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CD95L (also known as FasL or CD178) is a member of the tumor necrosis family

(TNF) superfamily. Although this transmembrane ligand has been mainly

considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells,

more recent studies pointed out its role in the implementation of non-

apoptotic signals. Accordingly, this ligand has been associated with the

aggravation of inflammation in different auto-immune disorders and in the

metastatic occurrence in different cancers. Although it remains to decipher all

key factors involved in the ambivalent role of this ligand, accumulating clues

suggest that while the membrane bound CD95L triggers apoptosis, its soluble

counterpart generated by metalloprotease-driven cleavage is responsible for

its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and

ADAMs) involved in the CD95L shedding, the cleavage sites and the different

stoichiometries and functions of the soluble CD95L remain to be elucidated. To

better understand how soluble CD95L triggers signaling pathways from

apoptosis to inflammation or cell migration, we propose herein to

summarize the different metalloproteases that have been described to be

able to shed CD95L, their cleavage sites and the biological functions

associated with the released ligands. Based on these new findings, the

development of CD95/CD95L-targeting therapeutics is also discussed.
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Introduction

Different environmental factors (infection, pollution, UV …) involved in chronic

inflammatory disorders and cancers affect the expression level and/or the interaction of

different receptors and ligands, which in turn alter intracellular signaling pathways,

subsequently leading to pathophysiological phenotypic changes. Death receptors (DR)

are transmembrane receptors that can implement cell death signals via apoptosis,
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necroptosis, pyroptosis or ferroptosis. Ligands of the tumor

necrosis factor (TNF) family and their receptors (TNF-R) are

cytokines contributing to the induction of a caspase-dependent

apoptotic death. Interestingly, these so-called “death receptors”

can also trigger non-apoptotic signaling pathways involved in

cell migration, differentiation, survival, and proliferation (1–5).

Six human death receptors (DRs) have been identified, TNF-

R1 (6, 7), CD95 (Fas/APO-1/TNFRSF6) (8, 9), TRAIL-R1 (DR4)

(10), TRAIL-R2 (DR5) (11, 12), DR3 (TRAMP) (13–16), and

DR6 (also known as TNFRSF21 (17)). These death receptors are

activated by TNF (18), CD95L (also known as FasL or CD178)

(19), TRAIL (20), and TL1A, respectively (21), with the ligand

for DR6 remaining to be confirmed even if amyloid precursor

protein represents a solid option (22, 23). Apoptosis is finely

regulated by these DRs, and mutations or expression

deregulation of these receptors lead to various diseases (auto-

immune, neurodegenerative, heart diseases or cancer) and

development of chemoresistance (24).
CD95 and CD95L

CD95 is a ubiquitously expressed transmembrane receptor,

which belongs to the TNF-R family (8). Its natural ligand, CD95L

is a transmembrane protein involved in the induction of a

caspase-dependent apoptotic signal (8, 25, 26). The CD95/

CD95L pair contributes to immune homeostasis and

surveillance, and different mutations mainly localized within the

CD95 death domain (DD), an intracellular region involved in the

recruitment of the adaptor protein Fas-Associated protein with

Death Domain (FADD), have been associated with breakdown of

self-tolerance in autoimmune lymphoproliferative syndrome

(ALPS) patients (27, 28) and LprCg mice (29, 30). CD95

mutations have also been detected in lymphoma pushing the

authors to classify CD95 as a tumor suppressor gene (31, 32).

Although DD-localized CD95 mutations foster tumor progression

by rendering tumor cells resistant to the apoptotic response (33),

new and accumulating evidence support that this receptor exerts

more complex biological functions, and might promote

oncogenesis and inflammation/auto-immunity independently of

its ability to trigger cell death (3, 34–36).

For CD95L, rare mutations have been reported in human

and are associated with lupus (37) or ALPS type Ib (38, 39)

pathologies. The gld (for generalized lymphoproliferative disease)

mice also display a lupus-like phenotype and harbor a mutation

in CD95L with the replacement of its phenylalanine 273 by a

leucine (F273L). This mutation reduces the efficiency of CD95/

CD95L interaction (40).

