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Background: Osteoarthritis (OA) is a common chronic joint disease, but the

association between molecular and cellular events and the pathogenic process

of OA remains unclear.

Objective: The study aimed to identify key molecular and cellular events in the

processes of immune infiltration of the synovium in OA and to provide potential

diagnostic and therapeutic targets.

Methods: To identify the common differential expression genes and function

analysis in OA, we compared the expression between normal and OA samples

and analyzed the protein–protein interaction (PPI). Additionally, immune

infiltration analysis was used to explore the differences in common immune

cell types, and Gene Set Variation Analysis (GSVA) analysis was applied to

analyze the status of pathways between OA and normal groups. Furthermore,

the optimal diagnostic biomarkers for OA were identified by least absolute

shrinkage and selection operator (LASSO) models. Finally, the key role of

biomarkers in OA synovitis microenvironment was discussed through single

cell and Scissor analysis.
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Results: A total of 172 DEGs (differentially expressed genes) associated with

osteoarticular synovitis were identified, and these genes mainly enriched eight

functional categories. In addition, immune infiltration analysis found that four

immune cell types, including Macrophage, B cell memory, B cell, and Mast cell

were significantly correlated with OA, and LASSO analysis showed that

Macrophage were the best diagnostic biomarkers of immune infiltration in

OA. Furthermore, using scRNA-seq dataset, we also analyzed the cell

communication patterns of Macrophage in the OA synovial inflammatory

microenvironment and found that CCL, MIF, and TNF signaling pathways

were the mainly cellular communication pathways. Finally, Scissor analysis

identified a population of M2-like Macrophages with high expression of CD163

and LYVE1, which has strong anti-inflammatory ability and showed that the TNF

gene may play an important role in the synovial microenvironment of OA.

Conclusion: Overall, Macrophage is the best diagnostic marker of immune

infiltration in osteoarticular synovitis, and it can communicate with other cells

mainly through CCL, TNF, and MIF signaling pathways in microenvironment. In

addition, TNF gene may play an important role in the development of synovitis.
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1 Introduction

Osteoarthritis (OA) is the most common chronic joint

disease in the population, which is mainly characterized by

cartilage degeneration, subchondral bone sclerosis, osteophyte

formation, and synovial joint inflammation. It can significantly

alter joint dysfunction in older people and lead to disability and

reduced the quality of life (1, 2). Furthermore, approximately

9.6% of men and 18% of women over 60 years old experience

OA; 25% of patients with OA are regarded to have disabilities

according to the World Health Organization (3). In addition,

OA creates a tremendous socioeconomic burden worldwide (4).

Although there have been multiple studies on OA formation and

progression, the pathogenic mechanism and etiology of OA

remains unclear. Therefore, it is necessary to understand the

molecular mechanisms of OA and find effective therapeutic

strategies to combat it.

Recently, more research has shown that the synovium plays

an important role in the progression of OA (5, 6). Moreover,

synovitis is associated with the pathological changes of OA,

causing bone and cartilage destruction (4, 7). Molecular biology

research has revealed that genes, such as long noncoding RNAs

(lncRNAs) and mRNA dysregulation in the synovial tissue, are

often associated with the pathogenic process of OA (8).

Leukocyte infiltration, Th1/Th2-type cytokines, cellulose

deposition, M2 Macrophages, and immune infiltration in the

synovium were reported to play a critical role in synovitis and
02
cartilage destruction in patients with OA (9–17). In particular,

synovitis and inflammation have become research hot spots (18).

The transcriptome data and integrated bioinformatics methods

are widely used to study human diseases, revealing the cellular

and molecular events of the diseases (19, 20). Previous integrated

bioinformatical studies have revealed several hub genes,

including SCRG1, ZNF160, and CCL5, that participate in the

inflammation of OA, which may act as therapeutic targets for

OA therapy. In addition, the cellular interaction relationships

including NK cells, Macrophages, T cells, dendritic cell (DC),

and key biological signaling pathways, including inflammation,

immune response, osteoclast differentiation, bone development,

and so on, have been clearly identified and validated (21–23).

Notedly, fibroblast-like synoviocytes played an inflammatory

role through TNF signaling pathway, and this pathway was

considered as the key pathway involved in OA inflammatory

development by targeting SELE, SERPINE1, and NFKBIA (24,

25). Overall, these findings provide a novel insight into the

inflammatory factors or inflammatory signal molecules of OA.

However, only few bioinformatics studies have solely focused on

OA and its correlation with the molecular and cellular events of

inflammation in synovial microenvironment.

To describe the cellular and molecular events and reveal its

inflammatory pathogenesis for OA, we attempted to find

differentially expressed genes (DEGs) in OA by obtaining GEO

datasets for integrated bioinformatics analysis. Then, we performed

function enrichment analysis and PPI interaction analysis to reveal
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the key pathways of the DEGs. In addition, the LASSOmethod was

used to identify the key cell immune subpopulations and key

biomarkers for OA. Furthermore, single-cell dataset was

performed to explore the relationship between different cells in

the microenvironment and identify the possible key regulatory

molecules. Thus, the study aimed to identify the key molecular and

cellular events involved and the immune infiltration mechanism

within the synovium of patients with OA, to provide potential

novel diagnostic and therapeutic targets.
2 Materials and methods

2.1 Data information

Datasets GSE1919, GSE55235, and GSE32317 are based on the

Affymetrix Human Genome Array Platform. Dataset GSE46750 is

based on the Illumima Genome Human Array Platform. Datasets

GSE89408 and GSE143514 are based on the Illumima HiSeq RNA

sequencing data, and dataset GSE152805 is based on single-cell 10×

Genomics sequencing. All of the above datasets were downloaded

from Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/geo/). All selected datasets were genome-wide

