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Single-cell computational
machine learning approaches to
immune-mediated inflammatory
disease: New tools uncover
novel fibroblast and
macrophage interactions
driving pathogenesis

Douglas Fritz1,2,3, Jun Inamo2,3 and Fan Zhang 2,3*

1Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, United States,
2Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora,
CO, United States, 3Center for Health Artificial Intelligence, Department of Biomedical Informatics,
University of Colorado School of Medicine, Aurora, CO, United States
Recent advances in single-cell sequencing technologies call for greater

computational scalability and sensitivity to analytically decompose diseased

tissues and expose meaningful biological relevance in individual cells with high

resolution. And while fibroblasts, one of the most abundant cell types in tissues,

were long thought to display relative homogeneity, recent analytical and

technical advances in single-cell sequencing have exposed wide variation

and sub-phenotypes of fibroblasts of potential and apparent clinical

significance to inflammatory diseases. Alongside anticipated improvements in

single cell spatial sequencing resolution, new computational biology

techniques have formed the technical backbone when exploring fibroblast

heterogeneity. More robust models are required, however. This review will

summarize the key advancements in computational techniques that are being

deployed to categorize fibroblast heterogeneity and their interaction with the

myeloid compartments in specific biological and clinical contexts. First, typical

machine-learning-aided methods such as dimensionality reduction, clustering,

and trajectory inference, have exposed the role of fibroblast subpopulations in

inflammatory disease pathologies. Second, these techniques, coupled with

single-cell predicted computational methods have raised novel interactomes

between fibroblasts and macrophages of potential clinical significance to many

immune-mediated inflammatory diseases such as rheumatoid arthritis,

ulcerative colitis, lupus, systemic sclerosis, and others. Third, recently

developed scalable integrative methods have the potential to map cross-

cell-type spatial interactions at the single-cell level while cross-tissue
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analysis with these models reveals shared biological mechanisms between

disease contexts. Finally, these advanced computational omics approaches

have the potential to be leveraged toward therapeutic strategies that target

fibroblast-macrophage interactions in a wide variety of inflammatory diseases.
KEYWORDS

computational biology, machine learning, single-cell omics, spatial transcriptomics,
immune-mediated inflammatory disease, rheumatoid arthritis, fibroblast-
macrophage interaction
Introduction

Immune-mediated inflammatory diseases (IMIDs) are roughly

categorized by abnormal or maladaptive inflammation of specific

tissues within the human body and are thought to affect nearly 3%

of the population (1). The increasing prevalence of IMID diseases

such as inflammatory joint disease and inflammatory bowel disease

and their respective subphenotypes has driven additional research

into the genetic and immunogenomic mechanisms involved in their

development, progression, and treatment (2, 3). Because of

fibroblasts’ ubiquity in the lining of interior surfaces of the

human body and their role in mediating the extracellular matrix,

fibroblasts have recently become an area of intense research and a

key component of the study of IMIDs (4, 5).

Fibroblasts play a critical role in inflammatory disease by

directing or suppressing the inflammatory cascade and repair at

sites of injury or invasion through the release of cytokines and other

effector molecules (6). In addition, bone and extracellular metabolic

pathways are also involved in pathogenesis: activated fibroblasts

produce receptor activator of NF-kB ligand (RANKL), which

promotes differentiation of osteoclast precursors into bone-

resorbing osteoclasts, leading to bone erosion in Rheumatoid

Arthritis (RA) (7). They also produce metalloproteinases such as

MMP-1 andMMP-3, which cause cartilage degradation. As a result,

understanding these and other intercellular communications

between fibroblasts and surrounding cell types is an area of rapid

research and critical to understanding the microbiological contexts

of IMID toward developing new drug targets (4, 8, 9). While the

communications between fibroblasts and immune cells such as

macrophages is a common focus of cancer research (10), applying

this framework to the study of IMIDs has also proved consequential

in determining an approach to treatment (11). However, these

interactions are often highly tissue-specific and microenvironment-

specific and require precise study using high-resolution single-cell

multiomic technologies.

