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with specific molecular
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complemented in frequent
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Human leukocyte antigen (HLA) genes are the most polymorphic loci in the

human genome and code for proteins that play a key role in guiding adaptive

immune responses by presenting foreign and self peptides (ligands) to T cells.

Each person carries up to 6 HLA class I variants (maternal and paternal copies of

HLA-A, HLA-B and HLA-C genes) and also multiple HLA class II variants, which

cumulatively define the landscape of peptides presented to T cells. Each HLA

variant has its own repertoire of presented peptides with a certain sequence

motif which is mainly defined by peptide anchor residues (typically the second

and the last positions for HLA class I ligands) forming key interactions with the

peptide-binding groove of HLA. In this study, we aimed to characterize HLA

binding preferences in terms of molecular functions of presented proteins. To

focus on the ligand presentation bias introduced specifically by HLA-peptide

interaction we performed large-scale in silico predictions of binding of all

peptides from human proteome for a wide range of HLA variants and

established which functions are characteristic for proteins that are more or

less preferentially presented by different HLA variants using statistical

calculations and gene ontology (GO) analysis. We demonstrated marked

distinctions between HLA variants in molecular functions of preferentially

presented proteins (e.g. some HLA variants preferentially present membrane
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and receptor proteins, while others – ribosomal and DNA-binding proteins)

and reduced presentation of extracellular matrix and collagen proteins by the

majority of HLA variants. To explain these observations we demonstrated that

HLA preferentially presents proteins enriched in amino acids which are required

as anchor residues for the particular HLA variant. Our observations can be

extrapolated to explain the protective effect of certain HLA alleles in infectious

diseases, and we hypothesize that they can also explain susceptibility to certain

autoimmune diseases and cancers. We demonstrate that these differences lead

to differential presentation of HIV, influenza virus, SARS-CoV-1 and SARS-CoV-

2 proteins by various HLA alleles. Taking into consideration that HLA alleles are

inherited in haplotypes, we hypothesized that haplotypes composed of a

combination of HLA variants with different presentation preferences should

be more advantageous as they allow presenting a larger repertoire of peptides

and avoiding holes in immunopeptidome. Indeed, we demonstrated that HLA-

A/HLA-B and HLA-A/HLA-C haplotypes which have a high frequency in the

human population are comprised of HLA variants that aremore distinct in terms

of functions of preferentially presented proteins than the control pairs.
KEYWORDS
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Introduction

T cells detect pathogen-infected and abnormal (e.g. tumour)

cells by monitoring cell-surface-displayed short peptides

presented by the human leukocyte antigen (HLA) complex.

HLA molecules are highly specific in terms of the peptide

sequences they are able to present, and peptides not presented

by HLAs remain invisible to the immune system (1). HLA class I

(HLA-I) and HLA class II (HLA-II) molecules present peptides

that are typically recognised as a complex by CD8 and CD4 T

cells, respectively; HLA-I-peptide complexes are also engaged by

activating and inhibitory receptors on innate lymphocyte subsets

such as natural killer (NK) cells. The three classical HLA-I genes

expressed in all nucleated cells in humans are HLA-A, HLA-B,

and HLA-C. HLA-I molecules present peptides derived from

intracellular proteins. The intracellular antigen presentation

pathway involves cleavage of proteins in the cytosol by

proteasomes, translocation to the endoplasmic reticulum (ER)

lumen, trimming by ER-resident aminopeptidases, loading onto

HLA and presentation at the cell surface. Each cell’s HLAs

present multiple different peptides at varying peptide-HLA

copy numbers per cell. HLA-II genes (HLA-DR, HLA-DP and

HLA-DQ) are constitutively expressed in only a subset of cells

specialized for antigen presentation, such as dendritic cells, B

cells, and macrophages, but expression can also be induced in

additional cell types, e.g. in response to cytokine stimulation.

HLA-II molecules present peptides derived from extracellular
02
proteins taken into cells via endocytosis and phagocytosis, and

intracellular proteins that access the HLA-II processing pathway

via autophagy.

HLA-I molecules typically bind peptides of 8-12 amino acids

(aa) in length. The HLA-I peptide-binding cleft is closed at both

N- and C-terminal ends, and optimal length preferences are

often biased towards binding of 9-mer peptides; longer peptides

frequently bulge out of the cleft to be accommodated (2). For

most HLA-I alleles the most abundant peptide length is 9 aa, but

fine length preferences differ between alleles - in particular, some

bind almost exclusively 8- and 9-mers (e.g., HLA-B*51:01) while

others have a relatively high frequency of ligands of length 12-13

aa (e.g. HLA-A*01:01) (3). By contrast, HLA-II molecules

possess an ‘open’ peptide-binding cleft and can therefore

accommodate longer peptides than HLA-I. They frequently

present nested sets of peptides that have a common “core”

with N- and C-terminal extensions of varying length (4).

High affinity ligands for a given HLA allele usually share a

common amino acid motif with relatively strict preferences in

anchor positions (for HLA-I usually the second (P2) and last

(PW), for HLA-II - P1, P4, P6 and P9), which form specific

interactions with residues of corresponding HLA binding

pockets (4, 5) The HLA locus is the most polymorphic in the

human genome with tens of thousands alleles described to date

(6). HLA variants that differ in peptide-contacting residues differ

in the repertoire of peptides they present. The diversity of HLA

alleles in the population is an important evolutionary
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mechanism for defense against diverse pathogens, e.g. rapidly

mutating viruses. Different HLA alleles are associated with the

severity and outcomes of viral infections. For example, the HLA-

C*15:02 allele is associated with protection against SARS-CoV-1

(7), and HLA-B57 is highly associated with efficient HIV-1

control and long-term non-progressive infection in the

absence of antiretroviral therapy (8).

Large-scale in vitro binding assays and recent advances in

mass spectrometry (MS) have enabled generation of large

datasets of ligands for many HLA alleles (5). The largest

database of HLA ligands, IEDB (9), contains ~750,000 peptidic

epitopes presented by 830 MHC alleles (as of August 2020).

Experimental HLA ligandome data is used for the training of

artificial neural networks for prediction of HLA ligands and T

cell epitopes [reviewed in (10, 11)]. Different tools, such as

NetMHCpan (12) and MHCflurry (13) allow HLA-I ligand

prediction with high accuracy and allow predictions even for

HLA variants with no experimental data available (14). For

HLA-II predictions of peptide binding are complicated by

substantial variation in length of presented peptides and

currently available HLA-II binding predictors have

limited accuracy.

Comparison of MS-eluted HLA ligands and decoys

predicted as HLA binders that were not observed in MS data

enables the development of antigen processing predictors (13).

