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Acinetobacter baumannii is a nosocomic opportunistic Gram-negative

bacteria known for its extensive drug-resistant phenotype. A. baumannii

hospital-acquired infections are major contributors to increased costs and

mortality observed during the COVID-19 pandemic. With few effective

antimicrobials available for treatment of this pathogen, immune-based

therapy becomes an attractive strategy to combat multi-drug resistant

Acinetobacter infection. Immunotherapeutics is a field of growing interest

with advances in vaccines and monoclonal antibodies providing insight into

the protective immune response required to successfully combat this

pathogen. This review focuses on current knowledge describing the adaptive

immune response to A. baumannii, the importance of antibody-mediated

protection, developments in cell-mediated protection, and their respective

therapeutic application going forward. With A. baumannii’s increasing

resistance to most current antimicrobials, elucidating an effective host

adaptive immune response is paramount in the guidance of future

immunotherapeutic development.
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Introduction

The incidence of multi-drug-resistant (MDR) bacteria strains increases yearly; thus,

alternative therapies are required to compensate for increasingly ineffective

antimicrobials that are currently available. An increasingly clinically relevant MDR

pathogen is Acinetobacter baumannii, an opportunistic nosocomial Gram-negative

bacterium, and member of the ESKAPE group of pathogens which include

Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas

aeruginosa, and Enterobacter species (1). The ESKAPE designation refers to an

extensive drug-resistant phenotype, and ability to overcome most current
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antimicrobial therapies. The prevalence of cases of A. baumannii

infection is increasing worldwide and is a leading cause of

morbidity and mortality (2, 3). This has prompted the World

Health Organization (WHO) to assign carbapenem-resistant A.

baumannii the highest critical priority ranking emphasizing the

urgent need to identify new and effective drug therapies to

combat this pathogen (4).

The opportunistic nature of A. baumannii primarily affects

at-risk hospitalized patients with stays of longer-duration,

especially immunocompromised individuals (5). Additionally,

it is increasingly the source of infection in combat-wounded

military personnel (6, 7). A. baumannii infection commonly

presents as ventilator-associated pneumonia and catheter-

related bloodstream/urinary infection, in addition to that of

wounds (8–10). Due to their MDR nature, empiric treatment

is generally ineffective and results in poor clinical outcomes (11).

If untreated, rampant bacterial growth can ensue and give rise to

TLR4-mediated septic shock and death (12, 13).

The incidence of MDR A. baumannii co-infection has

increased in intensive care units (ICU) due to prolonged

hospitalization of COVID-19 patients (14). One retrospective

study of A. baumannii co-infection in COVID-19 hospitalized

patients in Wuhan, China found that nearly half of the

individuals who developed secondary bacterial infection died,

with A. baumannii accounting for 36% of these infections (15).

In another study, nearly 12% of ICU patients admitted with

severe COVID-19 pneumonia developed secondary bacterial

infections with K. pneumoniae or A. baumannii. Both

pathogens exhibited extensive MDR resulting in more than

double the mortality rate (from 38 to 83%) typically observed

in COVID-19 patients (16). The incidence of A. baumannii

infection in the past decade is associated with increased ICU

admission, and longer hospital stays (17, 18). The nosocomic

nature of this pathogen arises from its resistance to desiccation,

and its ability to thrive in environments under selective

pressures (19).

Investigation of A. baumannii pathogenic mechanisms and

development of effective therapeutics against this pathogen has been

a long-standing clinical and laboratory challenge. Initially, clinical

isolates exhibited a hypovirulent phenotype necessitating the use of

immunosuppressed mice as hosts or mixing of bacteria with

porcine mucin to inhibit initial host clearance to study its

pathophysiological mechanisms (20). However, recent MDR

clinical isolates exhibit a hypervirulent phenotype, which rendered

immunocompetent wild-type mice more readily susceptible to

bacterial challenge (21–23). Thus, immunocompetent hosts now

afford useful models to assess the efficacy of novel therapeutics with

these more virulent A. baumannii isolates.