The challenge of mapping these cellular interactions in

inflammatory microenvironments, then, becomes one that is

highly dependent on advances in single-cell transcriptomics,
02
single-cell multimodal techniques, and recent single-cell spatial

transcriptomics (12, 13). While collecting omics data at the

single-cell level has been commonly applied to discrete cellular

suspensions via microfluidics (12, 14–17), collecting single-cell

spatiotemporal data and prevailing tissue microenvironment

intact has proved elusive and high-throughput techniques with

these capabilities are hotly anticipated by the field (18). At

present, technical resolution remains a challenge to mapping

the complex tissue intercellular interactions thought to be

pivotal toward IMID treatments, but this challenge is

exacerbated by the enormous volumes of data that near-single

cell omics technologies create. This review outlines how

computational methods including machine learning and deep

learning approaches are used to analyze high-dimensional data

from existing single-cell technologies, which expand the

capabilities and resolution of these experimental approaches to

uncover novel pathways in fibroblasts. Then, this paper

summarizes the computational approaches to cell-cell

interactions that can be used to uncover these interactomes

underlying IMIDs using single-cell transcriptomics and spatial

transcriptomics, respectively. Further, opportunities and

challenges of integrating single-cell profiles from multiple

tissue sources to reveal shared and unique pathogenic

pathways are described. Lastly, we explore the potential for

developing therapeutic approaches that target pathogenic

fibroblast and macrophage interactions.
Fibroblasts play important roles in
different inflammatory disease
tissue pathology

Long thought to be relatively homogeneous in nature, recent

discoveries (18–22) have uncovered a likely vast number of

fibroblast subpopulations with discrete markers that have been

implicated in mediating inflammation and damage in different

IMIDs (23–25). In RA synovial tissue, Zhang et al. analyzed the

synovial tissues from patients with RA and osteoarthritis (OA)
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using a multi-technology-approach by integrating single-cell

RNA-seq (scRNA-seq), mass cytometry, and bulk RNA-seq

data to identify robust and biologically meaningful cell-state

clusters (26). An integrative computational strategy was

developed based on canonical correlation analysis (CCA) to

align datasets from different technologies into a joint low-

dimensional space by maximizing the correlation between

them, which elucidated significant sublining fibroblast

phenotypes, CD34+ (SC-F1), HLA-DRhi (SC-F2), and DKK3+

(SC-F3), and a type of CD55+ lining fibroblasts (SC-F4). In

parallel, Croft et al. used single-cell transcriptomic analysis in a

mouse model to untangle two pathologically distinct RA

fibroblast subsets FAPa+THY1+ and FAPa+THY1-. Deletion

of fibroblast-activation-protein-alpha-positive (FAPa+)

fibroblasts suppressed both inflammation and bone erosions in

mouse models (27). Separate studies have revealed pathological

functions of stromal cells in other IMID tissues, including the

gut of Ulcerative Colitis (UC) (8), the ileum of Crohn’s Disease

(CD) (28), and the lungs of systemic sclerosis (29) patients,

respectively. Interestingly, similar THY1+ fibroblasts are

revealed in inflamed CD ileum, and an activated fibroblast

phenotype with a strong cytokine-chemokine expression

profile in this tissue may contribute to the resistance to anti-

TNF therapy. In parallel, inflammatory fibroblasts that highly

expressed IL11 and IL24, were identified at 189-fold levels in

inflamed gut compared to non-inflamed/healthy gut; this

phenotype also expressed cancer-associated fibroblast markers,

including FAP and WNT2, indicating the important pathology

underlying multiple disease contexts (8).
Frontiers in Immunology 03
In these studies, several computational methods are used to