expression data of OA or normal synovial membrane tissues. We

obtained 5, 10, 10, and 12 normal samples and 5, 10, 9, and 12 OA

samples from the array datasets GSE1919, GSE55235, GSE32317,

and GSE55235, respectively. In addition, 28 and 3 normal samples

and 22 and 5 OA samples were obtained from the RNA-seq dataset

GSE89408 and GSE143514, and obtained 3 synovial samples of OA

in GSE152805 single-cell dataset. The normal samples used in the

study were all synovial tissues from accidental death or post-

traumatic joint surgery or traumatic joint injury, whereas the

samples in the OA group were synovial samples from patients

diagnosed with synovitis who underwent open synovectomy and

joint replacement. In total, we obtained 37 normal healthy samples

and 36 OA patient samples from Array dataset, 31 normal healthy

samples and 27 OA patient samples from RNA-seq dataset, and 3

OA patient samples from 10× Genomics single-cell sequencing

dataset (Table S1). Due to the different sources of all datasets, we

only used the Array dataset for the differential expression analysis of

the most critical biomarkers in OA, used the RNA-seq dataset to

verify whether the expression of biomarkers, and used the single cell

sequencing dataset for further explore the conclusion based on

the results.
2.2 Differentially expressed and gene
screening

The limma package (RMA algorithm) was used to identify

the DEGs between OA synovial membranes and normal group

in the GSE1919 and GSE55235 datasets (26). After background

adjustment, normalization, and summarization preprocessing,
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P-values were corrected using the Benjamini and Hochberg test.

GSE89408 and GSE143514 gene raw read counts were used to

perform different analyses with DESeq2 (v 1.18.1), which is an R

package that uses a model based on the negative binomial

distribution and which is widely used for RNA-seq data

differential analysis (27). All the analyses results were

performed by volcano plot and heatmap plot to show the

DEGs, respectively. DEGs with P < 0.05 and |Log2FC| > 1

were considered as the cutoff criterion.
2.3 Gene ontology and pathway
enrichment analysis

To investigate key mRNAs at molecular and functional levels,

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway functional enrichment analyses were

performed. GO analysis includes the categories of molecular

function (MF), cellular component (CC), and biological

processes (BPs). Pathway analysis is the process of classifying

large genes by the KEGG database. In our study, GOseq uses the

Wallenius non-central hypergeometric distribution model, thus

taking gene length bias into account; therefore, it was used to

performGO enrichment analysis and GO terms with P < 0.05 were

considered significantly enriched (28). KEGG Orthology Based

Annotation System (KOBAS 3.0) (29) software was used to test

statistical enrichment in KEGG pathways, and pathways with a

Fisher’s exact test P < 0.05 were considered significantly enriched.

Furthermore, we used the Metascape database (https://metascape.

org/) to perform functional cluster enrichment analysis, which is a

web-based portal designed to provide a comprehensive gene list

annotation and analysis resource for experimental biologists.

Enriched GO-based bp terms and pathways were considered

statistically significant when the P-value was < 0.05.
2.4 Protein–protein interaction network
construction and module analysis

Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) (https://string-db.org/cgi/input.pl) (30) is an online

database resource search tool for the retrieval of interacting

genes, which includes both physical and functional associations.

In this paper, the cytoscape StringsApp package was used to

construct a PPI network of candidate DEGs gene sets, with a

confidence score > 0.4 defined as significant (31). Then, the

cytoscape ClueGo package was used to analyze the GO and

KEGG pathway networks (32). Based on the above data,

Molecular Complex Detection (MCODE) (33) with default

parameter was then performed to monitor PPI network

modules (34), then the core module analyzed by Mcode was

subset to new network, and the functionally similar network

genes were retained use cytoscape software version 3.7.2.
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2.5 Immune infiltration analysis

To determine OA synovial membrane invasion from the

expression data, normalized gene expression data were used to

infer the relative proportions of several types of infiltrating

immune cells using xcell method as previously reported (35).

Briefly, gene expression datasets were prepared using standard

annotation files and analyzed using the immunedeconv package,

then the xcell algorithm was used and the proportion of 36

immune cells was obtained; the relative percentage of each kind

of immune cell in the samples was calculated. To determine the

difference in immune cell infiltration between the synovial tissue

of patients with OA and that of normal controls, all immune cell

proportions and ratios were compared using a non-parametric

Wilcoxon rank-sum test with Benjamini–Hochberg corrections

and a P-value threshold of 0.05 for statistical significance. The

“ggplot2” package was used to draw box diagrams to visualize

the differences in immune cell infiltration.
2.6 Gene set variation enrichment
analysis

Gene set variation analysis (GSVA) can estimate the relative

enrichment of a gene set of interest over a sample population,

which is used to observe the variation in the activity of a set of

genes corresponding to a particular biological condition [21]. As

previously described, The GSVA R package (36) was used to

analyze the pathway pattern between two different groups of

samples, and the defined gene set was downloaded from the

Molecular Signature Database, named “h.all.v7.2.symbols.gmt”

(37). In the calculation, we used “zscore” algorithm to give

comprehensive score to each sample and used this enrichment

score to represent the degree of absolute enrichment of a gene set

pathway, while different scores also represent the activity degree

of the pathway in the sample. We demonstrated the correlation

between pathway GSVA score and immune cells infiltration by

calculating the Person correlation coefficients, which was

performed by using R software. The P-value obtained from the

correlation calculations was corrected by using the BH method,

and the degree of correlations was shown by heat maps, where

the asterisks were used to indicate the significance.
2.7 Identification of the optimal
diagnostic gene biomarkers

To identify the optimal diagnostic gene biomarkers for OA

inflammatory response, we utilized the immune infiltrating cell

types as the biomarkers to distinguish and predict the OA

inflammatory responses. Six differential percentages of

immune infiltrating cells obtained from all the Array datasets
Frontiers in Immunology 04
were used as feature variables to construct the least absolute

shrinkage and selection operator (LASSO) model. The LASSO

algorithm analysis was performed by the “glmnet” R software

package to achieve our datasets shrinkage. The optimal value of

l was determined by 10-fold cross-validation, and the significant

variables were selected for risk prediction. The coefficient risk

score of each sample was obtained according to the proportion

of each significant difference immune-infiltrating cell types and

their correlation. The coefficient risk score was calculated as

follows: ∑n = n (Coef.k×Cell.Prop.k), the Cell.Prop.k was the

relative infiltrating proportion of the infiltrating cell type of the

patient k, and Coef.k indicated the LASSO coefficient of gene k.