The combination of antigen processing and HLA binding

predictors in the MHCflurry tool resulted in significantly

higher performance compared to HLA binding prediction only

(13). Experimental HLA ligandome data (15) is also useful for

the investigation of properties of proteins that are more likely to

give rise to HLA ligands. It was recently shown that helical

regions are significantly enriched in the ligands, suggesting

different proteolytic resistance depending on the secondary

structure and size of the initial protein fragment (16).

Apart from that, protein length and expression level, rate of

proteasomal degradation, mRNA translation efficacy, presence

of proteolytic signals, and sites of ubiquitination also influence

the presence of protein-derived peptides in HLA ligandome

(17, 18).

Several studies have employed gene ontology (GO) analysis

to characterize functions of proteins that frequently serve as

HLA ligands sources (17–23). These studies found enrichment

of mitochondrion, ribosome, and nucleosome cellular

component terms (18) and DNA-, RNA- and protein-

interaction molecular function terms (17) and relative

depletion of membrane and extracellular matrix proteins (21).

However, these results may reflect differences in the expression

level of the corresponding genes, rather than enrichment of HLA

ligands within them. Abelin et al. (24) demonstrated that after

correction for expression, enrichment in HLA ligands is

observed only for proteins associated with the late endosome,
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although in the absence of the correction proteins with other

localizations were also enriched (ER, mitochondria, nucleus,

secreted) or depleted (cell membrane, cytoplasm). It was

recently shown that most foreign MHC-I-displayed peptides

are immunogenic (25). Additionally, recent work by the

Cerundolo lab suggests that mitochondria-localized proteins

are more immunogenic than other human peptides (26),

which has implications for cancer immunotherapy. However,

the studies mentioned above were based on aggregated datasets

containing ligands from many distinct HLA alleles, and

corresponding analyses were not focused on exploring

differences between alleles. The datasets in question were also

relatively small, e.g. in the largest of them (17) only 59% of

human genes gave rise to at least one HLA ligand, while as it was

recently shown by Sarkizova et al. (3) all human proteins may

serve as sources of HLA ligands.

In this study, we investigated HLA binding preferences in

terms of functions of presenting genes. In order to remove gene

expression biases and focus on HLA presentation only, we used

HLA ligandomes predicted in silico by the commonly used tool

NetMHCpan-4.0, and focused mostly on HLA-I alleles due to

significantly lower accuracy prediction for HLA-II. We

performed HLA binding predictions for all possible peptides

of length 8-12 derived from the human proteome for a set of

HLA alleles with different binding motifs.

For all protein-coding genes, enrichment in HLA ligands

was computed, and GO enrichment analysis was performed for

sets of genes depleted or enriched in HLA ligands. Our results

demonstrate that HLA alleles have a tendency to present

peptides derived from proteins with specific molecular

functions. These propensities are different for HLAs with

different binding motifs, but similar for alleles with similar

anchor residue preferences, which is explained by HLA

preferential presentation of proteins enriched in amino acids

that are favourable anchor residues for that allele.

Using experimental data from the HLA ligand atlas (15), we

observe substantial differences between HLA class I and class II

alleles, with class I alleles tending to present intracellular

proteins and class II - membrane transport proteins.

Differences in functions of proteins preferentially presented

by different HLA variants may be important for antiviral

immunity. We demonstrate that HIV-protective HLA-B*57:01

is more likely to present proteins from GO categories

corresponding to viral genes as compared with non-protective

HLA-B*08:01.

We also hypothesized that HLA presentation bias towards

proteins with specific functions may be compensated for in

haplotypes. We demonstrate that HLA-A/HLA-B and HLA-A/

HLA-C allele pairs from frequent HLA haplotypes are

significantly more different in their GO enrichment profiles of

the presented proteins than random allele pairs.
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Methods

Predicting HLA ligands

All possible 8-12 mers were cut from the human proteome

(UP000005640 record from UniProt database was used as a

reference) and supplied to the software NetMHCpan v 4.0 (12)

in order to predict putative HLA ligands for a set of 93 HLA

alleles (see Supplementary Table S1) covering 95% of

individuals worldwide. For the sake of brevity, proof-of-

concept analysis and visualization was performed for a

representative set of 6 HLA alleles (HLA-A*02:01, HLA-

A*11:01, HLA-B*07:02, HLA-B*27:05, HLA-C*02:02, HLA-

C*15:02), all having different anchor residue preferences

(Supplementary Figure S1).

For exploration of differences in presentation of viral genes

we expanded this set to 12 alleles with the addition of HLA-

A*01:01, HLA-A*03:01, HLA-B*08:01, HLA-B*57:01, HLA-

C*07:02 and HLA-C*08:01. Viral HLA-binding peptides were

predicted using NetMHCpan v 4.0 software in the same way as

human-derived ligands.

For analysis of compensation of HLA presentation bias in

haplotypes, ligandome predictions were also made for alleles

corresponding to frequent haplotypes but not presented in the

set of 93 alleles. In total, 133 HLA alleles were surveyed in the

current study.

The NetMHCpan software was run using default

parameters, and both strong and weak binders (Rank < 2)

were used as the list of putative human-derived ligands for

each allele. Complementary analysis was performed using the

MHCflurry software (13) with default parameters. In order to

confirm that results were not biased by using a specific HLA

binding prediction algorithm we selected HLA ligands based on

the “Affinity percentile” column from MHCflurry. We also used

the “Presentation score” column to account for antigen

processing biases.
HLA ligand enrichment analysis

Human proteins were assayed based on the number of

observed and expected ligands for each HLA allele as follows.

We first counted the number of predicted ligands Ni of length l

coming from protein i. The average number of presented ligands

for each HLA allele was computed as <r = <Ni>/<Li, where Li =

length of protein – l is the corrected protein length and <·>

denotes the average over the proteome. The probability of

observing a given number of ligands from each gene and the

odds are computed using Binomial distribution as P(Ni) = Pbinom
(Ni|r, Li) and log Odds = log (Ni|rLi). These values were used to

define sets of HLA ligand-enriched and -depleted proteins

(HLEPs and HLDPs).
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Experimentally validated HLA ligands

HLA ligands for both class I and class II alleles were

extracted from the HLA Ligand Atlas dataset (15) that lists

peptides obtained from publicly available MS HLA elution

experimental data.
Mass spectrometry-based profiling of
peptides presented on single HLA-I
allele-expressing cell lines

HLA-I-deficient CD4-expressing 721.221 cells (originally

obtained from Prof Masafumi Takaguchi, Kumamoto

University, Japan) were stably transfected with HLA-A*02:01.