In order to develop novel and effective therapies to combat

this pathogen it is first necessary to elucidate the underlying

immune mechanisms by which A. baumannii evades the host’s

adaptive and innate immune system. In this review we examine

the current understanding of antibody-mediated and cell-
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mediated immune responses and key elements of protective

immunity derived from recent therapeutic studies.
Antibody-mediated protection
to A. baumannii

The success of passive immunization and use of monoclonal

antibodies underscores the essential role of antibody-mediated

immunity in protection against A. baumannii (24–33).

Consistent with this notion, A. baumannii vaccinated B cell

knockout mice were not protected in a murine-pneumonia

model (34). Compared to vaccinated wild-type animals, these

mice developed higher bacterial loads and subsequent

extrapulmonary bacterial dissemination and bacteremia.

Moreover, some studies show correlation of survival with

specific antibody titers (26, 35). Dose variation in subunit

vaccines has shown larger doses of recombinant A. baumannii

protein elicit higher antibody titers and higher protective efficacy

(30). Interestingly, some studies observed higher protection in

passive than in active immunization models (28, 36, 37). Across

most studies, passive immunization has been shown to be an

effective therapeutic route with only one study using an

intranasal challenge model showing no improvement in

survival albeit a delayed time to death (34). Thus, a focus of

this review is that of the protective role of antibody-mediated

immunity to A. baumannii.
Antibody isotype

Consistent with the theme that antibody-mediated

protection is the primary driver of A. baumannii vaccine

protection, most studies have shown that whole-cell and outer

membrane vesicle (OMV) vaccines are capable of generating

high A. baumannii specific IgG (including both IgG1 and IgG2)

antibody titers through various immunization routes (28, 32, 34,

35). Additionally, intranasal immunization produces significant

serum levels of sIgA exhibiting higher protective efficacy than

that of intramuscular immunization in an intratracheal

challenge model (35). In an intramuscular vaccination study

examining OMV protection, OMV-specific IgA was observed

significantly increased in the serum and bronchoalveolar lavage

fluids following intranasal challenge (28). These two studies

demonstrate the importance of A. baumannii-specific sIgA

production for mucosal immunity in respiratory infections.

Interestingly, a respiratory infection model utilizing an FcRg
knockout mouse strain afforded 100% survival in vaccinated

groups, suggesting that IgG is not essential for protection in A.

baumannii lung infection models, and that IgA could be

sufficient for mucosal immunity (34). To the contrary, sIgA

has been shown to enhance A. baumannii gastrointestinal tract
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colonization leaving its role in mucosal immunity to be further

assessed (38), especially with regard to the numerous clinical

manifestations of ventilator-associated pneumonia.
Antibody-mediated
complement activation

An essential innate immune component is the complement

system which works synergistically with the adaptive immune

response to enhance pathogen clearance. Complement

activation can occur via three different pathways: the classical,

lectin, and alternative complement pathways. The lectin and

alternative pathways entail direct interaction of complement

with the pathogen’s cell surface in contrast to the classical

pathway which first requires interaction with the Fc region of

bound antibody to the bacterial cell surface. The classical

pathway’s antigen-antibody complex connects the innate

effector function of complement with that of the antigenic

specificity of the humoral immune response. Microbe-bound

antibodies synergistically enhance the complement cascade, and

promote downstream innate effector functions, i.e., production

of proinflammatory molecules such as C3a, C4a, and C5a, the

formation of the membrane attack complex, and opsonization of

microbes with bound C3b. Thus, pathogen-specific antibodies

that target bacteria are critical activators of the complement

system facilitating pathogen clearance (39).