Then, all the samples were randomly assigned to the training set

(70%) and test set (30%). To evaluate the diagnostic ability of the

above models, we evaluated the receiver operating characteristic

(ROC) area under the curve (AUC), sensitivity, and specificity.

In addition, two OA synovial inflammation RNA-seq datasets

from GEO database were used to validate the sensitivity and

specificity of our model.
2.8 Single-cell analysis

The single-cell raw matrix data from GSE152805 were

downloaded and imported using the Seurat package for the R

programming language (version 4.0.2) (38), and the data were

filtered to include genes detected in > 5 cells. Cells with 1,000–

5,000 detected genes and a unique molecular identifier of 1,000–

30,000 and < 10% being mitochondrial genes. After data

normalization, highly variable genes of the single cells were

identified after controlling for the relationship between average

expression and dispersion. Then, principal components analysis

(PCA) was performed, and significant principle components

(PCs) were used as input for graph-based clustering. For

clustering, we used the function FindClusters that implement

the shared nearest neighbor (SNN) modularity optimization-

based clustering algorithm on 40 PCA components with

resolutions of 0.1–0.5, leading to five to 12 clusters. To be

consistent with the originally published paper, a resolution of

0.2 was chosen for further analysis. To identify DEGs in each cell

cluster, we applied the FindAllMarkers function with the default

parameter from Seurat set to the normalized gene expression

data. Subsequently, the cell clusters were identified by the cell

type–specific biomarkers and the proportions of the cell types

were calculated and evaluated.
2.9 Cell communications analysis and
Ligand–Receptor expression

Cell–cell communications (CCCs) analysis assesses the

expression of ligand-receptor pairs across cell types and
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1078414
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liao et al. 10.3389/fimmu.2022.1078414
revealed specific signaling pathways (39). CellChat analysis uses

to reveal the afferent communication patterns and secreted

efferent communication patterns of each cell type, to quantify

the cell communication Pathway, and to calculate the

in format ion flow of each s igna l Pa thway or the

communication probability across the cells (40). In our study,

CellChat was used to analyze the OA synovial arthritis single-cell

samples. By performing CellChat, we calculated and analyzed

the intercellular communication of cell types of each OA

inflammation sample by importing the standardized scRNA-

seq data after Seurat package analysis into CellChat. Among the

OA inflammation cellular communication signals, we conducted

in-depth analysis on Macrophage to reveal the communication

strength of each signaling pathway and selected the specific

communication pathways for further visualization. The default

parameters of the software were used in our CellChat analyses,

and P ≤ 0.05 was used as a threshold for significance, and Adjust

P-value was corrected using the BH method.
2.10 Scissor analysis

Single-Cell Identification of Subpopulations with bulk

Sample phenotype correlation (Scissor) uses leveraging bulk

data and phenotype information to identify biologically and

clinically relevant cell subsets form single-cell RNA

sequencing, with high accuracy and specificity (41). The cell

types form single-cell sequencing samples typically includes

normal cells and the disease associated cells. Scissor uses to

identify the disease relevant subpopulations form single-cell

sequencing samples by using phenotype optimization

correlation matrix regression model. In our study, we used

the normalized expression profile date of GSE1919 and

GSE55235 combined with the clinical phenotype information

of each sample in the dataset to analyze the Seurat expression

profile of single-cell sequencing dataset GSE152805, and to

obtain the most relevant OA synovial inflammation cell types

form single-cell sequencing samples. Then, we used Scissor

analysis to further explore and analyze the mechanism of

disease pathogenesis and progression for Macrophage types.

In Scissor analysis results, the background cells and negatively

correlated with the phenotype cells were combined and labeled

Scissor0; the cell types positively correlated with the phenotype

were labeled Scissor1.
2.11 Statistical analysis

All the statistical analyses were executed with R software

(version 4.0.2). P values were calculated using Wilcox.test, and P

< 0.05 was considered statistically significant.
Frontiers in Immunology 05
3 Results

3.1 Identification of DEGs and functional
analysis shows OA involved in immune-
related pathways

To identify the DEGs in OA, we downloaded the OA synovial

and normal tissue gene expression profiles of GSE1919 and

GSE55235 from the GEO database. Then, we performed

differential analysis, a total of 563 DEGs were identified in

GSE1919 dataset, including 293 upregulated and 270

downregulated DEGs, and a total of 505 DEGs were identified

in GSE55235 dataset, including 287 upregulated and 218

downregulated DEGs (Figures 1A, B). Heatmap Cluster analysis

showed the potential top 15 DEGs between the OA synovial

membrane and normal tissues (Figures 1C, D). To identify the

common DEGs of important inflammatory regulatory factors in

OA synovitis, we performed an integrative analysis, a total of 172

common DEGs overlapped in GSE1919 and GSE55235 datasets

(Figure 1E; Table S2). Furthermore, we analyzed the functions by

using GO and KEGG enrichment analysis with the 172 common

DEGs. GO enrichment analysis results showed that the 172

common DEGs were mainly involved in the BPs of immune

system, inflammatory and development, the cellular sub-

localization of extracellular matrix and vesicles, and the

molecular biological functions of oxidase, receptor activity, and

kinase binding (Supplementary Figures S1A–C). KEGG

enrichment analysis results showed that the 172 common DEGs

were mainly involved in immune-related pathways, such as

Rheumatoid arthritis, NF-kappaB signaling pathway, Osteoclast

differentiation, TNF signaling pathway, MAPK signaling pathway,

and T-cell receptor signaling pathway (Figure 1F; Table S3). These

results were consistent with the previous results and demonstrated

the aberrant expression of these genes lead to inflammatory

response in OA synovitis tissues (42, 43). On the other hands,

we performed the clustering analysis of these DEGs for further

clearly specific function using Metascape software (Figure 1G),

and these genes mainly enriched and clustered eight categories,

including inflammatory response, regulation of MAPK cascade,

Pid Atf2 pathway, Thythmic process, response to extracellular

stimulus, response to corticosteroid, multicellular organism

process, and response to growth factor.
3.2 Protein–protein interaction analysis
of the differentially expressed genes

To further improve the biological understanding of the

correlation between the 172 DEGs gene functions identified in

our study, we next conducted the protein–protein interaction

analysis. The STRING database was used to identify the PPI
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FIGURE 1