facilitate the single-cell transcriptomic analysis to reveal fibroblast

heterogeneity (Figure 1). In particular, dimensionality reduction

techniques including principal component analysis (PCA) and

non-linear tSNE are standard approaches to identify meaningful

biological variation. Additionally, graph-based clustering

techniques group fibroblasts with similar transcriptomic profiles

together. To better account for non-linear geometry and time

components in the single-cell data, trajectory inferences have been

widely used to allocate and order cells into lineages as pseudotime

gradients. Pseudotime reflects continuous changes in expression

to quantitatively capture a biological progression, such as cell

differentiation. Based on global topology theory, several

computational methods have been developed, including

Monocle, which is built based on DDRTree (Discriminative

dimensionality reduction via learning a tree) (30, 31). To

predict the future state of individual cells, RNA velocity

algorithms (32) estimate the time derivative of the gene

expression state by distinguishing unspliced and spliced mRNAs

from single-cell transcriptomic data. These trajectory analyses

have been deployed to analyze fibroblast lineages to reveal a

NOTCH3 signaling gradient in RA synovial fibroblasts (33).

As the recent development of single-cell multimodal

technologies, single-cell joint modelings are used to provide

further insights into mesenchymal cell heterogeneity using

single-cell multimodal data, including CITE-seq that quantifies

gene and protein surface expressions simultaneously (34),

single-cell multiome that profiles gene expression and open

chromatin from the same cells, and spatial transcriptomics
FIGURE 1

Computational machine learning algorithms that drive single-cell transcriptomics and other multimodal data analysis to study fibroblast
heterogeneity. Disaggregated cells are sequenced by either multimodal technologies or scRNA-seq technologies to generate a large dataset of
thousands of variables that can be modeled and analyzed via machine learning approaches. Graphical exploration of gene expression variation
across cells can be done through clustering for dimensionality reduction. Continuous gene expression changes for specific cell differentiation
processes can be modeled with trajectory inference.
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(ST) that provides spatial information to the gene expression.

Multimodal data integrations provide additional biological

perspectives, through the combination of proteomics (CITE-

seq), epigenetics (multiome), or spatial locations (ST), in

addition to transcriptomics, which can reveal novel

immunological or disease-driven insights. A very recent study

with a collaborative effort from AMP (Accelerating Medicines

Partnership) RA/SLE network used CITE-seq to reveal 10

distinct stromal populations and emphasized which of these

populations are expanded in a particular patient group (35).

Using three-dimensional spatial transcriptomics, Vickovic et al.

uncovers colocalization of THY1+ fibroblast and synovial

macrophages in seropositive RA synovium samples (36).
Single-cell transcriptomics-driven
computational methods reveal
predicted interactomes between
fibroblasts and myeloid cells

Deciphering cell–cell communications from gene expression is

an area of intensive research (37). Many computational methods

have been developed based on ligand-receptor expression patterns

between cell types, such as fibroblasts and myeloid cells

(macrophages, monocytes, neutrophils, and dendritic cells).

Examples of these techniques are: CellphoneDB (38), NicheNet

(39), CellChat (40), and ICELLNET (41), each of which took a
Frontiers in Immunology 04
slightly different methodology to predict potential cell-cell

interactions in scRNA-seq data (Figure 2A). CellphoneDB was

first demonstrated (38), and has since been updated through

multiple iterations of a ligand-receptor mapping tool (42).