The antigen specific nature of the classical pathway has led to

extensive investigations of its role in antibody-mediated
Frontiers in Immunology 03
protection. A. baumannii’s outer membrane plays a critical role

in its MDR nature and is a potential target for complement-

mediated membrane attack complex formation (40). However, the

role of complement in this mechanism of protection is difficult to

study due to A. baumannii exhibiting variability in susceptibility

to complement activation across its many strains (41, 42). A

common mechanism of complement resistance is that of the

pathogen’s recruitment of the host’s complement regulators to its

surface and inhibition of complement activation (43). The most

studied A. baumannii virulence factor, OmpA, enhances

complement resistance by interacting with Factor H to down-

regulate complement activation on the pathogen’s surface (44).

Interestingly, a recombinant OmpA vaccine did not abrogate or

neutralize OmpA’s complement inhibitory function, and immune

serum did not result in enhanced complement-mediated killing of

A. baumannii (26). This contrasts with other studies showing that

vaccinated immune sera enhanced direct A. baumannii killing

activity with intact complement, but this may have been due to the

use of complement-sensitive strains (25, 45). This suggests that

complement resistant strains are insensitive to direct bactericidal

killing via formation of the membrane attack complex even in the

presence of A. baumannii specific antibodies.

Of note, however, studies show a reduction in opsonophagocytic

enhancement via vaccinated sera when complement is removed

through heat inactivation (28–30). This suggests that complement

may play a role in A. baumannii control via opsonization and

enhanced phagocytosis through C3b deposition on the pathogen’s

surface as well as release of C3a to promote recruitment of innate

effector cells (Figure 1). A recent study of an A. baumannii specific
FIGURE 1

Overview of antibody-mediated protection against A. baumannii. Virulent strains appear to be resistant to direct bactericidal activity via
membrane attack complex formation. A. baumannii-specific antibodies, however, still mark the pathogen for C3b deposition on its surface by
activation of the classical complement pathway. C3a is released to increase phagocyte recruitment to the site of infection. In the absence of
complement, antibodies continue to identify the bacterium for increased phagocytosis through antibody-Fc receptor interactions. Additionally,
antibodies generated toward virulence factors required for pathogenesis, such as siderophores, can attenuate A. baumannii’s virulence.
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monoclonal antibody showed that the antibody’s efficacy was linked

to complement activation, and administration of the mAb led to

increased serum levels of C3a consistent with synergistic activation

of the classical pathway. This conclusion was further supported by

reduced efficacy of the mAb in C3 knockout mice, indicating

complement C3 acts in tandem with the humoral immune

response to clear A. baumannii (46). Collectively, these data

suggest that complement is not essential for antibody-mediated

immunity but improves the host’s capability to clear A. baumannii

via opsonization and phagocytosis.
Antibody opsonization

Opsonization occurs via binding of specific antibodies to

bacteria thus enhancing their clearance by phagocytes through

antibody-Fc receptor(FcR)-mediated phagocytosis (47).

Early studies demonstrated that incubation of A. baumannii

with monoclonal antibodies enhanced their opsonophagocytic

uptake by human polymorphonuclear cells (48). Many A.

baumannii vaccine studies show that innate effector cells are

critical for bactericidal activity, and in their absence, antiserum

alone has no bactericidal effect (29, 30). Additionally, the

presence of A. baumannii-specific antibodies significantly

increased uptake by macrophages (Figure 1). A monoclonal

antibody-based study underscored the importance of the

interaction of the antibody Fc region with FcR. The protective

efficacy of the mAb generated against A. baumannii capsular

polysaccharide decreased from 100 to 20% upon conversion to f

(ab)2 fragments lacking an Fc region. The inability to facilitate

the Fc-FcR interaction resulted in evasion of neutrophil and

macrophage-mediated phagocytosis leading to fulminant A.

baumannii growth, and subsequent lethal sepsis (46). These

data are supportive of the essential protective role of antibody-

mediated immunity to A. baumannii, i.e., the targeting nature of

antibodies and enhancement of opsonization of the bacteria by

innate cells.
Neutralization

A much understudied aspect of antibody-mediated

immunity to A. baumannii is that of neutralization capability.