Differential expression genes and function analysis. (A, B) Volcano plot showed DEGs in GSE1919 and GSE55235, respectively. Blue dots
represented downregulated DEGs, red dots represented upregulated DEGs, and gray dots represented the rest of the no significant differential
expressed. (C, D) Heatmap showed the potential top 15 DEGs in GSE1919 and GSE55235, respectively. (E) Venn plot of the common DEGs of
GSE1919 and GSE55235. (F) KEGG function analysis of the 172 DEGs. (G) Metascape function clustering analysis of the 172 DEGs.
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network analysis of 172 DEGs; the results showed that 121 nodes

and 257 edges were established in the constructed PPI network

and visualized by Cytoscape software (Figure 2A). These genes

include HSPA1A (HSP70), HSPA6, MYC, IL6, MMP9, CXCL8,

LCK, and VCAM1, which are most edges connections,

suggesting that these genes may act as an important role in the

process of inflammation. To further identify the subnetworks of

involved inflammatory reaction, we firstly performed functional

analysis to further identify the pathways and functions of this

PPI network by using ClueGo tool. Then, MCODE tool was used

for further subnetwork analysis. Finally, eight key subnetworks

(subnet1-8) with independent biological functions were

extracted (Figure 2B). Subnet-1 was mainly involved in stress-

apoptotic signaling pathways such as cellular response of

unfolded proteins; subnet-2 was involved in proliferation

signaling pathways such as the regulation of cell cycle and

kinase activity, FOXO-mediated transcription of cell cycle

genes; subnet-3 was mainly involved in inflammation-related

signaling pathways such as chemokine signaling pathway;

subnet-4 was involved in metabolic pathways such as Tyrosine

metabolism; subnet-5 was involved in immune system signaling;

and subnet-6 and 7 were involved in signal translocation and

inflammation during biofilm processes, whereas subnet-8

was involved in antigen presentation and T-cell differentiation,

respectively. All the related genes and their functions in

the above subnetworks are closely related to the occurrence of

inflammatory response and the regulation of microenvironment,

which may play an important role in the progression of

OA disease.
3.3 Identification of immune cell types
with OA based on immune infiltration

The above results indicate that immune inflammatory

associated pathways played the vital roles in the pathological

process of OA. It is speculated that OA specimen may induce

different immune inflammatory cell infiltration under the

inflammatory environment. To confirm our hypothesis, we

used the xcell method to calculate the Immunes Score in

GSE1919 and GSE55235 datasets, and the results showed that

Immunes Score in OA samples were consistently significantly

higher than those of normal tissues in these two datasets

(Figure 3A). Then, xcell method was also used to perform the

immune infiltration analysis in the two datasets, and the results

showed that the proportion of immune infiltration of six

immune cell types, including B cell, B cell memory, B cell

naïve, B cell plasma, Macrophage, Mast cell, were consistently

significantly changed and increased in OA inflammatory

samples (Figures 3B, C).

To obtain optimal immune infiltration for OA, we also

downloaded the GSE32317 and GSE46750 datasets from GEO

database to perform the xcell method to calculate the Immune
Frontiers in Immunology 07
score and immuno-infiltration analysis. The results showed that

the Immune score were consistently significantly increased in

OA inflammatory samples with the two GEO datasets above

(Figure 3D). Additionally, the immune infiltration of five

immune cell types in GSE32317, including B cell, B cell

memory, B cell plasma, Macrophage, Mast cell, were

significantly increased in OA inflammatory samples

(Figure 3E), and only three immune cell types in GSE46750,

including B cell plasma, Macrophage, Mast cell were

significantly increased (Figure 3F). Overall, the immune

infiltration analysis results showed that the six immune

infiltration cells were largely related to the synovial

microenvironment of OA.

In additional, the pathway activity of Hallmark gene sets in

GSE55235 and GSE1919 datasets was further obtained by gsva

enrichment analysis, which contains immunological,

inflammatory, metabolic, anaerobic, and other related

pathways, reflecting the degree of variation of each sample.

The results showed that the inflammatory, metabolic, and

stress-related pathways such as interferon, complement, UV,

and metabolism were activated, whereas the anaerobic,

apoptosis, and immune-related signaling pathways such as

hypoxia, apoptosis, and TGFb were inhibited in OA

inflammatory samples (Figures 3G, H). All the consistently

significantly changed signaling pathways were indicated that

the inflammatory microenvironment may be closely associate to

OA synovial inflammatory. Finally, the Spearman correlation

analysis was used to evaluate the immune infiltrating cell types of

microenvironment changes between immune infiltration Score

and GSVA Score. The correlation results between six immune

inflammatory cell types and related hallmark pathways were

indicated that B cell memory, Macrophage, B cell, and Mast cell

were significantly correlated with the GSEA pathway (Figure 3I).

It is speculated that the infiltration degree of the four cell types

may be related to the occurrence and development of

inflammation in OA. These findings indicated that the

infiltration degree of these four cell types might synergize with

the occurrence and development of inflammation in OA.
3.4 Identification of the optimal
diagnostic immune infiltration
biomarkers for OA

The results of immune infiltration analysis showed that the

above six cell types had significant changes in OA, and we

speculated that the immune infiltrative cell types could be used

as biomarkers for the diagnosis and prediction for OA. To

identify the optimal diagnostic cell type biomarkers for OA,

we utilized the infiltration score in six immune infiltrating cells

obtained from all the Array datasets to construct LASSO model

(Figure 4A). We first conducted the LASSO regression analysis

for all the samples in GSE1919, GSE55235, GSE32317, and
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FIGURE 2

Protein–protein interactions analysis with 172 DEGs. (A) PPI network of DEGs. Red nodes labeled subNet1 indicate the cellular response of
unfolded proteins; blue nodes labeled subNet2 indicate the regulation of cell cycle and kinase activity; green nodes labeled subnet3 indicate
chemokine signaling pathway; purple nodes labeled subnet4 indicate the metabolic processes; orange nodes labeled subnet5 indicate the
immune system signaling; yellow nodes and brown nodes labeled subnet6 and subnet7 indicate the signal translocation and inflammation
during biofilm processes; pink nodes labeled subnet8 indicate antigen the presentation and T-cell differentiation. (B) The key subnetworks
screened after using MCODE tool.
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FIGURE 3