Transfectants were expanded by growth in RPMI 1640 medium

(Thermo Fisher) containing 10% fetal bovine serum (FBS), 2

mM L-glutamine, 100 U/mL penicillin, and 100 mg/mL

streptomycin (R10), and 2 x 108 cells harvested for HLA-I

bound peptide profi l ing . Mass spectrometry-based

immunopeptidome profiling of HLA-A*11:01-transfected

CD4.221 cells was reported previously (27); the same

methodology was employed here for immunopeptidome

profiling of HLA-A*02:01-expressing CD4.221 cells.

Briefly, cells were washed once in PBS, pelleted and 1 ml

IGEPAL buffer [0.5% IGEPAL 630, 50 mM Tris pH8.0, 150 mM

NaCl and 1 tablet Complete Protease Inhibitor Cocktail EDTA-

free (Roche) per 10 ml buffer] was added per 0.5–1 × 108 cells,

and cells were lysed by mixing for 45 min at 4°C. Cell lysates

were cleared by two centrifugation steps, 2000 × g for 10 min

followed by 20,000 × g for 30 min at 4°C. HLA-peptide

complexes were immunoprecipitated from the cell lysates on

W6/32-coated Protein A Sepharose beads overnight at 4°C. W6/

32-bound HLA-peptide complexes were sequentially washed

with 20 mL of wash buffer 1 (0.005% IGEPAL, 50 mM Tris

pH 8.0, 150 mMNaCl, 5 mM EDTA), wash buffer 2 (50 mMTris

pH 8.0, 150 mM NaCl), wash buffer 3 (50 mM Tris pH 8.0, 400

mM NaCl) and finally wash buffer 4 (50 mM Tris pH 8.0).

Peptide-HLA complexes were eluted from the beads in 5 mL

of 10% acetic acid, and samples were dried down prior to

resuspension in 120 mL loading buffer (0.1% TFA, 1%

acetonitrile in ultragrade HPLC water). Samples were loaded

onto a 4.6 × 50 mm ProSwift RP-1S column (Thermo Fisher

Scientific) and eluted using a 500 mL/min flow rate over 10 min

from 2 to 34% buffer B (0.1% TFA in acetonitrile) in buffer A

(0.1% TFA in water) using an Ultimate 3000 HPLC system

(Thermo Scientific). Alternate odd and even HPLC fractions

were pooled and dried down prior to resuspension in 20 mL LC-

MS/MS loading buffer (0.1% TFA in water).

For LC-MS/MS analysis, 9 ul of each sample was injected

onto a Dionex Nano-Trap precolumn (Thermo Scientific),

before separation with a 60 min linear gradient of acetonitrile
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in water of 2-25% across a 75 µm × 50 cm PepMap RSLC C18

EasySpray column (Thermo Scientific) at 40°C and a flow rate of

250 nl/min, resulting in an approximate average pressure of

600 bar. LC solvents contained 1%(v/v) DMSO and 0.1%(v/v)

formic acid. Peptides were introduced using an Easy-Spray

source at 2000V to a Fusion Lumos mass spectrometer

(Thermo Scientific). The ion transfer tube temperature was set

to 305°C. Full MS spectra were recorded from 300-1500 m/z in

the Orbitrap at 120,000 resolution with an AGC target of

400,000. Precursor selection was performed using TopSpeed

mode at a cycle time of 2 s. Peptide ions with a positive charge

between 1-4 were isolated using an isolation width of 1.2 amu

and trapped at a maximal injection time of 120 ms with an AGC

target of 300,000. Singly charged ions were deprioritised to other

ion species during acquisition. Higher-energy collisional

dissociation (HCD) fragmentation was induced and fragments

were analyzed in the Orbitrap. LC-MS/MS data was analysed

using PEAKS v8.0 (Bioinformatic Solutions) software.
Gene ontology enrichment analysis

Sets of proteins enriched and depleted in HLA ligands

(HLEPs and HLDPs) were assayed for over-representation of

certain Gene Ontology (GO) categories as follows. GO

enrichment test was performed using the GOANA method

from Limma R package (28) and top enriched GO terms

coming from molecular function (MF), biological process (BP)

and cellular component (CC) were selected for visualization.

Additional verification of GO enrichment trends was performed

with DAVID web tool (29). Note that while sets of HLEPs and

HLDPs were used for GO analysis for in silico predicted ligands

datasets, sets of proteins containing at least one HLA ligand were

assayed for experimental data as most of those datasets contain

too few ligands to perform ligand enrichment test.
Analysis of compensation for HLA
presentation bias in haplotypes

Data for HLA-A/HLA-B/HLA-C haplotypes with the

highest frequency in 19 populations of different ethnic origin

(listed in Supplementary Table S2, all from USA National

Marrow Donor Program) was taken from the “Allele

frequencies” database (http://www.allelefrequencies.net/) (30).

Filtering for haplotypes with a frequency higher than 0.01%

resulted in multiple entries for each of the populations (mean 42,

range 28 - 89) which were merged to an aggregated dataset of

806 HLA-A/HLA-B/HLA-C haplotypes.

Further, these haplotypes were split into pairs of

corresponding HLA-A/HLA-B, HLA-A/HLA-C, and HLA-B/

HLA-C alleles (the resulting dataset is referred to as

“Haplotypes”). The “Control” dataset included all possible
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HLA-A/HLA-B, HLA-A/HLA-C, and HLA-B/HLA-C

combinations of unique alleles from the “Haplotypes” dataset

with the exclusion of those pairs that were identical to real pairs

from the dataset up to first two digits in allele names.

For each pair of alleles, the euclidean distance between GO

term enrichment profiles was calculated and the distributions of

that distance for “Haplotypes” and “Control” datasets were

compared. GO term enrichment profile is a vector composed

of enrichment folds for each of the analyzed GO terms (wherein

fold value was taken with a positive sign for enriched GO terms,

for depleted terms with a negative sign, and for not significantly

changed terms fold was set to 0).
Results

Exploring differences in HLA ligand
incidence across human proteins

We started our study (see Figure 1 for overview) by running

a large-scale in silico prediction of 9-mer HLA ligands in the

entire human proteome using NetMHCpan software. We

selected 93 HLA-A, HLA-B, and HLA-C alleles for our

analysis (Supplementary Table S1) which cumulatively cover

95% of individuals worldwide based on allele frequencies

reported by Sarkizova et al. (3). Our predictions yielded

~5x105 HLA ligands for each allele (Supplementary Table S3)

in line with previous estimates of the number of 9-mers a single

HLA can present (31).