Interestingly, CD95L might also interact with another TNFR

member, DR5 (41). The authors show that, although the CD95L

affinity for DR5 was weaker than that for CD95 ((KD was 1.23x10-12

M for DR5–CD95L versus 6.01x10-13 M for DR5–TRAIL), CD95L

can compete TRAIL for DR5 binding, suggesting that both ligands
Frontiers in Immunology 02
share a similar interaction region in DR5 (41). More importantly,

the CD95L/DR5 interaction has been suggested to promote arthritis

severity in a mouse model (i.e., autoantibody-induced arthritis).

Surprisingly, the KD of CD95L for DR5 assessed in this study is far

higher than that currently measured for CD95 (KD comprised

between and 7x10-8 and 2x10-9M (42–45), suggesting that CD95L

would possess a stronger affinity for DR5 than for its own receptor.

This conclusion remains to be strengthened with structural

methods to definitively validate the CD95L/DR5 interaction.

At least, two main forms of CD95L exist. The transmembrane

CD95L (m-CD95L) triggers cell death when it interacts with CD95-

expressing cells, while metalloproteases can release soluble CD95L

(s-CD95L) (46–48). Expressed by activated B and T-cells, m-CD95L

contributes to the immune contraction (49) and its expression by

myeloid cells participates in tissue inflammation by recruiting

macrophage in damaged spinal cord (50). In this latter study, the

role of m-CD95L and/or s-CD95L in the inflammatory process

remains to be addressed. Contradicting studies exist on s-CD95L;

while soluble CD95L can trigger apoptosis and promote lung

damage in acute lung injury (ALI) (51, 52), it fails to induce cell

death but rather stimulates inflammation in chronic autoimmune

disorders such as systemic lupus erythematosus (SLE) (34, 48) and

metastasis occurrence in cancers (53–57). Such a discrepancy might

be ascribed to the stoichiometry of s-CD95L (43, 58), which seems

to rely on the presence or absence of juxtamembrane N-terminal

end (51, 59). In this respect, metalloproteases involved in the m-

CD95L shedding as well as their preferential cleavage sites within

the stalk region will directly impact the N-terminal length of s-

CD95L (Figures 1A–C) end and thereby, its biological function as

discussed below. It has been reported that m-CD95L can be shed

close to its transmembrane domain releasing a s-CD95L

encompassing a stalk region both in mouse (43, 60) and human

(43, 61). This stalk region promotes the aggregation and the

cytotoxic activity of s-CD95L. These observations point out that

the presence or absence of certain metalloproteases involved in the

CD95L shedding, might be responsible for the release of different

ligands that either trigger cell death or aggravate inflammation

or oncogenesis.
Cloning

CD95L/FasL, cloned in 1993 (19), is a type II transmembrane

protein that belongs to the tumor necrosis factor (TNF) family.

Northern hybridization revealed that the ligand is mainly

expressed in activated splenocytes and thymocytes, consistent

with its involvement in T cell-mediated cytotoxicity and

immune homeostasis. This ligand is also detected in several

nonlymphoid tissues, such as testis (19). In 1989, a monoclonal

antibody (mAb) APO-1 isolated by Peter Krammer’s group killed

many tumor cells (25). This antibody recognizes CD95, a

transmembrane receptor cloned in 1991 by the Nagata’s team

(8, 9).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1074099
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Devel et al. 10.3389/fimmu.2022.1074099
CD95L and CD95 structures

As aforementioned, CD95L is a type II transmembrane

protein that encompasses a long cytoplasmic intracellular

domain, a transmembrane (TM) domain, a stalk region and a

TNF homology domain (THD) (Figure 1A). The THD adopts a

‘ je l ly-rol l ’ topology that participates in the l igand

homotrimerization and its interaction with CD95 (62). CD95L

can be cleaved within its stalk region (amino acid residues 103 to

143) by different proteases (Figure 1B). Of note, only 3 cleavage

sites over 5 are conserved between human and mouse

(Figure 1C) suggesting that either different proteases or

different sites are involved between these two species or that

the main cleavage sites correspond to the three conserved

sequences. The intracellular N-terminal region of CD95L is

long and contains different domains including a casein kinase

I (CKI) substrate motif (SSASS in human) and a proline-rich

domain (PRD) (63)(Figure 1A). CD95L PRD interacts with

proteins containing SH3 and/or WW domains (i.e., SH3

domain of Src kinase p59Fyn) and these interactions seem to

regulate the expression level and stability of CD95L (64, 65). In

addition, PRD contributes to the CD95L-mediated reverse

signaling (66, 67). Like TNF (68), the CKI domain of CD95L

might also participate in the reverse signaling. In addition, the

intracellular region of CD95L can be cleaved by signal peptide

peptidase-like 2a (SPPL2a) releasing an intracellular peptide,

trafficking to the nucleus to inhibit transcription (69). The

biological role of SPPL2a cleavage and its cleavage site remain

to be elucidated.