Immune infiltration analysis and GSVA analysis of OA samples. (A) The immune score of GSE55235 and GSE1919 samples. (B) The immune
infiltration of GSE55235 samples. (C) The immune infiltration of GSE1919 samples. (D) The immune score of GSE32317 and GSE46750 samples.
(E) The immune infiltration of GSE32317 samples. (F) The immune infiltration of GSE46750 samples. (G) Heatmap of Hallmark gsva scores in
GSE55235 dataset. (H) Heatmap of Hallmark gsva scores in GSE1919 dataset. (I) Heatmap showed that the spearman correlation between gsva
score and immune infiltration cell types. (*p < 0.05; **p < 0.01).
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FIGURE 4

LASSO analysis for immune infiltration cell types. (A) CV statistical graph during the construction of the LASSO regression model, which shows
that the minimum lambda at model construction is 0.1614863. (B) The model regression coefficient diagram shows the change trend of the
coefficient corresponding to each immune infiltrating cells variable with the change of lambda value. (C) ROC curve predicts the identification
effect of the above models in different datasets. The closer AUC value is to 1, the better of prediction effect on the model. The figure is shown
that the AUC in the training set is 0.8995 and that, in the test, set is 0.8262, indicating that the model has a robust prediction accuracy. In the
validation datasets, the AUC is 0.7575, which shows that the models constructed by the Macrophage and B cell can also have good accuracy in
different types of datasets. (D, E) The immune score of GSE89408 and GSE143514 datasets. The figure shows that immune sore is significantly
increased in the two datasets. (F, G) The immune infiltration analysis of six cell types in GSE89408 and GSE143514 datasets.
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GSE46750 datasets, which were randomly assigned to the

training set (70%) and test set (30%). Then, the optimal

lambda value was determined by 10-fold cross-validation. The

lambda Min value was 0.1614863 (Figure 4B). Two significant

infiltrating cell types included B cell and Macrophage cell,

which were further used as a diagnostic marker, and the

formula was calculated as follows: ∑n = B cell*30.8727 +

Macrophage*24.1093. Additionally, the ROC curve analysis

showed that the AUC value of the Lasso model of two

infiltrating cells on the training set was 0.8995 (95% CI: 79.03–

96.48%), and the AUC value on the test set was 0.8262 (95% CI:

60.81–92.86%), the model had high AUC values in both the

training set and the test set, indicating that the model has a

robust sensitivity and specificity, and could be used as an optimal

biomarker of OA (Figure 4C). On the other hand, two OA

synovial inflammation RNA-seq datasets of GSE89408 and

GSE143514 from GEO database were downloaded to validate

and verify the above LASSO model, and further to evaluate the

specificity, sensitivity, and accuracy of our model. The finally

validated AUC value was 0.7575 (95% CI: 62.13–86.88%), which

also had a high accuracy in predicting OA.

Additionally, we then used the xcell tool to perform the

immune scoring and immune infiltration analysis of GSE89408

and GSE143514 datasets, and we found that the immune score of

the OA synovial inflammatory was significantly higher than

normal synovial tissue (Figures 4D, E). The immune infiltration

of Macrophage in the two datasets were significantly increased in

OA inflammatory samples, and the immune infiltration of B cell

in GSE89408 was also significantly upregulated, whereas in

GSE143514 was maintained a consistent upward trend but

without significant change (Figures 4F, G). Combined with the

above results obtained in our study, it was suggested that the two

immune infiltrating cells (Macrophage and B cell) of LASSO

models could be used as diagnostic biomarkers of OA,

especially Macrophage.
3.5 Cellular communication patterns of
Macrophages in OA synovitis
microenvironment

Previous immune infiltration and GSVA analysis showed

that Macrophage was significantly upregulated and largely

correlated to the signal pathways of microenvironment in the

four GEO datasets and two RNA-seq GEO datasets of OA, so

Macrophage may play an important role in OA synovial

inflammation and may serve as key therapy target. To clarify

the role of Macrophage in synovial inflammation of OA, we

downloaded another single-cell sequencing dataset GSE152805,

which included three OA synovial samples, to detailedly

investigate the function and role of Macrophage. After

downloading the expression matrix, three synovial samples

were processed by quality filtering, PCA reduction and UMAP
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clustering, and finally obtained 10 cell types by cell identification

(Supplementary Figure S2A). These cell types were defined as

synovial subintimal fibroblasts (SSF) (CXCL12+), synovial

intimal fibroblasts (SIF) (PRG4+), Macrophage (CD163+,

LYVE1+), DC (FCER1A+, IL1R2+), endothelial cell (EC)

(PLVAP+), smooth muscle cell (SMC) (RGS5+), Mast Cell

(TPSAB1+), proliferating immune cell (ProIC) (CENPF+), T

cell (CXCR4+), and B cell (MZB1+) (Supplementary Figure

S2E). Subsequently, we evaluated the proportion of each

subtype cells, and found that Macrophage accounted for 5.09–

31.63% in the three samples (Supplementary Figure S2B). Based

on the cell annotation, we identified the differently DEGs by each

cluster and showed by Heatmap and dotplot (Figures S2C, D).