For each of ~20,000 human proteins we calculated the

number of peptides derived from them that were predicted to

be binders to each of HLA alleles. We noticed that some

proteins yield more or less HLA ligands than expected by

chance under the assumption of uniform coverage of the

proteome with HLA ligands. We termed such proteins as

HLA ligand-enriched proteins (HLEPs) and HLA ligand-

depleted proteins (HLDPs). To statistically define HLEPs and

HLDPs for each HLA allele we computed the number of

ligands mapping to every human protein and estimated the

expected number of ligands for each protein as the proteome-

average ligands-per-amino acid frequency multiplied by the

length of the protein. HLEPs and HLDPs were then selected

based on a fixed P-value threshold (computed using Binomial

distribution and adjusted for multiple testing, see Methods

section) and the observed-to-expected ratio of mapped ligand

counts (Figure 2A).

We next analyzed the length distribution HLEPs, HLDPs

and the remaining proteins that do not show any difference in

HLA ligand counts (Supplementary Figure S2). While one might

expect that longer proteins would provide more statistical power

to infer differences in the number of HLA ligands, we found that

proteins of any length can feature differences in HLA

presentation. More specifically, we observed that longer
frontiersin.org
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proteins are more likely to be depleted in ligands while shorter

ones are enriched in presented peptides.
HLAs differentially present human
proteins associated with certain gene
ontology categories

Further we hypothesized that HLEPs and HLDPs may be

linked to subsets of human proteins characterized with some

common molecular functions. In order to explore these

preferences we ran GO term enrichment analysis for sets of

HLEPs and HLDPs for each HLA allele. We summarized the

results of this analysis as a matrix containing GO enrichment folds

as entries for each of GO terms (columns) and each of 93 surveyed

HLA alleles (rows). We visualized similarity between alleles using

principal component analysis (PCA) of matrix entries (Figure 2B).

Thus, alleles which preferentially present proteins with similar

functions are located nearby on this PCA plot. We also noticed that

the alleles are clustered according to physico-chemical properties of

required anchor residues. Interestingly, not all of the similarities

can be fully explained by shared ligandomes: for example, HLA-

A*11:01 and HLA-B*27:05 have distinct peptide-binding motifs

(with K9 anchor and R2 anchor, respectively; see Supplementary

Figure S1) and almost no common ligands, however, they have

similar preferences in terms of functions of presented proteins.
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We also performed an in-depth analysis for representative

set of 6 HLA alleles which are located at distinct regions of PCA

plot in Figure 2B: two HLA-A alleles (HLA-A*02:01 and HLA-

A*11:01), two HLA-B alleles (HLA-B*07:02 and HLA-B*27:05)

and two HLA-C alleles (HLA-C*02:02 and HLA-C*15:02).

For 6 representative alleles we detected on average 877

HLEPs (range from 55 to 1946) and 565 HLDPs (from 106 to

1557, see Supplementary Table S3). We observed prominent

enrichment of certain “molecular function” (MF), “biological

process” (BP) and “cellular component” (CC) GO categories of

genes coding for HLEPs and HLDPs and found differences

between GO category profiles across surveyed HLAs.

In general, genes coding for HLDPs are more likely to

encode extracellular matrix components, collagen and myosin,

which is in line with the observation mentioned above as those

are typically longer proteins. It is thus hard to decouple potential

length bias from gene function in this case, as all HLA alleles

show similar disfavoring of this set of genes.

On the other hand, genes coding for HLEPs display a diverse

set of associated GO categories. For example, HLA-A*02:01, HLA-

C*02:02 and HLA-C*15:02 are more likely to present ligands from

genes encoding membrane proteins and those involved in receptor

signalling such as G-coupled receptor and olfactory receptor

signalling. HLEPs for HLA-A*11:01 and HLA-B*27:05 are

involved in translation and gene expression, while HLA-B*07:02

ligands derive from proteins involved in regulation of transcription
FIGURE 1

Overview of the study. (A) In silico HLA ligandomes are generated by running HLA binding prediction software for the human peptidome (8- to
12-mers). HLA binders are then mapped back onto their parent proteins. Statistical analysis is performed to define sets of human proteins
enriched or depleted in HLA ligands, HLEPs and HLDPs respectively. Functional analysis of these gene sets is performed using Gene Ontology
(GO) category enrichment tests. (B) GO annotation results are used to perform comparative analyses of HLA alleles, defining characteristic
features of HLE(D)Ps. We show that preferred GO categories are clearly distinct between HLA alleles defining groups alleles with specific GO
annotation profiles. These differences are however balanced and compensated by non-random selection of HLAs in HLA haplotypes observed in
the population. (C) Potential biases that shape HLE(D)P sets are explored, such as protein length, protein amino acid composition, together with
the length of HLA ligands and HLA anchor residue types. (D) Results are validated using real HLA ligandomes obtained from mass spectrometry
data. (E) Differences are identified in non-self peptide presentation by various HLAs by studying HLA presentation preferences of viral proteins.
We link viral and human peptide presentation by demonstrating the relation between self- and non-self protein presentation preferences for
various HLAs.
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and HLA-B*27:05 presents ligands from genes involved in DNA

replication and chromatin silencing. It is also necessary to note that

HLA-A, -B and -C genes do not show much similarity and alleles

of different HLA-I genes can have similar preferences.
Human proteins are differentially
represented within HLA ligands of
different length

In order to check for differences in human HLEP and HLDP

set composition for HLA ligandomes corresponding to different
Frontiers in Immunology 07
peptide lengths we surveyed 8-mer to 12-mer predictions for the

HLA-A*11:01 allele as described above (Supplementary Figure

S3). HLA-A*11:01 predominantly presents 9- and 10-mers,

although longer and shorter peptides are also known to be

presented by this allele (32). We found genes that were either

enriched or depleted for HLA ligands for all surveyed peptide

lengths; the total number of ligands of each length was around

105 (Supplementary Table S4). Analysis of genes enriched within

HLA-A*11:01 ligands of each length reveals a number of GO

categories that are associated with longer and shorter HLA

ligands (Supplementary Figure S4) . GO categories

characteristic of genes depleted in HLA-A*11:01 ligands are
B

CA

FIGURE 2

Human genes enriched and depleted in HLA ligands and their associated Gene Ontology (GO) categories. (A) Volcano plots showing the log of
the ratio of observed to expected number of HLA ligands for each human gene plotted against enrichment P-value computed using binomial
test. Point size shows the number of predicted HLA ligands, point color highlights genes enriched and depleted in ligands according to at least
2-fold increase or decrease in the number of ligands and adjusted P-value of < 0.05. Data for 6 selected HLA alleles are shown as separate
plots. (B) Principal component analysis (PCA) of gene ontology (GO) term enrichment profiles. Each point represents one of 93 common HLA
alleles. Colors correspond to physico-chemical properties of required anchor residues. 6 representative alleles, selected for further analysis, are
marked. (C) GO term enrichment analysis for human genes differentially presented by different HLAs. Point size represents the GO enrichment
fold for genes enriched (yellow) and depleted (blue) in HLA ligands for each of 6 surveyed HLA alleles. An adjusted P-value threshold of 0.01
was used as a threshold, Y axis lists the union of sets of top 20 GO categories for both ligand-enriched and ligand-depleted genes for each HLA
allele. GO term names are preceded by either CC (cellular component), MF (molecular function) or BP (biological process) ontology name.
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similar across all ligand lengths and correspond to genes coding