CD95 contains three extracellular cysteine-rich domains

(CRDs) (70). While CRD1 is responsible for pre-association of
Frontiers in Immunology 03
the receptor at the plasma membrane and has been named the

pre-ligand binding assembly domain (PLAD) (71–73), both

CRD2 and CRD3 regions contribute to ligand binding (74).

Although CD95 does not possess any enzymatic activity, its

cytosolic region encompasses a death domain (DD) (75)

involved in the apoptotic signal, and a juxtamembrane domain

interacting with ezrin (76) and phospholipase Cg1 (48, 77, 78) to
promote neurite growth or cell migration, respectively. Through

protein-protein interactions (PPIs), the 80-amino acid

containing DD recruits the Fas-Associated protein with Death

Domain (FADD), which in turn binds and aggregates the pro-

caspase-8 (79). This complex, designated death inducing

signaling complex (DISC), initiates apoptosis (79). The

juxtamembrane region interacts with different partners to

trigger the motility-inducing signaling complex (MISC)

formation implementing a Ca2+ response, and the subsequent

induction of non-apoptotic signaling pathways (2, 76, 80, 81).
Extracellular matrix
and metalloproteases

Extracellular matrix (ECM) is composed of a large number

of structural and functional components that includes enzymes,

collagens and proteoglycans, which are secreted and self-

assembled into the immediate cellular environment (82).

Other non-proteoglycan matrix components include

hyaluronic acid, fibronectin, elastin, and laminin. This ECM

provides structural support to cells and an integral signaling

network through the action of different cytokines and growth

factors interacting with the matrix components (83–86).
B

C

A

FIGURE 1

CD95L structures and cleavages sites. (A) Representation of CD95L domains. Proline rich domain: PRD; Casein kinase I substrate motif: CSI; TNF
homology domain: THD. (B) Representation of the different cleavage sites described within the CD95L stalk region. (C) Alignment of human and
mouse CD95L protein sequence using Clustal omega (1.2.4). The transmembrane and the stalk domains are represented.
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Forinstance, binding of the s-CD95L to ECM, and more

specifically to fibronectin, transforms the non-apoptotic ligand

into a potent death inducer (87) suggesting that immobilization

and/or aggregation of the s-CD95L homotrimer can foster the

induction of the apoptotic response. In agreement with this

observation, although a soluble and homotrimeric CD95L fails

to trigger apoptosis, its hexameric counterpart (58) can do it. We

also observed that the more CD95L is aggregated, the more its

ability to induce apoptosis is increased (88).

Most of the ECM protein components are processed by

matrix metalloproteinases (MMPs). In human, this family of

zinc-dependent endopeptidases englobes 23 members sharing

structural domains (89, 90). These proteases are mainly secreted

within the pericellular and extracellular space (61) but can also be

anchored to the cell surface (91) or adopt an intracellular

localization, that has been correlated in certain cases to non-

proteolytic functions (90, 92). Except during specific stages of

development involving tissue remodeling (e.g., embryogenesis)

and wound healing processes, there is no constitutive expression

of MMPs at homeostasis. Once secreted, these enzymes coexist

within the extracellular space under latent forms (zymogens) and

active forms, whose proteolytic activity is finely tuned

by endogenous inhibitors such as tissue inhibitors of

metalloproteases (TIMPs) or alpha-macroglobulin.

Recent N-terminomics and proteomics techniques have

been used to profile hundreds of cleavage sites in proteomes

associated with MMP activity, which reveal that more than two-
Frontiers in Immunology 04
third of MMP substrates are non-ECM proteins. Accordingly,

far beyond their capacity to collectively cleave the ECM

substrates, MMPs can process chemokines, cytokines, cell-

surface receptors, growth factors, and nuclear proteins. Thus,

MMPs are involved in inflammatory response, angiogenesis,

cell-to-cell communication and cell proliferation, and the

deregulation of their activity contributes to the progression of

many diseases including cancer, chronic inflammatory

disorders, vascular and central nervous system diseases (90).

