1-12.1937
https://doi.org/10.1093/cid/10.Supplement_2.S274
https://doi.org/10.1128/CMR.9.1.18
https://doi.org/10.1098/rstb.2004.1489
https://doi.org/10.1073/pnas.081142010
https://doi.org/10.1177/003591576505800503
https://doi.org/10.3389/fimmu.2022.1066733
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2022.1066733
50. Frank C, Faber M, Stark K. Causal or not: applying the Bradford hill aspects
of evidence to the association between zika virus and microcephaly. EMBO Mol
Med (2016) 8:305–7. doi: 10.15252/emmm.201506058

51. Bandrowski A, Brinkman R, Brochhausen M, Brush MH, Bug B, Chibucos
MC, et al. The ontology for biomedical investigations. PloS One (2016) 11:
e0154556. doi: 10.1371/journal.pone.0154556

52. He Y, Xiang Z, Zheng J, Lin Y, Overton JA, Ong E. The eXtensible ontology
development (XOD) principles and tool implementation to support ontology
interoperability. J BioMed Semantics (2018) 9:3. doi: 10.1186/s13326-017-0169-2

53. Hastings J, Frishkoff GA, Smith B, Jensen M, Poldrack RA, Lomax J, et al.
Interdisciplinary perspectives on the development, integration, and application of
cognitive ontologies. Front Neuroinform (2014) 8:62. doi: 10.3389/fninf.2014.00062

54. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, et al. The OBO
foundry: coordinated evolution of ontologies to support biomedical data
integration. Nat Biotechnol (2007) 25:1251–5. doi: 10.1038/nbt1346

55. He Y, Yu H, Ong E, Wang Y, Liu Y, Huffman A, et al. CIDO, a community-
based ontology for coronavirus disease knowledge and data integration, sharing,
and analysis. Sci Data In process (2020) 7(1):181. doi: 10.1038/s41597-020-0523-6

56. Babcock S, Beverley J, Cowell LG, Smith B. The infectious disease ontology
in the age of COVID-19. J BioMed Semantics (2021) 12:13. doi: 10.1186/s13326-
021-00245-1

57. Arp R, Smith B, Spear AD. Building ontologies with basic formal ontology.
Cambridge, MA, USA: MIT Press (2015).

58. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical
characteristics of 2019 novel coronavirus infection in China. medRxiv (2020) 382
(18)1–30. doi: 10.1101/2020.02.06.20020974

59. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of
138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in
wuhan, China. JAMA (2020) 323(11):1061–9. doi: 10.1001/jama.2020.1585

60. Federhen S. The NCBI taxonomy database. Nucleic Acids Res (2012) 40:
D136–143. doi: 10.1093/nar/gkr1178

61. Kohler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D,
Vasilevsky NA, et al. The human phenotype ontology in 2021. Nucleic Acids Res
(2021) 49:D1207–17. doi: 10.1093/nar/gkaa1043

62. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen
S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by
a clinically proven protease inhibitor. Cell (2020) 181:271–280e278. doi: 10.1016/
j.cell.2020.02.052

63. Ong E, Xiang Z, Zhao B, Liu Y, Lin Y, Zheng J, et al. Ontobee: A linked
ontology data server to support ontology term dereferencing, linkage, query
and integration. Nucleic Acids Res (2017) 45:D347–52. doi: 10.1093/nar/
gkw918

64. Huffman A, Masci AM, Zheng J, Sanati N, Brunson T, Wu G, et al. CIDO
ontology updates and secondary analysis of host responses to COVID-19 infection
based on ImmPort reports and literature. J BioMed Semantics (2021) 12:18. doi:
10.1186/s13326-021-00250-4

65. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al.
Gene ontology: tool for the unification of biology. the gene ontology consortium.
Nat Genet (2000) 25:25–9. doi: 10.1038/75556

66. Thomas PD, Hill DP, Mi H, Osumi-Sutherland D, Van Auken K, Carbon S,
et al. Gene ontology causal activity modeling (GO-CAM) moves beyond GO
annotations to structured descriptions of biological functions and systems. Nat
Genet (2019) 51:1429–33. doi: 10.1038/s41588-019-0500-1

67. Saravolatz LD, Depcinski S, Sharma M. Molnupiravir and nirmatrelvir-
ritonavir: Oral COVID antiviral drugs. Clin Infect Dis (2022) ciac180. doi: 10.1093/
cid/ciac180

68. Ho DD. Time to hit HIV, early and hard. N Engl J Med (1995) 333:450–1.
doi: 10.1056/NEJM199508173330710

69. Simon V, Ho DD, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis,
prevention, and treatment. Lancet (2006) 368:489–504. doi: 10.1016/S0140-6736
(06)69157-5