To exploring detailed regulations of Macrophage in

the development of inflammation in OA synovia l

microenvironment, CellChat analysis was performed to infer,

visualize, and analyze inter-cellular communications form

scRNA-seq data. Significant connections among 10 interacting

immune cell types were identified. Notably, several cell types

such as SIF, SSF, and ProIC were found to have more interacting

cell communication pairs in the OA synovial microenvironment

(Figure 5A). Importantly, CellChat also predicted that

Macrophage had connection with the other immune cell types,

with different cell communication pairs (Figure 5B). On the

other hand, we also identify the cell communication patterns,

including outgoing patterns and incoming patterns; the results

showed that five incoming communication patterns were

identified, and Macrophage communicate with other cell types

in incoming signaling was dominated by pattern 2, which

include signaling pathway such as CCL, MIF, IL1, CSF,

Complement, and NPR2 whereas, in five outgoing signaling

patterns, Macrophage communicate with other cell types was

characterized by pattern 2, which include signaling pathway

such as CCL, IL10, IL1, TNF, VISFATIN, COMPLEMENT,

NPR2, and GALECTIN (Figure 5C). Furthermore, we detected

the significant ligand-receptor pairs between Macrophage and

the other cell types, which were further categorized into two

communication patterns. The outgoing communication ligand-

receptor pairs were characterized by CCL and TNF signaling

pathway, whereas the incoming communication ligand-receptor

pairs was characterized by CCL and MIF signaling pathway of

ligand-receptor pairs (Figure 5D). To further investigate the

above three signaling pathways (CCL, TNF, and MIF) in OA

synovial microenvironment, we performed chord analysis of the

three signaling pathways and found that CCL signaling pathway

was mainly used by SMC and Macrophage cells for incoming

and outgoing communication, TNF signaling pathway was

mainly used by Macrophage and DC cells for outgoing

communication, and MIF signaling pathway was mainly used

by DC, ProIC, and Macrophage cells for incoming

communication (Figure 5E). Finally, the communication

intensity analysis could be also found that CCL signaling

pathway was consistently used in incoming and outgoing
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FIGURE 5

Cellular communication of Macrophage in OA. (A) Circle plot of the significant connections among ten interacting immune cell types
(Macrophage, DC, EC, SMC, Mast cell, SIF, SSF, ProIC, T cell, and B cell). Different colors represent different cell groups. (B) Circle plot of the
significant connections of Macrophage with other cells. (C) Pattern recognition of the immune cell types; the graph shows the interpretation of
intercellular communication networks by incoming and outcoming communication patterns. (D) Bubble plot of the ligand-receptor pairs in
Macrophage cell types. Colors in the bubble plot are the proportional of the communication probability, where the blue and red colors
correspond to the smallest and largest values. (E) Circular plots of the communication among the 10 immune cell subtypes according to the
three major signaling pathways (CCL, TNF, and MIF). Different colors represent different immune cell types. (F) Cellular communication strength
on a two-dimensional manifold according to incoming and outcoming communication patterns; each dot represents one cell type.
(G, H) Communication probability by ligand-receptor pairs according to CCL, TNF, and MIF signaling pathway, each dot represents the
communication network of one immune cell types. Line size is proportional to the overall communication probability.
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communication, whereas TNF signaling pathway was mainly

used in Outgoing communication and MIF signaling pathway

was mainly used in Incoming communication (Figure 5F). These

results showed that Macrophage mainly uses CCL, TNF, and

MIF signaling pathways for cell communication in the OA

synovial microenvironment.

Based on the above three signaling pathways (CCL, TNF,

and MIF), we further analyzed the communication of ligand-

receptor pairs. Notably, five ligand-receptor pairs including

CCL3-CCR1, CCL3-CCR5, CCL3L1-CCR1, CCL3L3-CCR1,

and CCL4-CCR5, were the dominant contributors to CCL

signaling pathways, which has the strongest communication

between macrophage and T cells, and this result suggested that

Macrophage uses this signaling pathway to recruit T cells in the

microenvironment to cope with the occurrence and

development of inflammation (Figure 5G). TNF signaling

pathways mainly consist of TNF-TNFRSF1A and TNF-

TNFRSF1B ligand-receptor pairs, which was mainly used in

Outgoing communication between Macrophage and ProIC/T

Cells, and the result suggested that Macrophage also uses this

signaling pathway to recruit immune cells in response to changes

in the microenvironment (Figure 5H). Similarly, three ligand-

receptor pairs of MIF signaling pathways included MIF-CD74-

CD44, MIF-CD74-CXCR2, and MIF-CD74-CXCR4, which was

the strongest communication between Macrophage and ProIC/

DC, and this result suggested that the proliferative immune cells

are responding to changes such as microenvironment

inflammation (Figure 5H).

Taken together, CellChat identify key features of

Macrophage communications within the microenvironment of

OA synovial inflammation and predict that CCL, MIF, and TNF

signaling pathways are the mainly cellular communication

pathways and Macrophage may be used as the future

therapeutic target.
3.6 Identifying M2-like macrophage
related to anti-inflammation of OA

To utilize phenotype information of Array datasets, we

performed Scissor to identify cell subpopulations in single-cell

dataset that are most highly associated with the OA progression.

These results indicated that the cells, which most relevant with

OA synovial inflammatory were labeled as Scissor1, mainly

distributed in SIF, Macrophage, and ProIC cell clusters

(Figure 6A; Supplementary Figure S2A). In contrast with

Scissor0 (background cells), the proportion of Scissor1 cell

which identified in the three scRNA-seq samples were 2–6.5%

(Figure 6B). Interestingly, 9.35% of Macrophage cells were

identified to be most associated with the phenotype in OA.

To further understand the function of the Macrophages

labeled with Scissor1 (M_Scissor1), we performed differentially

expressed analysis between these cells and other Macrophage
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cells (M_Scissor0). As a result, 181 upregulated genes such as

CD163, LYVE1, LYZ, S100A9, CD74, CD4, SEPP1, C1QB, and

RNASE1 were significantly expressed in Scissor1 Macrophage

group, whereas 287 downregulated genes such as MGP, CALD1,

DCN, CLU, and SOX4 were significantly expressed in Scissor0

Macrophage group (|Foldchange|≥1.5) (Figure 6C). Several

significant differently expressional genes were visualized by

violin plot, which were confirmed the accuracy of these

differently expressional genes (Figure 6D). Interestingly, we

found LYVE1 and CD163 in the upregulated genes, which are

also markers of M2 Macrophages, combined with the expression

of CD163 and LYVE1 (Supplementary Figure S2E); we suggested

that the identified Macrophages, which labeled scissor1, were a

group of anti-inflammatory M2-like Macrophages. Next, we

performed GSVA enrichment analys is in Scissor1

Macrophages and Scissor0 Macrophages to explore the activity

of inflammation-related signaling pathways; the result found

that multiple inflammation-related signaling pathways

associated with Scissor1 Macrophages were in a low activity

state, including signaling pathways that promote inflammation,

such as TNF signaling, Inflammatory response, Hypoxia,

Apoptosis, and Interferon pathways (Figures 6E, F). These

results were consistent with our suggestions that Scissor1

Macrophages is a group of M2-like Macrophages with more

anti-inflammatory ability.