for extracellular proteins and collagen, in line with general

trends observed for the 6 HLA-I alleles described above. GO

categories of genes coding for HLA-A*11:01 HLEPs are,

however, distinct across peptide lengths: 9- and 10-mer

peptides are linked to genes involved in transcription and

translation processes, while 12-mers are linked to genes

associated with mitochondrial and transporter genes. As

observed biases in HLEP features may be due to differences in

in silico ligand prediction accuracy for different lengths (for

example, there are far more training examples of 9-mer ligands

than 11-mers (12)), we performed additional validation of these

results using experimental HLA ligandomes and alternative

software tools as described in the next sections.
Amino acid composition of proteins
enriched or depleted in HLA ligands

To explore the molecular basis for differences in gene

presentation profiles between HLA alleles, we compared the

amino acid composition of HLEPs and HLDPs. The results

presented in Figure 3A demonstrate that HLEPs are enriched in

amino acids which are good anchor residues for the particular

HLA allele (see Supplementary Figure S1 for motifs of presented

peptides). For example, for HLA-A*02:01, HLA-C*02:02, and

HLA-C*15:02, which require hydrophobic anchors, HLEPs have

a higher frequency of hydrophobic and lower frequency of

charged residues. The amino acid frequency profile for HLA-

B*27:05 HLEPs is very close to that of the human proteome

except for a higher frequency of arginine, which is strictly

preferred by the allele as an anchor residue in the P2 position.

The observed bias in the amino acid composition of HLEPs

and HLDPs leads to differences in the GO categories enriched in

these gene sets. Thus, for HLA-A*02:01, HLA-C*02:02 and

HLA-C*15:02, which are prone to present more hydrophobic

proteins, GO categories enriched in HLEPs are mainly

associated with membrane proteins (Figure 2B) which have a

relatively high frequency of hydrophobic residues. HLA-A*11:01

and HLA-B*27:05, which require lysine and arginine as anchor

residues, are more likely to present proteins involved in

interaction with DNA (Figure 2B) and that have a relatively

high frequency of positively charged amino acids.

Comparing GO enrichment analysis results for different

alleles we found that several GO categories are enriched in

HLDPs for all surveyed alleles except HLA-B*07:02

(Figures 2B and 3B). Genes corresponding to these GO terms

are enriched in glycine and proline residues as shown in

Figure 3C. These GO categories are mostly associated with the

extracellular matrix (Figures 2B and 3B) and include fibrous

proteins such as collagen. Glycine and proline residues are

critically important for collagen ternary structure formation.

Glycine is a bad anchor residue for almost all HLAs, and proline
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dramatically affects peptide conformation preventing its binding

with HLA. It can be suggested that proteins enriched in G and/or

P are poorly presented by multiple HLAs. HLA-B*07:02 is the

exception as this allele strictly requires proline as the peptide

P2 anchor.

To better understand the protein length bias for HLEPs and

HLDPs we compared the amino acid composition of human

proteins of different lengths. As shown in Supplementary Figure

S6A, the frequency of hydrophobic amino acids is highest for

proteins in the second length quartile (Q2) and lowest for Q4

proteins. In accordance with this trend Q2 proteins constitute

the highest fraction of HLEPs for HLA-A*02:01, HLA-C*02:02,

and HLA-C*15:02 alleles featuring hydrophobic anchor

residues. For HLA-A*11:01 and HLA-B*27:05, which utilise

positively charged anchor residues, Q1 proteins constitute

more than half of HLEPs, in line with the observation that

these proteins have the highest frequency of arginines

and lysines.
Exploration of ligand presentation bias
on an extended dataset of HLA alleles

To check that the conclusions from the analyses in the

previous sections are not artifacts of the selection of surveyed

HLA alleles, we performed in silico predictions of HLA ligands

and GO enrichment analysis for an extended set of 93 alleles

(Supplementary Table S1).

First, we re-examined our observation of the existence of

GO categories associated with HLDPs for most alleles. We

observed that there is a group of GO terms related to

extracellular matrix and collagen which are associated with

HLDPs for up to 95% (89 out of 93) of surveyed alleles

(Supplementary Figure S5A). Proteins corresponding to these

terms are enriched in glycines and prolines (Supplementary

Figure S5C). Exceptional alleles, for which these “universally

depleted” terms are not associated with HLDPs are the ones

that strictly require proline residues as P2 anchors

(Supplementary Figure S5B). Overall, all the conclusions

reached from the analyses performed with the initial set of 6

alleles, i.e. depletion of proteins enriched in glycines and

prolines which correspond to GO terms related to structural

functions (Figures 3B, C, with the exception of HLA-B*07:02

having proline anchor residues), remain valid when a broader

range of alleles are considered.

Further, we explored HLA presentation preferences for

proteins of different lengths. For the majority of alleles, the

highest fraction of HLEPs is composed of smaller proteins

from the second length quartile (Q2) and most HLDPs are

longer proteins from Q4 (Supplementary Figure S6B).

Preferences in the length of presented proteins may be

explained by the differential amino acid composition of

proteins from different length quartiles (Supplementary
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Figure S6A). Hydrophobic amino acids which are required as

anchor residues for the majority of alleles (see Supplementary

Table S1) are enriched in Q2, so for these alleles the length

distribution of HLEPs peaks in Q2. There are some exceptions

where the distribution of length of HLEPs is not maximal in Q2

(Supplementary Figure S6C), but these exceptions are also

explained by the amino acid composition of proteins in

different length quarti les . Alleles for which length

distribution of HLEPs peaks in Q1 require positively charged

anchor residues (arginine and lysine) which are enriched in Q1

proteins. Alleles that prefer to present Q4 proteins require

negatively charged glutamic acid as an anchor which is

enriched in Q4 proteins (Supplementary Figure S6A).
Frontiers in Immunology 09
Validation of HLA allele and ligand length
biases

