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Determining distinct roles of
IL-1a through generation of an
IL-1a knockout mouse with no
defect in IL-1b expression

R.K. Subbarao Malireddi †, Ratnakar R. Bynigeri †,
Balabhaskararao Kancharana, Bhesh Raj Sharma,
Amanda R. Burton, Stephane Pelletier
and Thirumala-Devi Kanneganti*

Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
Interleukin 1a (IL-1a) and IL-1b are the founding members of the IL-1 cytokine

family, and these innate immune inflammatory mediators are critically

important in health and disease. Early studies on these molecules suggested

that their expression was interdependent, with an initial genetic model of IL-1a
depletion, the IL-1a KO mouse (Il1a-KOline1), showing reduced IL-1b
expression. However, studies using this line in models of infection and

inflammation resulted in contrasting observations. To overcome the

limitations of this genetic model, we have generated and characterized a

new line of IL-1a KO mice (Il1a-KOline2) using CRISPR-Cas9 technology. In

contrast to cells from Il1a-KOline1, where IL-1b expression was drastically

reduced, bone marrow-derived macrophages (BMDMs) from Il1a-KOline2

mice showed normal induction and activation of IL-1b. Additionally, Il1a-
KOline2 BMDMs showed normal inflammasome activation and IL-1b
expression in response to multiple innate immune triggers, including both

pathogen-associated molecular patterns and pathogens. Moreover, using Il1a-

KOline2 cells, we confirmed that IL-1a, independent of IL-1b, is critical for the

expression of the neutrophil chemoattractant KC/CXCL1. Overall, we report

the generation of a new line of IL-1a KO mice and confirm functions for IL-1a
independent of IL-1b. Future studies on the unique functions of IL-1a and IL-1b
using these mice will be critical to identify new roles for these molecules in

health and disease and develop therapeutic strategies.
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Introduction

The IL-1 family of cytokines is a diverse family made up of

potent inducers of inflammation. Members of this family can

either prevent or promote disease, and they have been widely

recognized as potential therapeutic targets (1–5). The three

members of the IL-1 sub-family, IL-1a, IL-1b, and IL-1

receptor antagonist (IL-1RA), bind the same IL-1 receptor (IL-

1R). The cytokines IL-1a and IL-1b act as agonistic ligands,

whereas IL-1RA is a strong antagonist; together, these molecules

orchestrate robust proinflammatory immune responses (6, 7).

Among the IL-1 cytokines, significant overlap has been

observed in the downstream processes they activate. However,

there are also key differences between their expression and

release and the biological processes they drive (8). The pro-

form of IL-1b is biologically inactive and requires proteolytic

processing for its activation. Inflammasome-dependent caspase-

1 activation and pyroptosis are the major mechanisms

responsible for IL-1b processing and release (9–11). Unlike IL-

1b, the pro-form of IL-1a is constitutively expressed in most

cells from healthy hosts (12, 13); it is also biologically active and

can be present directly on the plasma membrane for signaling or

released following membrane damage during various forms of

cell death, making it a classic danger signal (5, 14, 15).

As signaling molecules, a wide range of pathogen-associated

and damage-associated molecular patterns (PAMPs and

DAMPs) that activate innate immune signaling induce the

expression and activation of both IL-1a and IL-1b (5, 16). IL-

1 family receptors carry the cytoplasmic TIR domain, a shared

feature with pathogen sensing toll-like receptors (TLRs), making

them excellent amplifiers of inflammatory signaling (17).

Indeed, nanomolar doses of IL-1a and IL-1b can trigger lethal

inflammatory responses in mice and humans (18–20).