NicheNet incorporates prior knowledge on gene regulatory

pathways to generate a biologically meaningful pathway that

propagates the signal from a ligand, through receptors, signaling

proteins, and transcriptional regulators to the targeted genes from

cell types of interest. CellChat, on the other hand, uses network

analysis, and identifies complex patterns in the data from skin or

other tissues; while ICELLNET calculates a communication score to

predict interactions and reveals hypothesized interactions that can

be verified experimentally. In short, these cell-cell interaction

prediction methods are widely used to prioritize putative

interactions between fibroblasts and other immune cells, such as

macrophages, from different disease contexts, including tumor (10),

fibrosis (43), and cardiovascular disease (44). As fibroblasts and

macrophages play indispensable roles in the tissue destruction of

IMIDs, disentangling the fibroblast-myeloid interactions in each

IMID disease context is still forthcoming (45). A recent single-cell

driven research approach identified a MerTK+ macrophage

phenotype in synovial tissues and revealed that a low frequency

of this phenotype in RA remission was associated with increased

risk of disease flare (46). Further examination of which pathogenic

fibroblast phenotypes could interact with the MerTK+ or other

inflammatory and anti-inflammatory macrophage phenotypes is

needed. In another IMID, a single-cell transcriptomics and

histopathology approach to inflammatory bowel disease (IBD)
A B

FIGURE 2

Validated computational packages to predict cell-cell interactions using (A) single-cell transcriptomics and (B) spatial transcriptomics, respectively
Cell-cell interaction prediction algorithms (A) are quite adept at mapping interactions from single-cell transcriptomics where tissue architecture
information was lost in sample preparation. As a result, interactions revealed in analysis are theoretical and merely suggest that cells co-located in
the sample tissue. However, combining these interaction-prediction-algorithms with spatial cell-type deconvolution modeling (B). The sample
tissue’s spatial architecture is conserved by modeling cells that are both co-locating in the tissue and interacting.
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revealed an IL-1+ driven fibroblast-neutrophil interaction in a

subset of patients with IBD that did not respond to therapies

(47), which highlights another fibroblast-neutrophil IL-1 signaling

pathway for ulcerating disease.
Novel computational approaches to
spatial transcriptomics reveal spatial
interactions across cell types

While CellPhoneDB and similar packages are useful for

revealing interactomes in scRNA-seq data, decomposing the

data spatially within tissues remains a challenge. Spatial

Transcriptomics (ST) technology development and the

improvement of its resolution enabled the identification of

cross-cell type interactions from both gene expression co-

varying patterns and spatial information. The widely used

commercialized ST technologies include 10X Visium,

Nanostring GeoMX, and single-molecule fluorescent in situ

hybridization (smFISH)-based technology such as MERFISH

commercialized by Vizgen (48, 49). These ST datasources

require new computational algorithms to infer biologically

meaningful findings and to spur further widespread adoption

of these techniques across IMIDs.

Given the constraint of greater-than-single-cell resolution of

many commercialized ST technologies, more than 16

computational methods have been developed to perform cell-

type deconvolution for ST data to infer single-cell interactions

(50). As a result (Figure 2B), Cell2location (51), SpatialDWLS

(52), and RCTD (53) are particularly powerful approaches that

perform cell-type deconvolution. Cell2location is developed to

integrate scRNA-seq data from an adjacent tissue slice with the

spatial information from the microarray, which can effectively

identify the spatial co-occurrence of diverse cell types in complex

tissues such as lymph nodes (51). SpatialDWLS adapts the idea

of dampened weighted least squared to infer cell-type

composition while minimizing the overall relative error rate.

RCTD fits the raw counts using Poisson-based statistical model

to leverage cell-type mixtures while accounting for artifact from

sequencing platforms. Many groups have demonstrated that

these techniques work well in tumors from the well-

characterized organs such as brain (54, 55), but in some

heterogeneous or not well-characterized tissue structures such

as synovium and kidney tissues it remains to be evaluated

whether these techniques can be deployed. Ongoing efforts

from the AMP-AIM (Accelerating Medicines Partnership-

Autoimmune and Immune-Mediated Diseases) network are

actively testing multiple ST technologies on IMIDs disease

tissues. We look forward to both the deployment of newer and

higher-resolution techniques that might be better suited to these

IMID tissue-structures and to further benchmarking of existing

and forthcoming computational models. With these efforts,
Frontiers in Immunology 05
more in-depth spatial-aware interactions between fibroblasts

and myeloid cells will be revealed using ST data with the

assistance of more robust computational methods.
Cross-tissue single-cell integrative
analysis reveals shared mechanisms

Recent developments of computational integration algorithms

enable the cross-tissue, cross-disease comparisons for IMIDs to

reveal shared mechanisms and pathways using single-cell datasets

(Figure 3A). To facilitate unbiased integrative analysis, two major

types of methods have been developed including joint clustering

and reference mapping (Figures 3B, C). In joint clustering, batch

correction methods, such as soft clustering-based mixed effect

models (56), canonical correlation analysis (57), mutual nearest-

neighbors and manifold learning (58), have been developed to

enforce projecting the cells from different tissues, donors, and

clinical cohorts into a joint low-dimensional embeddings (i.e.

multiple variables captured on a 2D graph) (Figure 3B).