70. Wang Z, He Y. DrugXplore (2022). Available at: http://medcode.link/
drugxplore/http://medcode.link/drugxplore/.

71. Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine
design using reverse vaccinology and machine learning. Front Immunol (2020)
11:1581. doi: 10.3389/fimmu.2020.01581

72. Salvadores M, Alexander PR, Musen MA, Noy NF. BioPortal as a dataset of
linked biomedical ontologies and terminologies in RDF. SemantWeb (2013) 4:277–
84. doi: 10.3233/SW-2012-0086

73. Liu Y, Chan W, Wang Z, Hur J, Xie J, Yu H, et al. Ontological and
bioinformatic analysis of anti-coronavirus drugs and their implication for drug
repurposing against COVID-19. Preprints (2020) 2020030413:1-44. doi: 10.20944/
preprints202003.0413.v1
Frontiers in Immunology 17
74. Xie J, Zhao L, Zhou S, He Y. Statistical and ontological analysis of adverse
events associated with monovalent and combination vaccines against hepatitis a
and b diseases. Sci Rep (2016) 6:34318. doi: 10.1038/srep34318

75. Wang L, Li M, Xie J, Cao Y, Liu H, He Y. Ontology-based systematical
representation and drug class effect analysis of package insert-reported adverse
events associated with cardiovascular drugs used in China. Sci Rep (2017) 7:13819.
doi: 10.1038/s41598-017-12580-4

76. Aherfi S, Pradines B, Devaux C, Honore S, Colson P, Scola B, et al. Drug
repurposing against SARS-CoV-1, SARS-CoV-2 and MERS-CoV. Future Microbiol
(2021) 16:1341–70. doi: 10.2217/fmb-2021-0019

77. Dasovich M, Zhuo J, Goodman JA, Thomas A, Mcpherson RL, Jayabalan
AK, et al. High-throughput activity assay for screening inhibitors of the SARS-
CoV-2 Mac1 macrodomain. ACS Chem Biol (2021) 17(1):17–23. doi: 10.1101/
2021.10.07.463234

78. Bernal-Bello D, Morales-Ortega A, Isabel Farfan-Sedano A, De Tena JG,
Martin-Lopez JVS. Imatinib in COVID-19: hope and caution. Lancet Respir Med
(2021) 9:938–9. doi: 10.1016/S2213-2600(21)00266-6

79. Cagno V, Magliocco G, Tapparel C, Daali Y. The tyrosine kinase inhibitor
nilotinib inhibits SARS-CoV-2 in vitro. Basic Clin Pharmacol Toxicol (2021)
128:621–4. doi: 10.1111/bcpt.13537

80. Cho J, Lee YJ, Kim JH, Kim SI, Kim SS, Choi BS, et al. Antiviral activity of
digoxin and ouabain against SARS-CoV-2 infection and its implication for
COVID-19. Sci Rep (2020) 10:16200. doi: 10.1038/s41598-020-72879-7

81. Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, et al.
Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity.
Nature (2020) 587:657–62. doi: 10.1038/s41586-020-2601-5

82. Tarke A, Sidney J, Kidd CK, Dan JM, Ramirez SI, Yu ED, et al.
Comprehensive analysis of T cell immunodominance and immunoprevalence of
SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep Med (2021) 100204:1–20. doi:
10.1016/j.xcrm.2021.100204

83. Finn RD, Marshall M, Bateman A. iPfam: visualization of protein-protein
interactions in PDB at domain and amino acid resolutions. Bioinformatics (2005)
21:410–2. doi: 10.1093/bioinformatics/bti011

84. Zhao XM, Zhang XW, Tang WH, Chen L. FPPI: Fusarium graminearum
protein-protein interaction database. J Proteome Res (2009) 8:4714–21. doi:
10.1021/pr900415b

85. Zhou H, Rezaei J, Hugo W, Gao S, Jin J, Fan M, et al. Stringent DDI-based
prediction of h. sapiens-m. tuberculosis H37Rv protein-protein interactions. BMC
Syst Biol (2013) 7 Suppl 6:S6. doi: 10.1186/1752-0509-7-S6-S6

86. Mosca R, Ceol A, Stein A, Olivella R, Aloy P. 3did: a catalog of domain-
based interactions of known three-dimensional structure. Nucleic Acids Res (2014)
42:D374–379. doi: 10.1093/nar/gkt887

87. The human protein atlas web query . Available at: https://www.proteinatlas.
org/search/tissue_category_rna%3AAny%3BTissue+enriched%2CGroup
+enriched%2CTissue+enhanced.