MMPs are classified according to their linear sequence

similarity, domain organization and substrate specificity (90).

All the MMPs share a minimal N-terminal region, consisting in

a signal peptide, a pro-domain and a metalloprotease/catalytic

domain (90) (Figure 2A). Except for MMP-7, -26 and -23, all

MMPs encompass a hemopexin-like C-terminal region, which is

important in determining substrate specificity and interaction

with tissue inhibitors of metalloproteinases (TIMPs). This C-

terminal domain plays also an important role in cell migratory

function of certain MMPs. Gelatinase-A (MMP-2) and

gelatinase-B (MMP-9) contain fibronectin type-II inserts

within their catalytic domain. These inserts confer the ability

to bind and cleave gelatin and collagen.

Membrane-type MMPs (MT-MMPs) are embedded in the

plasma membrane of the cells via a transmembrane domain or a

glycosylphosphatidylinositol (GPI)-anchor (Figure 2A). This family

includes the transmembrane proteins MMP-14, MMP-15, MMP-

16, andMMP-24, and the GPI-anchored proteins MMP-17 and -25
B

C

A

FIGURE 2

Domains in human MMPs and ADAMs. (A) Schematic representation of the domains in human MMPs consisting in a signal peptide, a prodomain,
a metalloprotease/catalytic domain, a linker domain, a hemopexin domain, fibronectin inserts, a convertase cleavage site, a membrane linker, a
glycosylphosphatidylinositol, a transmembrane segment 1, a cytoplasmic tail, a transmembrane segment 2, a cysteine array and
immunoglobulin-like domain. (B) Schematic representation of ADAMs organized in modules consisting in a prodomain, a metalloprotease/
catalytic domain, a disintegrin domain, a cysteine rich domain, an EGF-like domain, a transmembrane region and a cytoplasmic tail. (C) Crystal
structure of a typical Metalloprotease/catalytic domain in cartoon representation (hMMP-12, PDB code: 4GQL), with catalytic zinc ion as
magenta ball, His residues chelating the catalytic zinc ion in yellow stick, catalytic glutamic acid residue in blue stick, and structural zinc and
calcium ion as grey and green balls, respectively.
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(93). Some MMPs harbor a furin-like convertase cleavage site

(Figure 2A), which is intracellularly cleaved to activate the

protease and promote its distribution at the cell surface. MMP-23

is a unique MMP that contains a cysteine array and

immunoglobulin-like domain, whose exact role remains elusive.

Within the extracellular space, a disintegrins and

metalloproteinases (ADAMs) family can also exert a proteolytic

activity (94–96). The main substrates for ADAMs are type I and II

transmembrane proteins, which make them as shedding

proteases. However, these proteases are also capable of

processing cytokines and growth factors (95). Interestingly, in

the case of transmembrane proteins, the cleavage consistently

occurs between 10 and 15 amino acids from the plasma

membrane. Like MMPs, ADAMs possess several domains,

including a pro-domain, a metalloprotease/catalytic domain, a

disintegrin domain, a cysteine rich domain, an EGF-like domain,

a transmembrane domain and a C-terminal cytoplasmic tail

(Figure 2B). All ADAMs contain a disintegrin domain, which

can bind to integrins from adjacent cells, with potential

consequences in cell adhesion and migration. These

metalloproteases are implicated in different diseases including

cancer (95), systemic inflammation (96), cardiovascular diseases

and atherosclerosis (97, 98). A critical role in kidney pathologies

(99) and in immunity (100) has also been documented.

BothMMPs andADAMs belong to the superfamily of metzincin

proteases. These metzincins share a conserved HEXXHXXGXXH

motif within their metalloprotease/catalytic domain, where the three

histidine residues bind to the catalytic zinc ion and the glutamate, as a

general acid base, and activates a water molecule required for the

peptide bond hydrolysis (Figure 2C).
MMPs, ADAMs and
CD95L regulation

CD95L can be cleaved by several metalloproteases, including

MMPs and ADAMs, to release different soluble CD95Ls (s-

CD95Ls), which have been reported to induce cell proliferation,

migration, survival (36) but also cell death (51, 59). Rendering

more complex to predict the biological outcome of s-CD95L, this

ligand can also interact with other TNFR members, including as

aforementioned, DR5 (41) or the soluble receptor DcR3 (44).