To ensure our observations are not an artifact of the HLA

ligand prediction model used by NetMHCpan software, we re-

ran the same analysis using an alternative software tool

MHCflurry (13). In addition to peptide-HLA binding,

MHCflurry also takes into account antigen processing and can

provide the combined score (“Presentation score”), which

performs better to predict HLA ligands. We performed the

analysis using both affinity and presentation scores of

MHCflurry to enable evaluation of the impact of software and

potential antigen processing biases. In both cases the analysis
B C

A

FIGURE 3

Amino acid composition of HLEPs and HLDPs for different HLA alleles. (A) Comparison of amino acid composition of HLEPs for the 6 selected
HLA alleles and all proteins of the human proteome. Grey bars mark amino acids preferred by the allele in the anchor positions (P2 and/or P9)
according to Supplementary Figure 1. Note that HLEPs tend to have a higher frequency of amino acids that are good anchors for this allele.
Error bars show 95% confidence interval for the mean value. (B) GO categories associated with HLDPs for 5 of 6 selected alleles (all but HLA-
B*07:02). Ontology names: CC - cellular component, MF - molecular function, BP - biological process. (C) Comparison of amino acid
composition of proteins corresponding to GO categories from (B) (only proteins which are in HLDPs for at least 1 allele were considered) and
human proteome. Error bars show 95% confidence intervals for the mean value. Amino acids which are enriched in proteins corresponding to
“commonly depleted” GO categories are glycine which can’t be used as anchors for most HLA alleles, and proline which dramatically affect
peptide backbone conformation. HLA-B*07:02 represents a special case as this allele strictly prefers proline as anchor residue in P2.
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revealed nearly identical results to Figure 2 in terms of ligand

enrichment scores and P-values, as well as the list of associated

GO categories, as can be seen in Supplementary Note 1, Figure

SN1. Also, the bias in the number of HLA ligands reported for

proteins of different lengths (Supplementary Figure S2) holds

true when applying MHCflurry as a HLA ligand prediction

method (Supplementary Note 1, Figure SN2).

In addition, to determine whether the interpretation of our

findings would be affected by use of an alternative GO

annotation strategy, we re-annotated HLA ligand-enriched and

-depleted gene sets using DAVID, another commonly used web

tool (33). DAVID analysis showed clustering of GO categories

enriched and depleted for genes of interest that was highly in line

with the results described above (Supplementary Note 1, Figure

SN3). Annotation clusters (groups of GO categories) identified

by DAVID as being over-represented are also supportive of the

general trends mentioned above, e.g. depletion of proteins

representing extracellular matrix components, collagen and

myosin in HLA ligands.

We also independently validated our results with

experimentally-determined ligandomes of HLA-A*02:01 and

HLA-A*11:01 alleles (see Methods section). Analysis of GO

categories enriched in parent proteins of HLA-A*02:01 peptides

compared to HLA-A*11:01-presented proteins and vice-versa

revealed consistency with the in silico results reported above, and

protein GO categories matched HLEPs of corresponding HLA

alleles. As can be seen from Figure 4A, GO categories that are

enriched in either HLA-A*02:01 or HLA-A*11:01 according to

in silico data analysis are also more common in proteins that

feature HLA ligands of corresponding alleles in experimental

data, supporting the observed difference between functions of

HLA-A*02:01 and HLA-A*11:01 HLEPs. Moreover, GO

categories enriched in HLEPs of HLA-A*11:01 allele ligands of

various lengths are highly correlated with GO categories

enriched for ligands of corresponding lengths in experimental

data (Figure 4B).
HLA ligand atlas analysis and difference
between class I and class II HLAs

To provide further verification of our results on real HLA

ligand datasets and compare them to in silico HLA ligand

predictions we explored the HLA ligand atlas dataset (15). We

ran GO enrichment analysis for sets of genes corresponding to

peptides presented by each HLA allele in the dataset and

compared profiles of enriched categories across alleles. Note

that we used every gene that has at least one reported HLA

ligand, and did not use an enrichment test for the number of

ligands per gene as the size of the database is too small to ensure

good coverage of all human genes. Using HLA ligand atlas

allowed us to independently validate the phenomenon of
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preferential presentation of genes with specific functions by

different HLA alleles.

Principal component analysis was used to visualize

differences between HLAs based on functions of genes they

tend to present as shown in Figure 5A. The plot shows clear

separation between genes providing a source of ligands

presented by HLA class I and class II, with co-clustering of

HLA-C and HLA-B alleles and a notable differentiation between

HLA-DQ versus HLA-DR. Notably, while HLA class I and class

II alleles are clearly separable, it is hard to tell HLA class I genes

apart based on GO enrichment profiles (Figure 5B).

For in-depth exploration of genes that are differentially

presented between class I and class II alleles we took the PC2

component from Figure 5A that linearly separates HLA classes

and analyzed GO categories having highest weights in these

components (Figure 5С). We observed that class II HLA alleles

are more likely to present membrane transport proteins, while

class I alleles are prone to present components of intracellular

structural proteins.
Analyzing presentation of viral genes by
different HLA alleles

As the spectrum of viral protein functions should be highly

specific we suggest that our observation of differential presentation

of peptides derived from human proteins with differing functions

may be extrapolated to presentation of viral peptides by distinct

HLAs. Thus, we suggested that there may be substantial differences

in presentation of viral peptides and different human HLA alleles

will favor certain viral proteins.We calculated the presentation odds

for each viral gene-HLA pair as the ratio of the observed number of

ligands divided by expected value computed under the assumption

of independence between an HLA allele and the number of ligands

it presents from a given gene. Comparative analysis of presentation

odds of viral peptides by human HLAs (Figure 6A) reveals co-

clustering of viral genes with similar functions and certain HLAs

(e.g. HLA-B*07:02 and HLA-B*27:05, HLA-A*03:01 and

HLA-A*11:01).

However, surveyed HLA alleles mostly feature contrasting

presentation odds profiles, and the distribution of correlation

coefficients for these profiles is shifted to negative values

(Figure 6B). For example a pair of HLA-A alleles, HLA-

A*02:01 and HLA-A*11:01, appear to have distinct preferences

for presenting viral proteins (Figure 6C), in line with their

difference in preferences for presenting human proteins with

certain functions reported above (Figure 2B). On the other hand,

HLA-A*11:01 and HLA-B*27:05, which tend to present human

proteins of similar functions (Figure 2B) are also similar in terms

of viral protein presentation odds profiles (Figure 6C).