Traditional antibody neutralization targets, e.g., secreted

microbial toxins are not well-characterized with regard to A.

baumannii. However, some A. baumannii virulence factors can

be neutralized by antibodies (Figure 1). For example, antiserum

generated to the virulence factor Ata (a surface autotransporter

protein) that binds to basal membrane proteins and the

extracellular matrix prevented adhesion of A. baumannii to

collagen type IV (25, 49). In another study, A. baumannii iron

sequestering proteins, i.e., siderophores were targeted using

antiserum generated against iron-regulated outer membrane
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proteins and was shown to be bactericidal when the bacterium

was incubated in iron-deficient media (48, 50). These studies

support further the contention that antibody targeting of

virulence factors upregulated during pathogenesis is a viable

therapeutic strategy.
Monoclonal antibodies

The protective role of humoral immunity to A. baumannii is

well-established; therefore, development of monoclonal

antibodies (mAb) against this pathogen have been pursued as

potential therapeutic agents. In this vein, a mAb generated

against the K1 polysaccharide capsule of A. baumannii

enhanced neutrophil-mediated opsonophagocytosis of K1

positive strains. Post-challenge administration of the mAb was

protective and reduced bacterial burdens in a soft tissue infection

model in rats (27). However, only 13% of the A. baumannii

strains tested were seropositive for the K1 capsule which limits

broad use of this mAb as a therapeutic reagent. In a subsequent

study, mAb generated against the capsule of more recently

isolated hypervirulent strains, bound to 39% of 302 total

strains tested (33). This mAb protected mice following both

blood and lung challenge suggesting that a broadly cross-reactive

monoclonal antibody could be a viable therapy against acute

MDR A. baumannii infections in the clinic.
Cell-mediated protection
to A. baumannii

Much of the vaccine development efforts forA. baumannii have

focused on antibody-mediated immunity, and few studies have

investigated the cell-mediated aspects of protection. As a result,

most studies have utilized the IgG isotype ratio to determine

whether vaccine-induced protection was Th1 or Th2 driven, and

few studies have investigated direct T cell responses to A.

baumannii, e.g., in T cell recall and adoptive transfer.
Antibodies as surrogate indicators
of protection provided by specific
T cell subsets

Antibody isotype production can aid as a surrogate indicator

as to the immune response being mediated by specific T cell

subsets, e.g. Th1 or Th2 immunity. IFN-g (a Th1 cytokine) and

IL-4 (a Th2 cytokine) stimulate switching of immunoglobulin

isotype in B cell proliferation and differentiation (Figure 2). IFN-

g induces production of IgG2a/IgG2c while IL-4 stimulates IgG1

production (51). The ratio of IgG1 to IgG2a (or IgG2c) functions

as an indirect indicator of Th1 or Th2 mediated immune

response in mice.
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Studies using whole-cell inactivated and/or live attenuated

strains of A. baumannii showed robust IgG1 and IgG2a (or

IgG2c) antibody responses indicating both Th1 and Th2 cell

engagement (24, 34, 52). Vaccination with A. baumannii OMVs

elicits a balanced Th1 and Th2 response based on this ratio (28,

53). One study found OMV vaccines generate a different

immune response dependent on the route of vaccination.

Intramuscular immunization led to a balanced Th1 and Th2

response while intranasal immunization exhibited uniformly a

Th1 (IgG2a) biased response (35). Collectively, these studies

provided evidence for a balanced adaptive immune response to a

broad range of A. baumannii antigens.
T cell responses

Several studies have directly measured T cell involvement in

vaccine induced protection as well as A. baumannii’s influence

on antigen presenting cells responsible for priming of the T cell

response. One study examined T cell responses in splenocytes

obtained from mice immunized with a live-attenuated vaccine

(D-glutamate auxotrophic DmurI1DmurI2), and measured IFN-

g, IL-4, and IL-17 secretion as indicators of Th1, Th2, or Th17

responses by cytokine ELISPOT assay, respectively (32). Of note,

this study reported a significant elevation of IL-4 and IL-17, but

not IFN-g by T cells after stimulation with the vaccine strain

supporting that protective live-attenuated vaccine induce a Th2

and Th17 response. Moreover, an OMV vaccine-based study

exposed bone marrow-derived dendritic cells (BMDC) to A.