Combined with the results of cell communication and

Scissor analysis, we hypothesized that TNF signaling pathway

is a key signaling pathway for cell communication in OA

synovial inflammatory microenvironment. To prove our

hypothesis, we detect the TNF gene expression in each cell

type and compared the expression of TNF gene between

Macrophages which labeled M_Scissor1 and M_Scissor0; we

found that TNF gene was specific express in Macrophages and

significantly down-expression in Scissor1 Macrophages cells

(Figures 6G, H). Similarly, we performed CellChat analysis

and compared the cell communication ability between Scissor0

Macrophages and Scissor1 Macrophages, the result showed that

the Scissor1 Macrophages cell communication number was

lower than Scissor0 Macrophages (Figure 6I). Also, we

analyzed the cell communication network of TNF pathway in

each cell type; the result showed that there were low

communication levels of TNF pathway in Scissor1

Macrophages, whereas there was a high level of cell

communication of TNF pathway in Scissor0 Macrophages

(Figure 6J), which was consistent with our speculation. The

TNF pathway is a key active signaling pathway in OA synovial

arthritis microenvironment. Finally, we analyzed ligand receptor

use in the TNF pathway and found that all ligand receptor

communication was highly used only in Scissor0 Macrophages,

whereas Scissor1 Macrophages maintained a low level of

communication (Figure 6K).

Collectively, these results suggests that Macrophages are an

important biomarker and be a potential therapeutic target in OA
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FIGURE 6

Scissor identification results on Macrophage. (A) The UMAP visualization of scRNA-seq datasets, scisoor1 represents that cell identified to be
positively associated with transcriptome synovial inflammation, scissor0 were the background cells. (B) The bar plot shows the proportion of
scissor cells in the three scRNA-seq samples. (C) The volcano plot of differential gene expression in scissor1 Macrophages (M_Scissor1) versus
scissor0 Macrophages (M_Scissor0). (D) The violin plots show the several significant upregulated genes (RNASE1, CQB, S100A9, LYZ, and CD163)
in M_Scissor1 group. (E) GSVA enrichment analysis of the hallmarker signaling pathways in Macrophage scissor group. (F) The Box plot shows
the significant signaling pathways in gsva analysis. (G) The TNF gene expression in Macrophage scissor group and specific express in M_Scissor1
group. (H) The violin plot showing TNF gene expression in each cell type. (I) The cell communication number in Macrophage scissor group
cells. (J) TNF signaling pathway usage in each cell clusters. (K) The ligand-receptor pairs usage of TNF signaling pathway in each cell clusters.
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synovitis, in which TNF signaling pathways may play a critical

role in the pathogenesis of OA.
4 Discussion

OA is a progressive joint disease that is found worldwide; it

influences the whole joint, including tissue such as cartilage,

subchondral bone, and the synovium (44). Recent research has

shown that synovitis is one of the most common characteristics

of OA from the early stage to the late stage. This results in bone

and cartilage damage through the formation of the inflammatory

pannus; furthermore, it plays an important role in the

progression and pathogenesis of OA (45, 46). Therefore,

understanding the molecular mechanism of synovitis in OA is

necessary. In this study, we first comprehensively analyzed two

datasets, GSE1919 and GSE55235, from the NCBI-GEO

database to identify DEGs in the synovium of OA, and we

successfully identified 172 DEGs that were in both datasets.

Then, we performed GO enrichment analysis, KEGG pathway

analysis, and clustering analysis of the DEGs to investigate their

associated biological functions.

According to the GO analysis, the DEGs were mainly

enriched regarding several BPs, especially immune system and

inflammatory. It has been reported that the immune system

process and inflammatory both play a role in OA development

and progression, which is one of the key factors in the

pathogenesis of OA (47, 48). Then, the enriched KEGG

pathways of DEGs mainly consisted in immune-related

pathways, such as TNF signaling pathway, NF-kappaB

signaling pathway, MAPK signaling pathway, T-cell receptor

signaling pathway. Additionally, we performed the clustering

analysis of these DEGs genes for further clearly specific function,

and these genes mainly enriched eight categories, including

inflammatory response, regulation of MAPK cascade, PidAtf2

pathway, Thythmic process, response to extracellular stimulus,

response to corticosteroid, multicellular organism process, and

response to growth factor. Overall, the above results suggested

that immune system and inflammatory was mainly involved in

the pathophysiological processes of OA, which were consistent

with previous OA studies (49–51). Previous studies have

demonstrated that inflammatory reaction mediated

pathophysiological processes occurring in OA, which has been

proposed that targeting inflammatory could be a promising

therapy (52–54).

In the PPI network analysis, the DEGs were mainly enriched

in the process of pathogenesis in OA, which were identified

about eight key subnetworks with the hub genes HSPA1A

(HSP70), HSPA6, MYC, IL6, MMP9, CXCL8, LCK, VCAM1,

the enriched function such as cellular response of unfolded

proteins, cell cycle and kinase activity, chemokine signaling

pathway, metabolic processes, signal translocation and

inflammation during biofi lm processes, and antigen
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presentation and T-cell differentiation. As reported in OA,

HSPA1A protected against OA by inhibiting chondrocyte

apoptosis, which were specific upregulated by RNA-binding

protein ZFP36L1 (55). The similar conclusions were drawn in

a related study on the MYC, OA-related key genes and were

identified and clinical validated in OA (56). Previous evidence

showed that MMP9 and CXCL8 were the novel targets for OA

immunotherapy and diagnosis in the underlying biological

mechanisms of OA pathogenesis (57–59). CXCL8 was

reported to be elevated in the serum and synovial fluids of

patients with OA; moreover, it plays a pro-inflammatory role in

chondrocytes in OA (60).