Additionally, recent single-cell reference mapping methods,

including PCA-based approaches, transfer learning, and

autoencoder, enable an automatic way to map query cells to an

existing reference with cell-type annotations (59–62) (Figure 3C).

These offer a more efficient framework to compare query cell

phenotypes with an existing cell reference. A recent study

performed joint clustering analysis to reveal two shared

pathogenic phenotypes of fibroblasts, a CXCL10+ CCL19+

inflammatory fibroblast phenotype localizing to a T cell enriched

niche and a SPARC+ COL3A1+ fibroblast phenotype localizing to a

perivascular niche, from four chronic inflammatory diseased tissues

including lung, intestine, salivary gland, and synovium (63).

Another study built fibroblast atlases using around 230,000

fibroblasts across 17 mouse tissues and revealed that many

fibroblast transcriptional states were conserved between humans

and mice (64). In parallel, we identified shared inflammatory

macrophage phenotypes from five inflamed tissues, including

synovium, ileum, colon, lung, and kidney (65). These recent

cross-tissue single-cell computation-driven transformative

research open new possibilities beyond well-known cell types

and pathways.

However, key aspects of these techniques need to be validated to

interpret single-cell integrative results more precisely regarding

disease-specific implications. First, sufficient power is required to

reveal statistical significance of associating single-cell results

with clinical metrics and demographic features. A large-scale

cohort with balanced disease and healthy controls and well

characterized medications is ideal. Second, reproducible analysis

of computational pipelines is sometimes neglected. For example, it

remains largely under-explored whether the same common

fibroblast phenotypes can be recapitulated in another clinical

cohort. It is possible that the tissue-specific fibroblast phenotypes
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found in a certain diseased context are actually due to unbalanced

cell numbers in the cross-sample analysis. Yet, as an active

computational and systems immunology area, we expect these

computational machine learning algorithms and future

developments will boost the transformative research to elucidate

shared pathogenic pathways and treatment areas.
Opportunities for developing
therapeutical strategies targeting
fibroblast and macrophage
interactions for
inflammatory diseases

Remarkable recent advances in understanding the molecular

pathogenesis of IMIDs have elucidated relevant pathophysiological

pathways and therapeutic targets. Inhibition of TNF and IL6

signaling, for example, has shown some efficacy in treating

various IMID contexts, including RA and ulcerative colitis (66–

68). Similarly, in systemic sclerosis, in which fibroblasts and

macrophages are deeply involved in the pathogenesis of lung

damage, IL6 blockade delayed decline in key lung function

measures compared with the placebo groups in a double-blind

phase II randomized clinical trial (69, 70). Additionally, although

strong evidence from experimental models and human data in vivo

and in situ suggested potential of anti-IL17 blockade as a

therapeutic target in RA (71, 72), psoriasis (73), and

spondyloarthritis (74), strong efficacy for RA and other similar

diseases has not shown in comparison to placebo (75). Thus,

ineligible patients with IMIDs still suffer from progressive
Frontiers in Immunology 06
functional disability from a substantial burden of lifelong

treatment—highlighting the existence of the remaining

pathological molecular signatures and the urgent need to link

them to targeted core-pathogenic phenotypes, such as

mesenchymal and immune cell interactions at the site

of inflammation.