Consistently, IL-1a and IL-1b were shown to act as self-

amplifying factors and upregulate each other via IL-1R

signaling (7, 21–24). However, studies of IL-1a and IL-1b
have produced conflicting results with regard to how these

cytokines regulate each other. Studies focused on TLR triggers

reported that these self-amplifying positive feedback

mechanisms are redundant or not important to amplify the

production of IL-1a and IL-1b further (25–29). These

observations differed from studies using a genetic Il1a

knockout mice (hereafter referred to as Il1a-KOline1), which

showed substantial reduction in IL-1b production when Il1a was

deleted (30–32), suggesting that IL-1a may regulate IL-1b
expression even during TLR activation. These conclusions

remained debated and poorly understood for many years.

Therefore, we sought to generate a new line of Il1a knockout

mice (hereafter referred to as Il1a-KOline2) using CRISPR-Cas9

technology. The newly generated Il1a-KOline2 mice showed

normal development, with comparable levels of basal immune

cells in the blood compared with wild-type (WT) mice. Bone
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marrow-derived macrophages (BMDMs) prepared from the

Il1a-KOline2 mice showed no defect in expression or activation

of inflammasome components in response to PAMPs and live

pathogen triggers. Additionally, while the cells from Il1a-KOline1

showed reduced expression of both IL-1a and IL-1b, Il1a-
KOline2 macrophages had no expression of IL-1a but near-

normal expression of IL-1b. Moreover, the Il1a-KOline2

BMDMs showed a specific requirement of IL-1a for the

expression of neutrophil chemoattractant KC/CXCL1, further

confirming the functional accuracy of the KO. In summary, we

generated and characterized a new line of IL-1a KO mice that

improves upon the previous version and has normal IL-1b
expression. These mice can be broadly used for future studies

on the unique functions of IL-1a and IL-1b to establish

their relevance in health and disease and identify new

treatment strategies.
Results

Generation of the IL-1a KO (Il1a-KOline2)
mouse using CRISPR/Cas9 technology

Although IL-1a has long been recognized as a critical

regulator of inflammation and immune responses (8), its

specific functions in physiologic and pathologic inflammatory

outcomes in health and disease remain unclear. IL-1a is

subjected to complex regulation, and early genetic studies

using different knockout mice produced confl icting

observations (27, 30–32). To clarify the previously observed

contradictory roles of IL-1a in IL-1b expression in Il1a-KOline1

mice, we generated a new line of IL-1a knockout (KO) mice

using CRISPR-Cas9 technology, referred to here as Il1a-KOline2

(Figure 1). Exons 2-5 of the Il1a gene were deleted by using

simultaneous injection of two individual gRNAs with human

codon optimized Cas9 mRNA (Figure 1A). We opted to use

pronuclear-staged C57BL/6J zygotes for the injections to

minimize the background-related genetic issues. Successful

generation of the Il1a-deficient mice was assessed by targeted

deep sequencing and further confirmed by PCR amplification of

genomic DNA from the WT and mutant alleles (Figure 1B), and

western blot analysis to confirm the loss of IL-1a protein

production (Figure 2A). Additionally, because IL-1a is a

multifaceted cytokine that we postulated may have a role in

regulating immune cell phenotypes at basal levels, we evaluated

the immune cellularity in the blood from the newly generated

CRISPR Il1a–/– mice (Il1a-KOline2). We found that these mice

did not show any gross abnormalities in the immune cellularity

(Supplementary Figures 1A, B). In sum, we generated a new line

of IL-1a knockout mice, Il1a-KOline2, and confirmed the

loss of IL-1a expression with no defects in overall blood

immune cellularity.
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CRISPR-based genetic deletion
of Il1a does not affect IL-1b expression
or activation

BothIL-1aandIL-1bareknowntobehighly induced inresponse
to pathogenic insults. Therefore, we next sought to characterize the

cytokine expression in cells from the newly generated Il1a-KOline2

mice in response to PAMPs and pathogens. Treatment of BMDMs

with lipopolysaccharide (LPS, a toll-like receptor 4 (TLR4) agonist

from Gram-negative bacteria) induced robust and time-dependent

expression of IL-1a protein in WT cells but not in Il1a-KOline2 cells

(Figure 2A). In addition, the induction of IL-1a protein expression

was not affected by Il1b genetic deletion, and the expression of IL-1b
in response to LPS was similar in the WT and Il1a-KOline2 cells

(Figure 2A). In contrast, we observed a delay and reduction in the

production of IL-1b in the previously generated Il1a-KOline1 cells in

response to LPS (Supplementary Figure 2A).