Considering similar viral proteins, we observe little

difference in the way they are presented by the same HLA.
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When comparing presentation odds across all 12 surveyed HLAs

between proteins of SARS-CoV-1 and SARS-CoV-2 strains we

observe near ly per fec t corre la t ion for a lmost a l l

proteins (Figure 6D).
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Finally, we performed a direct comparison to test the

hypothesis that tendency to present self-peptides with

certain functions is intrinsically linked to the variability in

viral protein presentation by HLAs. We tested if distance
B

A

FIGURE 4

Experimental validation of biased selection of self proteins presented by different HLA alleles and different HLA ligand lengths. (A) Fraction of
proteins presented by experimentally obtained HLA-A*02:01 and HLA-A*11:01 ligandomes that correspond to a given GO category. The fraction
is normalized by mean value for two alleles to highlight differences between proteins related to HLA-A*02:01 and HLA-A*11:01 alleles. Cellular
component (CC) GO categories associated with proteins which are frequently presented by either HLA-A*02:01 (left panel) or HLA-A*11:01
(right panel) according to in silico predictions were selected to match those in Figure 2B. Error bars show 1 standard deviation of fractions. (B)
Scatterplot compares the fraction of proteins presented by HLA-A*11:01 ligands of various lengths that correspond to a given GO category
between in silico predictions and experimental data. CC GO categories associated with 9-12-mer ligands were selected to match those in
Supplementary Figure 5. Color shows ligand length at which maximum fold enrichment is reached for a given GO category.
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between self-peptide GO profiles was correlated with distance

in viral presentation profiles, testing each of 12 HLA alleles

against the remaining 11 (Figure 6E). All alleles show a

positive correlation between these two distances, and for the

majority the correlation was substantial (R > 0.3 for 7 out of 12

alleles). The overall correlation coefficient for all 66 possible

distance pairs is R = 0.32, P = 0.009.

We can speculate that inter-allele differences in

preferences for binding of peptides derived from viral as

well as human proteins could be among the factors

contributing to the differential association of particular

alleles with protection/pathogenesis in different infections

(see Discussion)
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Haplotype compensation of bias in HLA
presentation of proteins with different
molecular functions

In previous sections, it was noted that HLA alleles with

similar anchor residue preferences have similar profiles of GO

terms enrichment and viral gene presentation odds, while alleles

with different anchor preferences are more likely to have

contrasting profiles (see Figures 2B and 6A-C). Considering

that HLA alleles are inherited not individually but in haplotypes,

one may hypothesize that haplotypes composed of HLA alleles

that are prone to present proteins with different molecular

functions might be evolutionarily advantageous as they would
B

C

A

FIGURE 5

Visualizing similarities between HLA alleles based on enriched GO categories of genes they tend to present. (A) Principal component analysis
(PCA) results for GO category fold enrichment profiles of various HLAs. GO enrichment profiles are computed based on gene sets obtained by
mapping HLA ligands from the HLA ligand atlas dataset as the logarithm of observed to expected fraction of genes representing a given GO
category. Color shows HLA gene: A/B/C for class I and DR/DQ for class II. (B) Distribution of pairwise distances between GO enrichment
profiles of HLA alleles of the same and distinct HLA genes. Y axis corresponds to the HLA gene of the first HLA allele in each pair, the gene of
the second allele indicated by color (same as in A). Euclidean distance divided by the total number of GO categories is used. (С) List of the top
10 GO categories that have most absolute weight in PC2 (see panel A). Negative weight corresponds to dominance in class I HLA alleles, while
positive weight corresponds to dominance in HLA class II. GO term names are preceded by either CC (cellular component), MF (molecular
function) or BP (biological process) ontology name.
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be able to present a more diverse set of peptides to the

immune system.

To test this we collected a dataset of HLA class I haplotypes

(combinations of HLA-A, HLA-B, andHLA-C alleles) which have

the highest frequencies in populations of different ethnic origin

(Supplementary Table S2, for details see Methods section).
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Haplotypes were divided into pairs of alleles of different genes

(HLA-A/HLA-B, HLA-A/HLA-C, and HLA-B/HLA-C). As a

control set we reshuffled alleles from the haplotype set to make

up random pairs. In both sets, for each resulting pair of HLA

alleles, we computed GO terms enrichment profiles distance. A

comparison of corresponding distributions (Figure 7) between
B C

D

E

A

FIGURE 6

Differences in the number of ligands coming from viral genes presented by 12 different HLA alleles. (A) Heatmap showing the logarithm of the
ratio of observed to expected number of HLA ligands (presentation odds). Expected number of ligands for each gene and HLA pair was
estimated as the sum of corresponding row and column of the matrix divided by the total number of ligands in the matrix. Dendrograms show
results of hierarchical clustering of gene-wise and HLA-wise presentation profiles performed using complete linkage algorithm with Euclidean
distance measure. Proteins from HIV (yellow), Influenza (green), Ebola (red), SARS-CoV-1 (blue) and SARS-CoV-2 (purple) are shown. (B)
Absolute values of T-statistic for observed pairwise correlation coefficients between viral gene presentation profiles of different HLAs (dark grey)
compared to theoretical distribution (n=1000 random samples from null distribution with same number of degrees of freedom, light grey). (C)
An example comparison of viral gene presentation profiles between HLA-A*02:01, HLA-A*11:01 and HLA-B*27:05 alleles. (D) Comparison of
SARS-CoV-1 and SARS-CoV-2 protein presentation odds across different HLA alleles. (E) Correlation between distance in viral protein
presentation odds profiles (Y axis) and distance in GO category profiles of HLA ligand-enriched human genes (X axis) for all HLA alleles. Each
panel shows distances from a given HLA profile to profiles of each of the remaining 11 HLA alleles. Allele name and Pearson correlation
coefficient are shown in panel title.
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these two sets demonstrates that pairs of HLA-A/HLA-B and

HLA-A/HLA-C alleles associated with frequent haplotypes are

significantly different in terms of the distance between

corresponding GO terms enrichment profiles from control allele

pairs. Thus, commonly observed haplotypes consist of more

divergent pairs of HLA alleles in terms of the proteins they tend

to present peptides from. This result may be interpreted as

indicating that the haplotype composition is focused on

compensating “holes” in the immunopeptidome that are the

result of non-uniform proteome presentation by various HLAs.
Discussion

T cell recognition of antigenic peptides presented by HLA

proteins is critical for protection against viruses and other

pathogens, elimination of cancer cells and prevention of

autoimmune diseases, moreover it directly shapes the T cell

repertoire that form the backbone of adaptive immunity (1, 34–

36). HLA locus is the most polymorphic in the human genome

and different HLA variants present different sets of peptides. The

human proteome is not uniformly represented within HLA

ligands and some proteins may give rise to more or less HLA

ligands than it is expected from random sampling. One might

suppose that the choice of such preferentially presented or

depleted proteins is not stochastic but can be characterized by

some specific functions (which may be specified as gene ontology

(GO) categories). Several studies have been aimed to characterize

GO categories of the proteins which are preferentially presented

by HLA (17–23). However, all of them were based on
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experimental datasets of MS-derived HLA ligandoms and thus

are strongly influenced by protein expression bias. Also, in such

datasets the number of detected ligands is too small for each

individual HLA variant so it is not feasible to investigate the

differences between different HLA alleles because of the lack of

statistical power. To overcome this issue, we based our analysis on

in silico predicted HLA ligandomes. We performed large-scale

predictions of binding of all possible peptides derived from

human proteome (~107 peptides from ~2*104 proteins) and 93

common HLA variants covering 95% of individuals worldwide,

using NetMHCpan or MHCflurry software which have very high

accuracy. We observed that a number of proteins are more or less

preferentially presented by certain HLA alleles and that these sets

of proteins can be characterized by specific molecular functions.