Despite the complexity of the signaling pathways induced by the

different forms of s-CD95L and their implication in the

progression of different pathologies including chronic

inflammatory disorders and cancers only a limited structural

knowledge exists on these s-CD95Ls.
Metalloproteases and CD95L

Thirty years after CD95L cloning, it remains difficult to

address what are the MMP/ADAMs responsible for the cytokine
Frontiers in Immunology 05
shedding, where the protease cleaves m-CD95L and whether the

released soluble factor triggers non-apoptotic (34, 41, 55, 57, 78,

80, 101) or apoptotic outcome (51, 59, 102).

Some ADAMmembers have been described to contribute to

the generation of s-CD95L. Indeed, both ADAM10 (69, 103) and

ADAM17 (104) can cleave m-CD95L to release s-CD95L.

ADAM10 can also shed the transmembrane TNFa (105). As

aforementioned, a second step occurs following ADAM10-

mediated cleavage, with the SPPL2a-mediated cleavage of the

CD95L intracellular region to release a cytosolic domain

modulating gene expression (69). MMP7 also cleaves the

transmembrane CD95L but the biological role of the released

ligand remains difficult to apprehend. While from prostate

epithelial cells, MMP7 can release a soluble and cytotoxic

CD95L, which is involved in the involution of the organ in rat

(106), the same metalloprotease in human sheds membrane-

bound CD95L from tumor cells to protect them from

doxorubicin or oxaliplatin-induced cell death in human (107,

108). S-CD95L is increased in sera of human idiopathic

pulmonary fibrosis (IPF) and bleomycin-induced lung fibrosis

in mice and this ligand prevents the elimination of fibrotic-lung

myofibroblasts by CD95L-expressing T cells (109). Accordingly,

MMP-7 knock-out mice exhibit resistance to the bleomycin-

induced lung fibrosis, probably because these animals fail to

cleave CD95L and generate the anti-apoptotic soluble ligand

(109). Of note, MMP7 also cleaves the receptor of CD95L, CD95

and by doing so, promotes its ability to implement non-

apoptotic signaling pathways in cancer cells (45, 110).

Regarding the cleavage positions within the CD95L stalk

region, in vitro analyses revealed that MMP-7 is likely to cleave

before the two leucine residues in the amino acid residues
110ELAELR115 conserved between human and mouse

sequences (Figures 2B, C) (111). This sequence is at proximity

of the plasma membrane bilayer suggesting that the released

ligand might exert an apoptotic function because it conserves a

full-length stalk region. As above mentioned, the stalk region of

CD95L seems to exert a pivotal role in the apoptotic property of

the soluble ligand (59). For instance, conservation of the stalk

region (Figures 1A, C) in the soluble CD95L dosed in acute

respiratory distress syndrome (ARDS) engenders a cytotoxic

ligand killing the alveolar epithelial cells by apoptosis (51).

Mutations of the 110ELAELR115 sequence do not completely

abrogate the release of s-CD95L, because MMP7 might process

m-CD95L at an additional position between 126SL127 (111),

which, in this case, generate a non-apoptotic cytokine

regarding the loss of the stalk region. Tschopp’s team also

highlighted a cleavage of the transmembrane CD95L between

amino acid residues 126SL127 (47), while Nagata’s team observed

a processing between 129KQ130 (46, 112). The protease(s)

involved in these shedding was/were not identified and

although the cleavage sites diverge, both groups came with the

conclusion that the metalloprotease-cleaved CD95Ls do not

trigger apoptosis.
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In rheumatoid arthritis (RA), MMP3 has also been suggested

to cleave m-CD95L and accumulate s-CD95L in the synovial

fluid of these patients (113). The role of s-CD95L in RA remains

to be elucidated.

In neuronal and glial cells, preclinical studies showed that

MMP9 contributes to the motor neuron cell death in

amyotrophic lateral sclerosis (ALS) patients by regulating

TNF-a and CD95L expression (114). Selective inhibition of

MMP-9 activity has also been shown to increase in the m-

CD95L/s-CD95L ratio on neonatal monocytes (115).