We next sought to further understand the potential roles for IL-

1a and IL-1b in NLRP3 inflammasome priming, which is known to

produce mature IL-1b. We found that IL-1a was not required for
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upregulation of NLRP3 or IL-1b expression in response to the innate
immune triggers LPS, LPS plus ATP, Pam3CSK4 (Pam3) plus ATP,

or Gram-negative bacteria Escherichia coli or Citrobacter rodentium

(Figures 2A–C). Moreover, the activation of canonical and non-

canonical inflammasomes, as measured by cleavage of caspase-1 and

gasdermin D (GSDMD), was not reduced by deletion of Il1a

(Figures 2B, C). Consistently, IL-1b release was similar in WT and

Il1a-KOline2 BMDMs (Figures 2D, E). In contrast, using similar

experimental approaches, we observed defects in IL-1b expression in
macrophages from the earlier Il1a-KOline1 line, with pronounced

reductions in IL-1b expression at early time points in response to

LPS, while the induction improved at later timepoints

(Supplementary Figure 2A). We also observed reductions in IL-1b
expression in response to NLRP3 inflammasome triggers LPS plus

ATP and Pam3 plus ATP (Supplementary Figure 2B). We did not

observe defects in NLRP3 production or caspase-1 and GSDMD

activation in Il1a-KOline1 cells (Supplementary Figures 2A, B).

Together, these results show that while the previously generated

Il1a-KOline1 mice had defects in IL-1b production, Il1a-KOline2 mice

did not share these defects.
B

A

FIGURE 1

Generation of the Il1a–/– (Il1a-KOline2) mouse using CRISPR/Cas9 technology. (A) Two sgRNAs targeting the Il1a locus were designed and used
to delete exons 2 to 5 (E2 to E5), as described in the materials and methods section. The vertical bars denote the sgRNAs 1 and 2, respectively
(depictions are not to scale) in the genomic sequence. The location of the deleted genomic fragment and the primer-binding locations are
depicted using short arrows. (B) The PCR amplification of the Il1a locus from the DNA of wild-type (WT), heterozygous, (Het), or knockout (KO)
mice using the primers (primers P1 and P2 together with P3).
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CRISPR-based genetic deletion of Il1a
confirms its critical role in the expression
of the chemokine KC (CXCL1)

IL-1a is a pleiotropic cytokine and critical amplifier of

inflammation in response to both infection and sterile cellular

insults (8). IL-1a also plays key roles in regulating neutrophil-

chemotactic factors such as the chemokine KC (CXCL1) in mice

(33). Therefore, to further confirm the IL-1a deletion in the
Frontiers in Immunology 04
newly generated Il1a-KOline2 mice and assess its functional

effects, we evaluated expression of TNF and KC in response to

innate immune triggers. We specifically used LPS plus ATP as

the stimulation to mimic the inflammasome activation

conditions used above to determine differences in IL-1b
production, as this stimulus has been previously shown to be