Interestingly, HLA variants substantially differ in molecular

functions of preferentially presented proteins. We explain these

differences by the tendency of HLA to preferentially present

proteins with a higher fraction of amino acids which are good

anchor residues for that particular allele. For example, HLA

variants which require hydrophobic anchors (e.g., HLA-

A*02:01, HLA-C*02:02, and HLA-C*15:02) preferentially

present hydrophobic proteins and in particular membrane,

signaling and sensory proteins. HLA variants with positively

charged anchors (e.g., HLA-A*11:01 and HLA-B*27:05)

preferentially present proteins enriched in positively charged

residues, such as those that bind negatively charged DNA and

RNA. Of note, HLA-A*11:01 and HLA-B*27:05 have substantially

different anchor residue preferences (with lysine in P9 and

arginine in P2, respectively), but since for both alleles the

anchors are positively charged, they have similar preferences in
FIGURE 7

Bias in HLA presentation of proteins with different molecular functions is compensated in HLA-A/HLA-B and HLA-A/HLA-C haplotypes. Distance
in GO category profiles between pairs of HLA alleles of different genes (HLA-A and HLA-B, left panel; HLA-A and HLA-C, central panel; HLA-B
and HLA-C, right panel). “Haplotype” set is composed of pairs of alleles constituting haplotypes with high frequency in one of the populations,
“Control” is composed of random pairs of alleles from the “Haplotype” set (for details see Methods section). Statistically significant differences
between the groups are for HLA-A/HLA-B (p-value = 5e-07, Mann–Whitney U-test) and HLA-A/HLA-C genes (p-value = 0.004, Mann–Whitney
U-test). Higher values of the distance for “Haplotype” group indicate that pairs of alleles composing frequent haplotypes tend to present
proteins with distinct functions. (****P ≤ 0.0001; **P ≤ 0.01; ns, not significant).
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terms of functions of presented proteins. Interestingly,

extracellular matrix, structural and collagen proteins were

depleted in HLA ligands for the majority of HLA alleles. This is

explained by the fact that these proteins have a relatively high

proportion of glycine residues (which are disfavoured anchor

residues for almost all HLA alleles) and prolines (which are

conformationally rigid and may disturb peptide conformation

suitable for HLA binding). Notably, for HLA variants which

require proline anchor residues (e.g., HLA-B*07:02) these

proteins are normally presented.

Also, our analysis demonstrated that proteins of shorter lengths

are more preferentially presented by the majority of common HLA

variants compared to the longer proteins. This result might have a

biological interpretation: since viral and bacterial proteins are

typically of shorter length compared to human proteins, such a

length bias may facilitate effective immune defense from pathogens

and avoid autoimmune reactions.

To account for potential bioinformatics software biases, we re-

ran the analysis using alternative software for prediction of peptide-

HLA binding and another tool for GO annotation as well as using

experimental data and confirmed robustness of our results.

Different preferences in functions of presenting proteins

between HLA alleles may be important for antiviral immunity.

We speculate that differences in the tendency of HLA alleles to

present peptides from proteins with certain functions may be

among the factors contributing to differential association of

alleles with infection outcomes. To illustrate this, we compared

binding preferences of HLA-B*57:01, associated with a good

disease prognosis in HIV-1 infection, and HLA-B*08:01,

associated with a poor prognosis (8). This analysis showed

that beneficial HLA-B*57:01 variant preferentially present

proteins with membrane and ion transport-related functions

that are assigned to HIV proteins (Supplementary Figure S7).

Intriguingly, we show that the reported HLA presentation

bias is compensated for in frequent haplotypes. HLA-A, HLA-B

and HLA-C genes are located close to each other on the same

chromosome, so they are inherited not independently, but as a

haplotype. Taking this into consideration, we hypothesized that

haplotypes with a high frequency in population should be

composed of HLA alleles with complementary peptide-binding

preferences that would result in an increased size of the

immunopeptidome presented in each individual. Indeed, we

demonstrated that HLA-A/HLA-B and HLA-A/HLA-C pairs

in frequent haplotypes are statistically more distinct in profiles of

binding preferences compared to control (swapped) pairs. The

absence of the effect for HLA-B/HLA-C pairs may be explained

by the fact that different HLA-B and HLA-C alleles are more

similar to each other than either of them are to HLA-A in terms

of amino acid sequence, a result of the evolutionary origin of the

HLA-C gene being from duplication of HLA-B (37). These

results may suggest that haplotypes of HLA alleles with

different preferences for presenting proteins with particular

molecular functions are evolutionarily beneficial and have a
Frontiers in Immunology 15
greater chance of becoming fixed in the population. This result

is in line with previous studies demonstrated that the

mechanisms of divergent allele advantage (38) and

heterozygous advantage (39) impacted the evolution of HLA

and that patients with heigher sequence divergence of carried

HLA alleles have better response to immunotherapy (40).

It should be noted that in a 2013 paper Rao et al. (41)

reported that complementarity of binding motifs in frequent

HLA-A/HLA-B haplotypes is not higher than in random HLA-

A/HLA-B pairs. The difference between earlier results and our

conclusions may be explained by the lower accuracy of the older

version of NetMHCpan software which was used in the Rao et al.

study (v2.0, released in 2009 and trained only on in vitro binding

affinity data, while in v4.0, used in the current study, MS eluted

ligand data is also incorporated).

Thorough investigation of HLA presentation biases can lead

to better understanding of mechanisms underlying the existence

of both beneficial HLA alleles and those alleles leading to disease

susceptibility in various scenarios ranging from infectious

diseases to autoimmunity. The COVID-19 pandemic has

highlighted the necessity of a rapid selection of vaccine targets.

HLA binding preferences should evidently be taken into account

together with the population frequency of HLA alleles during

vaccine development. We hope that our findings can help to

explain why certain HLAs are more likely to present peptides

from specific viral proteins compared to others. Those

presentation biases may arise due to evolutionary fine-tuning

of the HLA presentation machinery optimizing selection of non-

self peptides, a subject for future studies.
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