Then, we performed Immune infiltration analysis on

GSE55235, GSE1919, GSE32317, and GSE46750 datasets; the

results showed that six immune-related cell types including B

cell memory, Macrophage, B cell, B cell naïve, B cell plasma, and

Mast cell were significantly correlated with the OA. These

different immune cell types have been indicated that the

immune infiltration degree might synergize with the

occurrence and development of inflammation in OA (12, 61).

Next, we considered that these immune cell types may be used as

the optimal biomarkers of the diagnosis and prediction for OA.

We further observed the percentages of immune infiltration of

six immune cell types by LASSO analysis. Finally, we found that

two immune infiltrating cells with Macrophage and B cell had

significant changes and could be used as diagnostic biomarkers

of OA, especially Macrophage. Recent studies have reported that

Macrophage infiltration in the synovial tissue of OA is relatively

high (62–64). Macrophage accumulation is the common features

of OA, with different roles depending on their different

phenotypes (13, 17, 65). Moreover, emerging reports reveal

that pro-inflammatory (M1) Macrophage infiltration

exacerbates the pathological process of OA (15). Transient

receptor potential vanilloid 1 (TRPV1) could inhibit the M1

Macrophage polarization to attenuate the progression of OA by

Ca2+/CaMKII/Nrf2 signaling pathway (66). Ziming Chen et al.

showed activated mast cells were mainly associated with high

immune cell infiltration in OA. Furthermore, they speculated

that anti-inflammatory (M2) Macrophages in the synovium and

mast cells in the subchondral bone may play an important role in

the pathogenesis of OA (12, 14). The above evidence combined

with these results show that Macrophage in the synovium may

be highly related to the infiltration of OA. Even though

Macrophage plays significant roles in OA, the phenotypes are

attractive issues, and further studies should clarify the

Macrophage phenotypes and mechanisms as the biomarkers in

OA patients.

Therefore, it is necessary to explore the specific mechanisms

of Macrophage in the development of inflammation in OA

synovial microenvironment. We used the CellChat tool to

analyze the interaction between different cell types in the OA

synovial microenvironment. The results showed that

Macrophages had significant interactions with SIF, SSF, and
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ProIC cells. Three major signaling pathways including CCL (C-

C motif Chemokine ligand), TNF-a (Tumor necrosis factor a),
and MIF (Macrophage migration inhibitory factor) were the

mainly signal pathway of Macrophage in OA synovial

microenvironment. Among these, CCL signaling pathway is

reported to perform a pleiotropic effect on multiple cell type–

related OA aside from chemotaxis, with the most important

chemokines such as CCL2, CCL3, CCL4, and CCL5 (67, 68).

Moreover, the TNF signaling pathway serves an essential role in

synovial fibroblasts in OA (51). JUN, a transcription factor, plays

a significant role in the TNF signaling pathway (25, 69). Ming

Liu found that MIF is a procytokine that mediates pleiotropic

inflammatory effects in OA patients, reducing MIF mRNA and

protein expression that could play a protective role in OA (70).

Thus, these results, some of which were consistent with the

previous studies, further suggest that Macrophage play a critical

role in OA immune regulation and responses via cellular

communications by the major signaling pathways.

At last, we performed Scissor analysis, which uses single-cell

dataset, to identify associated cells consistent with the OA

phenotype and function, such as identifying a population cell

with greater proinflammatory capacity in M1 macrophages. The

result showed that the identified cells were mainly distributed in

Macrophage, SIF, and ProIC cells. Interestingly, we found that a

group of cells were also identified in macrophages, and this

group of cells highly expressed biomarkers of M2 macrophages,

such as CD163 and LYVE1, and we also found that these cells

had anti-inflammatory ability, which was consistent with the

function of M2 macrophages in OA synovitis. For example,

Alpha defensin-1 promotes M2 Macrophage polarization,

indirectly effect on chondrocytes to attenuate the severity of

OA (71). Moreover, several phenotypes of M2-like Macrophages

were identified depending on the differentiation signal known

markers such as CD163, CD206, Arg1, and CCL22 (72). Finally,

we explored the differences cell communication ability of these

cells and found that the number of identified M2-like

macrophages was slightly lower than other macrophages;

however, the usage of TNF signaling pathway was significantly

reduced. Combined with several reports that M2 Macrophage

have the functions of promoting angiogenesis and tissue repair

and TNF is a pro-inflammatory gene that specifically expressed

in macrophages, we have a reason to believe that M2-like

macrophages may be a candidate cell for future clinical

treatment in OA, and TNF gene may be one of the

key molecules.

The lack of results from own samples and the absence of

experimental validation is a major limitation of this study, and

the differences among individuals in biological samples may also

have some influence on the results. Although four microarray

data, two RNA-seq data, and one single-cell data were used in

our analysis to demonstrate our point, the combination of

multiple data sets only can reduce the conclusion bias

generated by a single data method. Expanding the sample size
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and obtaining clinical sample for biological verification and

exploring the specific functions of macrophages can effectively

prove our conclusion.

In summary, our study combined integrated bioinformatics

and machine learning methods to identify the immune

regulation and immune infiltration during OA pathogenesis.

The above results show that Macrophage could be a rational

candidate cells for OA, and TNF gene may be a key molecule in

the development of OA; however, the concrete mechanism

should be elucidated in further studies.
5 Conclusions

In this study, a total of 172 DEGs were identified in the OA

synovium, and Macrophage infiltration could be a rational

biomarker. In addition, TNF may be a key molecule. However,

the key genes and related mechanisms involved in immune

regulation and immune infiltration in the pathogenesis of OA

need to be further studied, and the function of macrophages

needs to be further explored.
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SUPPLEMENTARY FIGURE 1

GO functional analysis 172 genes associated with OA. (A–C) The GO

analysis result showed by biology process, cellular component, and
molecular function.

SUPPLEMENTARY FIGURE 2

Single-cell analysis with three synovial samples of OA. (A) The UMAP

showing 10 cell types were identified. (B) The percentage of 10 cell types
in each sample. (C) Heatmap of single-cell data based on the UMAP plot.

Columns represent individual cells and rows represent genes. (D) The dot
plot showing the expression of marker genes in each cell type; the size of

the dot reflects the percentage of cells expressing the gene; expression
levels are color coded. (E) UMAP plot showing the marker gene

expression in all cells.
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