suitable for measuring inflammatory markers (34). We found

that IL-1a specifically was required to produce KC, but not TNF,

in response to both PAMP- and pathogen-induced signaling in
B C

D E

A

FIGURE 2

CRISPR-based genetic deletion of Il1a (Il1a-KOline2) does not affect IL-1b expression or activation. (A) Western blot analysis of pro–IL-1a (P31),
pro–IL-1b (P31), NLRP3 (P110), and b-Actin (P42) in bone marrow-derived macrophages (BMDMs) treated with lipopolysaccharide (LPS) for
indicated times. (B, C) Western blot analysis of pro- (P45) and activated (P20) caspase-1 (CASP1), pro- (P53) and activated (P30) gasdermin D
(GSDMD), pro–IL-1a (P31), pro–IL-1b (P31), and b-Actin (P42) in BMDMs treated with LPS + ATP or Pam3CSK4 (Pam3) + ATP for 4 h (B), or
BMDMs infected with E. coli or C. rodentium for 24 h (C). (D, E) Measurement of IL-1b release in the cellular supernatants collected from
BMDMs treated as detailed in panels (B) and (C), respectively, for (D) and (E). Western blot of b-actin was used as loading control. Data are
representative of at least two independent experiments (A–E). Data are presented as the mean ± SEM (D, E). Analyses of the P values were
performed using the t test (D, E). ns, non-significant; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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macrophages; loss of IL-1a resulted in significant decreases in

KC release, while loss of IL-1b did not decrease KC release

(Figures 3A–D). Instead, we observed significantly increased

levels of KC production in Il1b−⁄− cells in response to LPS plus

ATP and Pam3 plus ATP treatments (Figure 3A), suggesting a

competition between IL-1a and IL-1b for IL-1R binding in this

context, where the increased availability of IL-1R molecules for

binding by IL-1a may promote hyper-expression of select

inflammatory factors in the absence of IL-1b. Together, these
findings confirm the specific role of IL-1a for the release of KC,

further supporting the functional relevance of the newly created

Il1a-KOline2 mice for the evaluation of IL-1a–mediated signaling

and disease phenotypes.

Discussion

Members of the IL-1 family of cytokines play important roles as

inflammatory mediators in host defense but have also been

implicated in disease pathogenesis. Therefore, understanding the

distinct functions of IL-1 family members is fundamental to our
Frontiers in Immunology 05
understanding of the molecular basis of disease. Previous genetic

models of IL-1a deletion have displayed defects in IL-1bproduction,
making it difficult todetermine thedistinct roles of thesemolecules in

immune responses. To overcome this obstacle, we report the

generation of a genetic deletion of Il1a in mice using CRISPR

technology that did not affect IL-1b induction in response to

microbial PAMPs and pathogens. Our findings suggest that

expression of IL-1b in response to TLR activation is not affected by

loss of IL-1a.
Growing evidence supports that IL-1a and IL-1b have

distinct functions (35–37). Our findings further confirm that

IL-1a is a non-redundant positive regulator of the expression of

the chemokine KC in macrophages, which is consistent with

earlier studies reporting the specific role of IL-1a in promoting

production and recruitment of neutrophils in chronic

inflammatory conditions (33, 38–40). The mechanism behind

the differences between IL-1a and IL-1b in regulating KC

requires further study but may be driven by the distinct

localization of these cytokines. IL-1a is unique in its ability to

localize to the nucleus and directly regulate transcription (7),
B

C

D

A

FIGURE 3

CRISPR-based genetic deletion of Il1a (Il1a-KOline2) confirms its critical role in the expression of the chemokine KC (CXCL1). (A–D) Measurement
of secreted cytokines KC and TNF in bone marrow-derived macrophages (BMDMs) treated with lipopolysaccharide (LPS) + ATP or Pam3CSK4
(Pam3) + ATP for 4 h (A, B) or infected with E. coli or C. rodentium for 24 h (C, D). Data are representative of at least two independent
experiments (A–D). Data are presented as the mean ± SEM (A–D). Analyses of the P values were performed using the t test (A–D). ns, non-
significant; *P < 0.05; **P < 0.01; ****P < 0.0001.
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and it may selectively modulate the transcription of the Cxcl1

gene. However, IL-1b has also been shown to be important for

the induction of neutrophil growth- and chemotactic-factors

(41–45). Therefore, it is plausible that IL-1b might also

contribute to neutrophil-mediated inflammatory conditions as

a result of the activation of cell death modalities that drive IL-1b
maturation via the activation of caspase-1 or other proteases

(46), though this requires further study.