A precise understanding offibroblasts and macrophages, major

tissue components in IMIDs, may promote the development of

novel therapeutic targets. Key interactions based on the well-known

pathways and new mechanisms revealed by single-cell

computational omics are summarized in Figure 4. Fibroblasts and

macrophages produce CSF1 (Colony Stimulating Factor 1) and

PDGFs (platelet-derived growth factors), respectively, and bind to

each other’s receptors to promote survival, maintenance, and

proliferation, forming a synergistic loop in a steady-state (76, 77)

and upon activation (78, 79). In a radiation-induced pulmonary

fibrosis model, depletion of tissue-infiltrating macrophages, but not

alveolar macrophages, using a clinically available CSF1R

neutralizing antibody ameliorated fibrosis (79). Similarly, Aran

et al. demonstrated that inhibition of Pdgf-aa produced by the

inflammatory macrophage identified by single-cell sequence

suppressed fibroblast growth in bleomycin-induced lung fibrosis

in mice (78). Accumulating evidence of clinical efficacy of inhibition

of tyrosine-kinase, which is a downstream molecule of CSF1R and

PDGFR, for IMIDs suggests that targeting the interactions between

fibroblasts and macrophages are highly promising strategies

towards individualized and targeted treatments of IMIDs (80–82).

Using single-cell transcriptomics, Kuo et al. reported that a

particular HBEGF (Heparin Binding EGF Like Growth Factor)+

inflammatory macrophage phenotype was induced by fibroblasts

and TNF in RA synovium, subsequently promoted fibroblast
A B

C

FIGURE 3

Across IMID single-cell integrative analysis. (A) Multiple IMIDs (organ systems) where inflammatory and pathogenic cells display both heterogeneity
and similarity between tissue types and within disease contexts. Computational approaches can be deployed to disentangle the shared and specific
pathways between IMIDs while also controlling for tissue heterogeneity. Two main computational frameworks include (B) integrative and joint
clustering analysis and (C) reference mapping approach. (B, C) indicate the low-dimensional projections of cells across IMIDs.
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invasiveness (83). They also found that this interaction was

inhibited by anti-EGFR (Epidermal Growth Factor Receptor)

antibody, which decreased pathogenic fibroblast invasiveness in

the destruction of cartilage and bone. Further experimental

evidence and case reports support the potential of EGFR as a

promising therapeutic target for RA (84–86).

In IBD, anti-TNF agents bring about clinical response in about

two-thirds of patients, but around 30% of patients are resistant to

treatment (87, 88). Using single-cell omics, inflammatory fibroblasts

and inflammatory monocytes were identified to be expanded in

inflamed colon lesion and expressed Oncostatin M (OSM) and

OSM receptor (8), respectively, which is associated with anti-TNF

response, suggesting that the inflammatory fibroblasts and

monocytes might be implicated in OSM-mediated anti-TNF

resistance (89). Methods that not only inhibit interactions but

also exploit interactions with anti-inflammatory effects may

be promising therapeutic targets. The addition of GAS6 from

THY1+CXCL14+ sublining synovial fibroblasts, reduced

proinflammatory cytokines produced by MerTK+ macrophages

in synovial tissues of RA (46). On the flip side, GAS6 and MerTK

are reported to be overexpressed in tumor which could promote

tumorigenesis (90–92). It is necessary to clarify the difference

between malignancy and inflammation in this pathway and to

examine what route of administration, such as intra-articular

injection, is appropriate for therapeutic targeting.
Frontiers in Immunology 07
So far, no drugs targeting specifically fibroblasts have been

approved by the U.S. Food and Drug Administration (FDA). Thus,

identification of promising across cell-type interactome targets, such

as fibroblasts and macrophages in inflammatory lesions, using

single-cell technologies combined with powerful computational

tools could lead to the development of effective therapeutics for

IMIDs, as in the area of oncology (43). If markers characteristic of

disease-specific cell types that play a central role in the pathogenesis

utilizing single-cell high granular results can be identified, more

accurate therapeutic agents can be developed to minimize the

adverse event and improve precision medicine.
Future directions

Most of these computational methods described above can be

generalized to many inflammatory disease studies. For example, t-

SNE and UMAP are used widely for dimensionality reduction

analysis for many IMID research projects. Additionally, techniques

like graph-based clustering and trajectory analysis are umbrella

classifications that are highly modified and adapted depending on

data type and context. Yet, each computational method may have

specific limitations derived from disease tissue (e.g., tissue

disaggregation approaches) or technology (e.g., high dropout

rates, non-single-cell resolution in the recent spatial
FIGURE 4

Potential targets of fibroblast-macrophage interacting revealed by single-cell computational methods using existing receptor-ligand pairs in
IMIDs. Targets of novel therapeutics: potential sites of inhibition are indicated by an upside-down T while sites of activation are indicated by a
lightning bolt. Different colors of each fibroblast and macrophage indicate different phenotypes of each cell type. Pill icons indicate potential,
experimental, or existing therapeutics.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1076700
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fritz et al. 10.3389/fimmu.2022.1076700
transcriptomics) when applied across multiple IMID contexts. This