baumannii OMVs and found an activated phenotype with

upregulation of costimulatory molecules and production of

proinflammatory cytokines (35). Another OMV-based vaccine

study investigated the BMDC response as well as the resulting T

cell populations in vaccinated mice (54). Exposure to the OMV
Frontiers in Immunology 05
increased costimulatory molecules expressed by BMDC and

production of IL-4. In agreement, splenocytes of vaccinated

mice exhibited an increase in the Th2 subset (CD4+/IL-4+)

with no change in IFN-g and IL-17. Of note, this study

compared the OMVs produced from a standard strain

(ATCC19606) with the clinical isolate (JU0126). The Th2

polarization was observed with the clinical isolate but not with

ATCC19606, suggesting that variance in cell-mediated response

depends on the strain of A. baumannii used, and the variability

of antigens during exposure.

The variance in immunogenicity of A. baumannii strains is

central to the difficulty in establishing an optimized conserved

protective immune response thus far. However, recent protein

subunit vaccines are beginning to elucidate the responses to

specific virulence factors. OmpA, a well-studied virulence factor

and focus of many vaccination studies has demonstrated a Th1

polarizing ability in vitro. OmpA-exposed dendritic cells

stimulated CD4+ T cell secretion of IFN-g (55). Interestingly,

vaccination with recombinant OmpA exhibited a dose-

dependent effect, i.e., a 3 µg dose induced a balanced Th1/Th2

response, while a 100 µg dose gave a biased Th2 response

following splenocyte restimulation (56). Thus additional

complexity is added to the question of optimal cell mediated

immunity with the addition of vaccine adjuvants and dose

variance among protein subunit vaccines.

Whether Th1, Th2, or Th17 responses or balanced T cell

cytokine responses are preferential for A. baumannii protection

remains unanswered and requires further investigation.

Considering the central role of humoral immunity for A.

baumannii protection, a strong Th2 response could be

essential to provide B cell help. Thus far, the use of antibodies

as surrogate indictors of an indirect Th1 or Th2 response paints

a picture favoring a balanced response, while the relatively few

studies directly investigating T cell cytokine profiles have
FIGURE 2

Vaccine induced antibody generation. Schematic illustration of antibody generation from inactivated and live attenuated whole cell, outer
membrane vesicle, and protein subunit vaccines towards A. baumannii. The proportion of IgG1 to IgG2c antibody production is utilized as a
surrogate indicator of Th1 or Th2 mediated immunity.
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displayed preference for more biased responses. Overall,

elucidation of the critical role of T helper cells in activation of

the humoral response requires additional studies.
Vaccine-induced
protective immunity

With the increasing drug-resistance of A. baumannii and

few new antibiotic prospects on the horizon, vaccines have been

looked to as a potential preventative measure for the most ‘at-

risk’ patients, i.e., those developing infection due to prolonged

hospitalization. Many vaccine studies utilized live-attenuated A.

baumannii strains, inactivated whole-cell vaccines, or OMV

preparations due to their robust immunogenicity and ability to

induce protection (24, 28, 32, 34, 52). With the emergence of

transcriptomics and identification of essential A. baumannii

virulence factors, more emphasis has been placed on the
Frontiers in Immunology 06
development of recombinant protein subunit vaccines with

improved safety profiles (26, 29, 30, 37). Along these lines,

next-generation vaccine technology has been applied to

engineering DNA vaccines against A. baumannii virulence

factors that have proven difficult to produce for subunit

vaccines (57, 58).