88. Zhou H, Wong L. Comparative analysis and assessment of m. tuberculosis
H37Rv protein-protein interaction datasets. BMC Genomics (2011) 12 Suppl 3:S20.
doi: 10.1186/1471-2164-12-S3-S20

89. Davis FP, Barkan DT, Eswar N, Mckerrow JH, Sali A. Host pathogen protein
interactions predicted by comparative modeling. Protein Sci (2007) 16:2585–96.
doi: 10.1110/ps.073228407

90. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A
SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature
(2020) 583:459–68. doi: 10.1038/s41586-020-2286-9

91. Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, et al. Toward a
protein-protein interaction map of the budding yeast: A comprehensive system to
examine two-hybrid interactions in all possible combinations between the yeast
proteins. Proc Natl Acad Sci U.S.A. (2000) 97:1143–7. doi: 10.1073/pnas.97.3.1143

92. Berger SI, Iyengar R. Network analyses in systems pharmacology.
Bioinformatics (2009) 25:2466–72. doi: 10.1093/bioinformatics/btp465

93. Farooq QUA, Shaukat Z, Aiman S, Li CH. Protein-protein interactions:
Methods, databases, and applications in virus-host study. World J Virol (2021)
10:288–300. doi: 10.5501/wjv.v10.i6.288

94. Portal D, Zhou H, Zhao B, Kharchenko PV, Lowry E, Wong L, et al. Epstein-
Barr Virus nuclear antigen leader protein localizes to promoters and enhancers
with cell transcription factors and EBNA2. Proc Natl Acad Sci U.S.A. (2013)
110:18537–42. doi: 10.1073/pnas.1317608110

95. Zhou H, Jin J, Wong L. Progress in computational studies of host-pathogen
interactions. J Bioinform Comput Biol (2013) 11:1230001. doi: 10.1142/
S0219720012300018

96. Zhou H, Gao S, Nguyen NN, Fan M, Jin J, Liu B, et al. Stringent homology-
based prediction of h. sapiens-m. tuberculosis H37Rv protein-protein interactions.
Biol Direct (2014) 9:5. doi: 10.1186/1745-6150-9-5
frontiersin.org

https://doi.org/10.15252/emmm.201506058
https://doi.org/10.1371/journal.pone.0154556
https://doi.org/10.1186/s13326-017-0169-2
https://doi.org/10.3389/fninf.2014.00062
https://doi.org/10.1038/nbt1346
https://doi.org/10.1038/s41597-020-0523-6
https://doi.org/10.1186/s13326-021-00245-1
https://doi.org/10.1186/s13326-021-00245-1
https://doi.org/10.1101/2020.02.06.20020974
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1093/nar/gkr1178
https://doi.org/10.1093/nar/gkaa1043
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.1093/nar/gkw918
https://doi.org/10.1093/nar/gkw918
https://doi.org/10.1186/s13326-021-00250-4
https://doi.org/10.1038/75556
https://doi.org/10.1038/s41588-019-0500-1
https://doi.org/10.1093/cid/ciac180
https://doi.org/10.1093/cid/ciac180
https://doi.org/10.1056/NEJM199508173330710
https://doi.org/10.1016/S0140-6736(06)69157-5
https://doi.org/10.1016/S0140-6736(06)69157-5
http://medcode.link/drugxplore/
http://medcode.link/drugxplore/
http://medcode.link/drugxplore/
https://doi.org/10.3389/fimmu.2020.01581
https://doi.org/10.3233/SW-2012-0086
https://doi.org/10.20944/preprints202003.0413.v1
https://doi.org/10.20944/preprints202003.0413.v1
https://doi.org/10.1038/srep34318
https://doi.org/10.1038/s41598-017-12580-4
https://doi.org/10.2217/fmb-2021-0019
https://doi.org/10.1101/2021.10.07.463234
https://doi.org/10.1101/2021.10.07.463234
https://doi.org/10.1016/S2213-2600(21)00266-6
https://doi.org/10.1111/bcpt.13537
https://doi.org/10.1038/s41598-020-72879-7
https://doi.org/10.1038/s41586-020-2601-5
https://doi.org/10.1016/j.xcrm.2021.100204
https://doi.org/10.1093/bioinformatics/bti011
https://doi.org/10.1021/pr900415b
https://doi.org/10.1186/1752-0509-7-S6-S6
https://doi.org/10.1093/nar/gkt887
https://www.proteinatlas.org/search/tissue_category_rna%3AAny%3BTissue+enriched%2CGroup+enriched%2CTissue+enhanced
https://www.proteinatlas.org/search/tissue_category_rna%3AAny%3BTissue+enriched%2CGroup+enriched%2CTissue+enhanced
https://www.proteinatlas.org/search/tissue_category_rna%3AAny%3BTissue+enriched%2CGroup+enriched%2CTissue+enhanced
https://doi.org/10.1186/1471-2164-12-S3-S20
https://doi.org/10.1110/ps.073228407
https://doi.org/10.1038/s41586-020-2286-9
https://doi.org/10.1073/pnas.97.3.1143
https://doi.org/10.1093/bioinformatics/btp465
https://doi.org/10.5501/wjv.v10.i6.288
https://doi.org/10.1073/pnas.1317608110
https://doi.org/10.1142/S0219720012300018
https://doi.org/10.1142/S0219720012300018
https://doi.org/10.1186/1745-6150-9-5
https://doi.org/10.3389/fimmu.2022.1066733
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yu et al. 10.3389/fimmu.2022.1066733
97. Zhang JS, Wang HQ, Xia J, Sha K, He ST, Dai H, et al. Coevolutionary
insights between promoters and transcription factors in the plant and animal
kingdoms. Zool Res (2022) 43:805–12. doi : 10.24272/j . i ssn.2095-
8137.2022.111