review summarizes the most recent computational advancements

and major novel disease-specific findings combined with cutting-

edge single-cell techniques to IMIDs, so we expect more generalized

applications of these interdisciplinary approaches along with

computational machine learning algorithms can be adapted to

more understudied IMIDs. Taking advantage of the power of

these computational algorithms helps generate novel cell

phenotype and highlight theoretical cell-cell interactions in

humans. More in-depth functionally validations (e.g., knockout

specific target, in vivo or in vitro stimulation) are needed, however,

to determine the function mechanisms of these interactions and

disease etiology in human and non-human models.

To develop personalized treatment for IMIDs, it is necessary to

identify the cell-type that forms the core of the pathogenesis in

stratified patient groups. For example, analysis of bulk RNA-seq

from skin lesions from systemic sclerosis patients using cell-type

deconvolution methods demonstrated that certain types of serum

autoantibodies were associated with dysregulated molecular

pathways as well a predictable abundance of fibroblasts and

macrophages at the skin lesion (93). In RA, bulk RNA-seq studies

defined three histological subgroups or “pathotypes”: lympho-

myeloid, diffuse-myeloid, and pauci-immune (94, 95). The

myeloid signature is associated with response to TNF inhibition,

while the pauci-immune group, predominated with fibroblasts, is

associated with refractory to multi-drugs (94). This indicates that

mesenchymal cell compartment is a key population for further

study using higher-resolution technologies, such as single-cell

omics, as it is unclear whether the specific high-granularity

pathogenic subphenotypes underlying these pathotypes are

targetable therapeutically.

More recently, Zhang et al. demonstrated that in-depth

stratification of RA synovial biopsies based on single-cell

multimodal integrative analysis combined with covarying

neighborhood analysis can associate cellular heterogeneity to

stratified RA synovial phenotypes. Specifically, RA synovial

heterogeneity was classified into six distinct subgroups or “cell

type abundance phenotypes” (CTAPs) based on major cell-type

abundance (35): 1) endothelial, fibroblast, and myeloid cells, 2)

fibroblasts, 3) T cells and fibroblasts, 4) T and B cells, 5) T and

myeloid cells, and 6) myeloid cells. Three of the CTAPs have

associations with fibroblast and their immune interaction

abundances suggesting that different patients, even with the same

disease, have different tissue phenotypes at the core of their

pathology, and accordingly, different molecules to be targeted for

therapy. Notably, CTAPs are associated with disease-relevant

cytokines, histology, and serology metrics, which indicates that

the CTAP classification schema could guide appropriate targeted

therapeutic treatment.

Yet, knowledge in this area is limited by the availability of

biopsies from inflamed lesions derived from IMID patients. To

address this, better single-cell power analysis of study design,

demographic information, and technical confounders need to be
Frontiers in Immunology 08
considered to strengthen biologically relevant findings. Moreover,

identifying the right computational and machine learning

approaches is critical for downstream analysis. For example, more

reproducible single-cell analytical methods with open-source code

and well-benchmarked machine learning methods regarding

stability and accuracy need to be provided and further improved.

Given the complexity of the immunological questions, new

computational and disease-driven tools using AI approaches may

provide further insights into disease etiology. In all, comprehensive

characterization of cellular and molecular heterogeneity in inflamed

lesions using single-cell computational machine learning

approaches will enhance our understanding of disease

heterogeneity, which will provide a promising way to stratify

patient cohorts to optimize personalized therapies for IMIDs.
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