Additionally, previous studies using the earlier Il1a-KOline1

mice distinguished unique functions of IL-1a and IL-1b in the

development of chronic autoinflammatory diseases (40, 42, 43,

47, 48). Our results suggest that the ability to use the Il1a-KOline1

mice to successfully identify this differential phenotype is due to

the chronic nature of the disease. We found that the reduction of

IL-1b expression in Il1a-KOline1 cells was pronounced only at

early time points following stimulation, and that prolonged

stimulation resulted in similar levels of IL-1b in WT and Il1a-

KOline1 cells, in response to both PAMPs and pathogens. This

suggests that WT and Il1a-KOline1 mice would have similar

levels of IL-1b during chronic disease, allowing differential

phenotypes between Il1b−⁄− and Il1a−⁄− mice to be observed.

Given the critical roles of IL-1 family cytokines in inflammation

and pathology, these cytokines have been targeted in several

therapeutic strategies which have further highlighted unique

functions for IL-1a and IL-1b. For example, the recent SAVE-

MORE trial showed that anakinra, which blocks both IL-1a and IL-

1b, reduced the risk of clinical progression in patients with COVID-

19, when co-administered with dexamethasone (49). Accordingly,

anakinra was authorized for the treatment of COVID-19 in Europe

by the EMA. In contrast, the CAN-COVID trial, which was designed

to evaluate the efficacy of canakinumab (a specific IL-1b blocking

antibody) failed to improve the survival of patients with COVID-19

(50). These studies further expand the concept that IL-1a plays a

dominant and potentially specific role in driving IL-1b-independent
inflammatory immune responses and pathology in some contexts.

Together, these observations show that caution should be

used when interpreting previous studies and highlight the need

to authenticate genetic resources for future work. The

development of the Il1a-KOline2 mouse line, which does not

seem to display acute or chronic defects in IL-1b production,

may help address many of the critical, long-standing questions

in the field of immunobiology regarding the shared and unique

functions and context-dependent interdependencies of IL-1a
and IL-1b cytokines to improve understanding of the molecular

basis of disease and inform therapeutic strategies.

Materials and methods

Mice

Il1b−⁄− (51) and Il1a−⁄− (Il1a-KOline1) (52) mice were both

previously described. Il1a−⁄− (Il1a-KOline2) mice were generated
Frontiers in Immunology 06
in the current study and are described below. All mice were

generated on or extensively backcrossed to the C57BL/6

background. All mice were bred at the Animal Resources

Center at St. Jude Children ’s Research Hospital and

maintained under specific pathogen-free conditions. Mice were

maintained with a 12 h light/dark cycle and were fed standard

chow. Animal studies were conducted under protocols approved

by the St. Jude Children’s Research Hospital committee on the

Use and Care of Animals.
Generation of the new IL-1a KO (Il1a-
KOline2) mouse strain

The new Il1a-KOline2 mouse was generated using CRISPR/Cas9

technology in collaboration with the St. Jude Transgenic/Gene

Knockout Shared Resource facility. Pronuclear-staged C57BL/6J

zygotes were injected with human codon-optimized Cas9 mRNA

transcripts (50 ng/ml) combined with two guide RNAs (120 ng/ml
each ; sgRNA1 for the 5 ’ of exon 2: AAAAGCTT

CTGACGTACCACagg, and sgRNA2 for the 3’ of exon 5:

AAGTAACAGCGGAGCGCTTTtgg (pam sequences are

underlined)) to generate a long deletion encompassing exons (E) 2–

5 of the Il1a gene (Figure 1A). Zygotes were surgically transplanted

intotheoviductsofpseudo-pregnantCD1females, andnewbornmice

carrying the desired deletion in the Il1a allele were identified by PCR

agarose gel-electrophoresis (Figure 1B) and Sanger sequencing. The

WT allele was PCR amplified by using the primers IL1a_F1 (5’-

GGGCACACGAATTCACACTCACA-3’; primer P1) and IL1a_R1

(5’-GGAGAACTTGGTTCCTGTTAGGGTGA-3’; primer P2), and

the KO allele was amplified by using IL1a_F1 and IL1a_R2 (5’-

TGATTAGCTTCCTTTGGGCTTTGA-3’; primer P3) primer pairs.