Vaccine-induced protective immunity tends to correlate

with lower bacterial burdens 12 to 24 hours post-challenge in

models using hypervirulent strains of A. baumannii that

typically lead to acute death within 24 to 48 hours (12, 29, 31,

32, 52, 53). These studies utilize intravenous and intraperitoneal

injections of bacterial inoculum to simulate bacteremia and

septic shock and have demonstrated vaccine-induced

protection through rapid clearance of bacteria (Figure 3).

Additionally, an A. baumannii-associated pneumonia model

showed reduced bacterial burden in the lungs as well as

limiting bacterial dissemination to extrapulmonary areas in

vaccinated mice 24 hours after intranasal challenge (34). The
A

B

FIGURE 3

Vaccine induced protective immunity. (A) In the absence of protective immunity, hypervirulent A. baumannii rapidly proliferates in the host
leading to excess shedding of lipopolysaccharide (LPS) and rampant TLR4 activation. The abundance of pro-inflammatory cytokine secretion
results in a cytokine storm and ultimately septic shock. (B) In the presence of protective immunity, antibodies mark the pathogen for phagocytic
uptake by innate effector cells. A rapid reduction in bacterial burden maintains a balanced immune response.
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acute nature of these models underscores the central role that

preexisting antibody-mediated immune responses play in

clearance of A. baumannii prior to bacterial dissemination.

The abrogation of cytokine storm as a result of rapid bacterial

clearance resulted in the drastic reduction in proinflammatory

cytokine levels in protected mice, and a significant decrease was

noted in IL-1b, TNF-a, and IL-6 in serum 12 and 24 hours post-

challenge in protected mice (12, 24, 29, 34, 36, 52, 53). This was

observed with both active and passive immunization.

The effect of vaccine-induced protective immunity on

reducing A. baumannii pathology underscores the importance

of early control and rapid clearance of the infection. Specifically,

early time points post-challenge displayed pathology similar to

mock-vaccinated animals followed by drastic reduction in

inflammation 24 hours post-challenge (28, 31). Moreover,

vaccinated mice exhibited limited infiltration of neutrophils

and macrophages in lung infection models (21, 59), and active

and passive immunization studies documented the importance

of controlling bacterial burden within 24 hours of challenge.

Interestingly, a recent study utilizing a protective mAb in

combination with complement, macrophage, and neutrophil

depletion to evaluate the protective mechanisms showed that

correlation between survival and bacterial burden does not

always apply (46). In this study, double and even triple

depleted mice did not survive subsequent challenge, but still

exhibited strikingly reduced bacterial burdens compared to

placebo mice. Use of TNF-a knockout mice indicated that the

cytokine was not required for mAb efficacy. Moreover, IL-10

knockout mice were not protected which is in accordance with

previous studies that have demonstrated its importance in A.

baumannii infection (60, 61). However, macrophage depletion

or treatment with an anti-TNFa antibody restored the efficacy of

the mAb in IL-10 knockout mice. Efficacy of the mAb appeared

to be linked to induction of IL-10 from neutrophils which

balanced the macrophage’s TNF-a rather than simply

reduction in bacterial burden observed in other therapeutic

studies. The authors concluded that the protection conferred

by the mAb was a result of inflammatory cytokine modulation

suggesting that the delicate equilibrium of the innate and

adaptive immune response is required for A. baumannii

clearance, and that imbalance elicits a cytokine storm

detrimental to the host. This interconnection remains to be

elucidated as alternative therapeutics for A. baumannii infection

are developed.
Conclusion and opinion

Acinetobacter baumannii is an increasingly relevant

opportunistic pathogen due to development of MDR. The

World Health Organization has assigned carbapenem-resistant

A. baumannii as the ‘rank one’ critical pathogen requiring new

therapeutic identification and development. With few new
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antibiotics on the horizon, novel therapies like vaccines and

monoclonal antibodies must be developed to deal with this

urgent microbial threat. Immunotherapeutic development has

shed light on the potential mechanisms of adaptive protection

against A. baumannii. Current research has demonstrated the

importance of antibody-mediated protection through passive

transfer of serum antibodies, B cell knockouts, and generation of

monoclonal antibodies. The efficacy of this protection appears to

be primarily a result of antigen-specific coating of the pathogen

leading to opsonophagocytosis by neutrophils and macrophages.