Macrophages exposed to bacteria (i.e., Escherichia coli

infection) undergo an increase in CD95L expression (115) and

the up-regulation of MMP-9 in these cells protects them from an

autocrine and/or paracrine precocious phagocytosis-induced cell

death by shedding the transmembrane CD95L.

Plasmin, a serine protease, can also cleave CD95L between

amino acid residues Arg144 and Lys145 (Figure 2B) and although

the released CD95L is devoid of its stalk region, it can still trigger

cell death in endothelial cells (102). In conclusion, not only the

identification of the amino acid sequence, but also the structure

and stoichiometry of the soluble CD95Ls present in the different

chronic inflammatory disorders and cancers must be realized to

apprehend the biological role of each CD95 ligand.
MMPs and cancer

Many studies have reported the expression of MMPs in

human cancers. However, what was originally thought about

their detrimental roles has been challenged these two last

decades. Indeed, an overexpression of certain MMPs does not

necessarily imply the promotion of tumor or metastasis. In this

respect, at least 10 MMPs have been reported to have protective

roles in cancer (116). Among the “oncogenic” MMPs, MMP-2

and MMP-9 have been implicated as the most important

prognostic factor in cancer microenvironment (117, 118).

MMP-2 is correlated with the development of different types

of cancers and associated with poor prognosis (119, 120). MMP9

contributes to the ECM remodeling and the release of

membrane-bound proteins and thereby, might favor cell

invasion and poor prognosis (121, 122). Other MMPs such as

MMP3, MMP-7, MMP-11, and MMP-13 also participate in

cancer development (123–128). With MMPs, ADAM10 is up-

regulated in gastric cancer lesions compared with adjacent non-

cancerous tissues (129). It remains to evaluate whether these

metalloproteases could affect oncogenesis by reducing the

quantity of membrane-bound CD95L or increasing the

concentration of soluble CD95L. Numerous small-molecule

MMP inhibitors (MMPi) have been developed but

systematically failed in late-stage clinical studies (91, 130).

Beside their poor pharmacokinetics and low oral availability/

inability, this major failure has been mainly attributed to their

lack of specificity within the MMP family and towards other
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metalloenzymes. Benefiting from a better understanding of

MMP biology that emphasizes the necessity to selectively

target one single MMP in a given pathological context, a new

generation of selective MMPi has emerged recently (131). To

achieve a better selectivity, several strategies have been deployed.

Regarding the small-molecule inhibitors they mainly consist in

either replacing the hydroxamic acid group found in most of

broad spectrum MMPis by a weaker Zn2+ chelating moiety (132,

133) or targeting exclusively the S1’ pocket which significantly

differ between the MMPs (131, 132). Alternatively, the

development of surrogates of MMPs endogenous inhibitors

such as TIMP analogs or targeting MMP gene expression

using mRNAs have also been explored. Despite these

improvements, finding the right balance between activity,

selectivity and ADMET parameters still remain challenging

and the timing of MMPi application is critical to achieve the

desired therapeutic effect, as the “window of opportunity” is

often in premetastatic disease (91, 130, 134).
CD95L, metalloproteases and cancer

Accumulating evidence highlight the pro-oncogenic role of

CD95 and CD95L pair. Although the elimination of CD95

expression in some colorectal tumors was reported to predict

metastatic tumor recurrence (135), most of the analyses indicate

that CD95 expression is maintained in these tumors and

contributes to activate pro-oncogenic signaling pathways

(136). On the other side, the expression of membrane CD95L

and CD95 expression is gradually increased during progression

from (early) adenoma to colorectal carcinoma (56, 137).

Overexpression of CD95 in apoptosis-resistant 3LL cells makes

them apoptosis-sensitive in vitro (138) but, transplantation of

these cells into mice, reveals a tumor growth advantage as

compared to control cells. This underscores the importance of

investigating a mechanism within an environment that

resembles the clinical situation as much as possible. The

seminal experiments establishing the oncogenic role of CD95

came from the elimination of the receptor in two mouse models

of cancers (i.e., ovarian and liver cancers), which was associated

with the significant reduction of cancer occurrence and growth

(35). More recently, we observed that the expression of CD95 is

maintained in triple negative breast cancer (TNBC) cells to

regulate the NF-kB signaling pathway (139). Accordingly,

CD95 loss in TNBC cells stimulates an inflammatory signal,

which contributes in vivo to the anti-tumor activity of natural

killer (NK) cells (140). Therefore, although soluble CD95L is an

attractive target to develop drugs and prevent metastasis

dissemination of TNBC cells (57), it might be more

appropriate to develop therapeutics targeting CD95.