The details of the generation of the CRISPR reagents were described

previously (53). The uniqueness of sgRNAs and the off-target sites

with fewer than three mismatches were found using the Cas-

OFFinder algorithm (54).
Macrophage differentiation
and stimulation

BMDMs were prepared as described previously (55). In

short , bone marrow cel ls were cultured in IMDM

supplemented with 30% L929 cell-conditioned medium, 10%

FBS, 1% nonessential amino acids, and 1% penicillin-

streptomycin for 6 days to differentiate into macrophages. On

day 6, BMDMs were counted and seeded at 106 cells per well in

12-well culture plates in DMEM containing 10% FBS, 1%

nonessential amino acids, and 1% penicillin-streptomycin.

iBMDMs (immortalized BMDMs from Il1a−⁄− (Il1a-KOline1)

mice) were maintained in DMEM supplemented with 5% L929

cell-conditioned medium, 10% FBS, 1% nonessential amino acid,

and 1% penicillin-streptomycin. Stimulations were performed
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with LPS alone (100 ng/ml) for the indicated times, LPS (100 ng/

ml) or Pam3 (1 µg/ml) for 3.5 h followed by the addition of ATP

(5 mM final concentration) for 30 min, or E. coli (MOI, 20) or C.

rodentium (MOI, 20) for 24 h.
Flow cytometry and analysis of cellularity

The cellular phenotypes of immune cells in the blood were

analyzed either by flow cytometry (for T cell subsets and B cells) or

by using an automated hematology analyzer machine (for %

lymphocytes, % neutrophils, % monocytes, red blood cell (RBC)

counts, hemoglobin (HB) quantification, and platelet (PLT)

quantification). The following antibodies were used for cell

staining: anti-CD19 (APC, clone ID3), anti-CD45.2 (FITC, clone

104), and anti-TCRb (PECy7, clone H57-597) from Biolegend, and

anti-CD8a (efluor450, clone 53-6.7) from eBiosciences. Samples

were assessed and data were acquired on LSR II Flow Cytometer

from BD Biosciences and analyzed using the FlowJo software (Tree

Star), version 10.2 (FlowJo LLC).
Western blotting

Samples for immunoblotting of caspase-1 were prepared by

mixing the cell lysates with culture supernatants (lysis buffer: 5%

NP-40 solution in water supplemented with 10 mM DTT and

protease inhibitor solution at 1× final concentration); samples

for all other protein immunoblotting were prepared without the

supernatants in RIPA lysis buffer. Samples were mixed and

denatured in loading buffer containing SDS and 100 mM DTT

and boiled for 12 min. SDS-PAGE–separated proteins were

transferred to PVDF membranes and immunoblotted with

primary antibodies against IL-1a (503207, Biolegend), IL-1b
(12426, Cell Signaling Technology), caspase-1 (AG-20B-0042,

Adipogen), NLRP3 (AG-20B-0014, Adipogen), GSDMD

(ab209845, Abcam), and b-Actin (sc-47778 HRP, Santa Cruz),

Appropriate horseradish peroxidase (HRP)–conjugated

secondary antibodies (anti-Armenian hamster [127-035-099],

anti-mouse [315-035-047], and anti-rabbit [111-035-047],

Jackson ImmunoResearch Laboratories) were used as

described previously (56). Immunoblot images were acquired

on an Amersham Imager using Immobilon® Forte Western

HRP Substrate (WBLUF0500, Millipore).
Cytokine analysis

Cytokines and chemokines were measured by multiplex

ELISA (Millipore), as per the manufacturer's instructions.
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Statistical analysis

GraphPad Prism 9.0 software was used for data analysis.

Data are presented as mean ± SEM. Statistical significance was

determined by t tests (two-tailed) for two groups.
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