The role of cell-mediated immunity in this protection remains

incompletely understood and will require further study to

determine the exact underlying mechanisms. Protective

efficacy correlates with lower bacterial burdens in addition to

reduced proinflammatory cytokine production. However, recent

studies have investigated immunomodulation of these

therapeutics in maintaining immune homeostasis and

dampening of cytokine storm. A greater understanding of how

the adaptive immune system counters A. baumannii virulence

factors in secondary infection can give much needed insight into

the most effective immune response required to clear

this pathogen.

The advances and research outlined in this review are

expected to lead to novel immunotherapeutics to combat A.

baumannii infections. An effective therapy would impact real

world patient mortality and hospital costs arising from

nosocomial infection. With few novel antimicrobials in

development, this microbe’s ability to become resistant to

current therapies outpaces current antibiotic treatment

opt ions . The key to the future deve lopment and

implementation of vaccines and mAbs to A. baumannii may

be establishing of a conserved immune response across multiple

strains. Current research into A. baumannii will benefit from

using clinically relevant bacterial strains and experimental

models. Despite antibody-mediated protection demonstrating

success in acute challenge models, this may only incompletely

address the importance of cell-mediated immunity to A.

baumannii. Moreover, it remains to be seen if the protection

displayed in animal challenge models is indicative of protection

against natural infection in humans. Studies have demonstrated

rapid antibody-mediated neutralization of large doses of

bacteria, but achieving these antibody titers early during initial

bacterial exposure may not be realistic in a clinical setting.

In the laboratory setting, challenges remain in elucidating

the mechanisms underlying the adaptive immune responses to

A. baumannii, for example due to the use of different bacterial

strains between laboratories and variations in experimental

models used to investigate therapeutic efficacy. A. baumannii

strains used to induce protection in certain experimental animal

models may not provide protection against infection with other

strains, which underscores the importance of searching for

universally protective strains or antigens/antigenic epitopes.

Additionally, bacterial challenge routes vary across current
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studies with some evaluating protection in only a blood or lung

infection model. We posit that it will be paramount to evaluate

protection in both clinically relevant models.

Novel immunotherapeutics against A. baumannii will

inform a deeper understanding of its virulence factors and

pathogenesis, and elucidating how this microbe evades the

host’s innate but not adaptive immune response will further

advance therapeutic development. The primary protective

correlate of these therapies in current acute infection animal

models is antibody-based. Of critical importance, however, is the

development of alternative A. baumannii challenge models.

Current acute models using hypervirulent strains afford little

time for the host to mount a robust cell-mediated immune

response; models need to be developed to allow A. baumannii to

successfully infect immunocompetent wild type animals at lower

challenge doses without first manipulating the host’s innate

immunity. This could come from developing new animal

models, or via isolating and evaluating new clinical bacterial

strains. Extending the time from infection to mortality will

facilitate elucidating the cell-mediated aspects of the adaptive

immune response and inform the optimal antigen/adjuvant for

use in future vaccine formulations.

Recent advancements in vaccine design will provide a novel

edge in immunotherapeutic development against this

everchanging pathogen. Along these lines, utilization of next-

generation genomics, transcriptomics, and proteomics tools will

aid identification of conserved virulence factors that can be

assessed for their immunoprotective potential. Moreover, in

silico models will accelerate development of safer protein-

based subunit vaccines. We posit that the future will bring

safer protein, DNA, and RNA based vaccines constructed to

target conserved virulence factors and be multivalent affording

broader protection. With antibody-mediated protection

seemingly the most effective approach, there will also be an

emphasis on monoclonal antibody development for clinical use.

The road of translational science from the bench to the clinic is

long but is paramount to improve patient outcomes against this

multidrug resistant pathogen.
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