98. Zheng J, Li H, Liu Q, He Y. The ontology of biological and clinical statistics
(OBCS)-based statistical method standardization and meta-analysis of host responses
to yellow fever vaccines.Quant Biol (2017) 5:291–301. doi: 10.1007/s40484-017-0122-5

99. Ong E, Sun P, Berke K, Zheng J, Wu G, He Y. VIO: ontology classification
and study of vaccine responses given various experimental and analytical
conditions. BMC Bioinf (2019) 20:704. doi: 10.1186/s12859-019-3194-6

100. Berke K, Sun P, Ong E, Sanati N, Huffman A, Brunson T, et al.
VaximmutorDB: A web-based vaccine immune factor database and its
application for understanding vaccine-induced immune mechanisms. Front
Immunol (2021) 12:639491. doi: 10.3389/fimmu.2021.639491

101. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert
C, et al. Minimum information about a microarray experiment (MIAME)-toward
Frontiers in Immunology 18
standards for microarray data. Nat Genet (2001) 29:365–71. doi: 10.1038/ng1201-
365

102. Brinkman RR, Courtot M, Derom D, Fostel JM, He Y, Lord P, et al.
Modeling biomedical experimental processes with OBI. J BioMed Semantics (2010)
1 Suppl 1:S7. doi: 10.1186/2041-1480-1-S1-S7

103. Zheng J, Harris MR, Masci AM, Lin Y, Hero A, Smith B, et al. The ontology
of biological and clinical statistics (OBCS) for standardized and reproducible
statistical analysis. J BioMed Semantics (2016) 7:53. doi: 10.1186/s13326-016-
0100-2

104. Vita R, Zheng J, Jackson R, Dooley D, Overton JA, Miller MA, et al. ).
standardization of assay representation in the ontology for biomedical
investigations. Database (Oxford) (2021) 2021:baab040. doi: 10.1093/database/
baab040

105. He Y, Racz R, Sayers S, Lin Y, Todd T, Hur J, et al. Updates on the web-
based VIOLIN vaccine database and analysis system. Nucleic Acids Res (2014) 42:
D1124–1132. doi: 10.1093/nar/gkt1133
frontiersin.org

https://doi.org/10.24272/j.issn.2095-8137.2022.111
https://doi.org/10.24272/j.issn.2095-8137.2022.111
https://doi.org/10.1007/s40484-017-0122-5
https://doi.org/10.1186/s12859-019-3194-6
https://doi.org/10.3389/fimmu.2021.639491
https://doi.org/10.1038/ng1201-365
https://doi.org/10.1038/ng1201-365
https://doi.org/10.1186/2041-1480-1-S1-S7
https://doi.org/10.1186/s13326-016-0100-2
https://doi.org/10.1186/s13326-016-0100-2
https://doi.org/10.1093/database/baab040
https://doi.org/10.1093/database/baab040
https://doi.org/10.1093/nar/gkt1133
https://doi.org/10.3389/fimmu.2022.1066733
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	A new framework for host-pathogen interaction research
	Introduction
	Fundamental Host-Pathogen Interaction Postulates
	Illustration of the HPI postulates with host-coronavirus interaction
	Comparison: HPI postulates vs nearby postulates and theories
	HPIPO: The hpi postulate and ontology framework applied to COVID-19
	Applications: Rational COVID-19 Cocktail Design and Granular PPI Analysis
	Discussion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