Accumulating evidence support that s-CD95L promotes

tumor development and metastasis but the MMPs or ADAMs

involved in this process remain to be elucidated. The identification
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of i) the MMPs/ADAMs and ii) their cleavage sites in CD95L will

help us to identify how many s-CD95Ls exist in vivo, and

anticipate their stoichiometry to better predict their biological

effects on the immune response and the tumor progression.
Targeting CD95/CD95L in clinic,
what next?

As aforementioned, CD95 can induce a broad range of

signaling pathways, with different biological outcomes. This is

related to a fine-tuned control of CD95 aggregation,

conformation, distribution within plasma membrane sub-

domains and post-translational modifications. These parameters

rely on the quality of the CD95/CD95L interaction (141). MMPs

and ADAMs are responsible for the generation of soluble CD95L,

that might promote metastatic occurrence in cancers or stimulate

trafficking/activation of immune cells in chronic inflammatory

disorders and thus, inhibiting MMP or ADAM activity could

represent an attractive therapeutic strategy in these pathologies

(Figure 3). In addition, inhibition of the non-apoptotic signaling

pathways downstream s-CD95L/CD95 interaction might also

represent an attractive option to treat certain cancers and chronic

inflammatory disorders. Asunercept (initially called APG101) is a

decoy receptor encompassing the extracellular region of CD95 fused

to the Fc domain of human IgG1. APG101 interacts with CD95L,

both transmembrane and soluble forms (Figure 3), and abrogates all

signals induced by these ligands. Asunercept in phase I/II clinical
Frontiers in Immunology 07
trials exhibits encouraging therapeutic effect on myelodysplastic

syndromes (142) and glioblastoma (143, 144). In addition, the

therapeutic value of this drug is also under evaluation

(NCT04535674) in COVID-19 patients, in whom CD95L

inhibition might protect against the macrophage/neutrophil-

driven damage of epithelial cells (145). Although the clinical

outcomes of these trials are motivating, it remains that APG101

blocks both apoptotic and non-apoptotic signals, rendering difficult

to discriminate the role of each cellular response in the

pathogenesis. We recently developed a drug (i.e., peptidomimetic)

neutralizing in a selective fashion, the CD95 non-apoptotic pathway

(78). This drug, designated DB550, disrupts the CD95/PLCg1
interaction and the subsequent calcium signaling pathway, which

is mandatory for cell migration (77). DB550 injection in SLE-prone

mice prevents Th17 cell transmigration in inflamed kidneys and

alleviates clinical symptoms (78). These findings support that the

selective inhibition of CD95-mediated non apoptotic pathways

might turn out sufficient to treat cancers and chronic

autoimmune disorders in which s-CD95L is up-regulated (36).

Regarding m-CD95L shedding, another alternative to

selectively block the CD95-mediated non-apoptotic signal is to

prevent the generation of s-CD95L by inhibiting metalloproteases.

Beyond the fact that metalloproteases are pleotropic enzymes,

whose inhibition will engender clinical outcomes difficult to

predict, an additional concern is the accumulation of

membrane-bound CD95L that, might favor the elimination of

certain cancer or immune cells, but might also engender undesired

tissue damage (Figure 3). Finally, another therapeutic approach
FIGURE 3

CD95/CD95L-mediated signaling pathways. (Left) Binding of m-CD95L to CD95 induces an apoptotic signaling pathway. (Right) m-CD95L
processing by proteases (ADAMs, MMPs, plasmin) leads to the release of different s-CD95L in the extracellular environment. Depending on the
ratio m-CD95L/s-CD95L, and the shedding sequence, several signaling pathways can be triggered: cell survival, migration (promotes the
development of metastases), chemoattraction and pro-inflammatory signal, or cell death. Blocking of CD95L binding to CD95 by APG101
(Asunercept) blocks both apoptotic and non-apoptotic signaling pathways.
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for cancer patients could be to develop methods to extinguish the

CD95 expression itself. Indeed, we recently observed that the

elimination of CD95 in triple negative breast cancers induces a

pro-inflammatory signal and promote the anti-tumor activity of

NK cells (139, 140).
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