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Serious adverse events and
coping strategies of CAR-T
cells in the treatment of
malignant tumors

Xiujin Chen, Peng Li, Bin Tian and Xin Kang*

Department of Orthopedics, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
Chimeric antigen receptor T (CAR-T) cells technology has been successfully

used in the treatment of B cell-derived hematological tumors and multiple

myeloma. CAR-T cells are also being studied in a variety of solid tumors.

Current clinical reports on CAR-T cells in the treatment of malignant tumors

are abundant. The tumor-killing activity of CAR-T cells and the unique adverse

effects of CAR-T cells have been confirmed by many studies. There is evidence

that serious adverse events can be life-threatening. CAR-T cells therapy is

increasingly used in clinical settings, so it is important to pay attention to its

serious adverse events. In this review, we summarized the serious adverse

events of CAR-T cells in the treatment of malignant tumors by reading

literature and searching relevant clinical studies, and discussed the

management and treatment of serious adverse events in an effort to provide

theoretical support for clinicians who deal with such patients.

KEYWORDS

CAR-T, serious adverse events, lymphoma, leukemia, multiple myeloma, solid tumor,
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1 Introduction

Immunotherapy has become a mainstay of cancer treatment, in addition to standard

surgery, chemotherapy and radiation (1). The discovery of tumor-mediated

immunosuppression and its relationship to malignant tumor progression laid the

foundation for the application of T cells therapy strategies (2). Thus, gene-edited T cells

immunotherapy has been rapidly developed in recent years. Chimeric antigen receptor T

cells (CAR-T) are genetically reprogrammed T cells that express antibody fragments that

bind specifically to tumor-surface antigens (3). The mechanism of tumor killing is that

CAR-T cells bind to tumor antigens and induce a potent antitumor immune response (4,

5). Recently, CD19-targeting CAR-T cells have shown significant efficacy in patients with

relapsed/refractory (R/R) CD19+ B cell malignancies (6–10). Targeting BCMA or CD22
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CAR-T cells has also demonstrated potent antitumor activity in

clinical studies of multiple myeloma and acute lymphoblastic

leukemia (11–15). Moreover, CAR-T cells are being studied in

solid tumors, although they have shown limited efficacy so far

(16–21).

Immune system activation-related toxicities have been shown

in clinical studies involving CAR-T cells (22). The toxic symptoms

experienced after CAR-T cells therapy are mainly caused by

cytokine release syndrome (CRS) and immune effector cell

associated neurotoxicity (ICANS) (23). Currently, although the

safety profile of CAR-T cells therapy is generally acceptable, the

incidence of serious adverse events (SAEs) is high among clinical

trials using CAR-T cells (24–26). Therefore, it is crucial to

systematically evaluate the toxicity characteristics and life-

threatening potential of CAR-T cells therapies. In this article, we

downloaded CAR-T cells related clinical study data from the

Clinical Trials Database (www.clinicaltrials.gov). In combination

with published clinical studies, the clinical manifestations of SAEs

of CAR-T cells in the treatment of solid and hematological tumors

were summarized. Finally, the management and treatment

measures of SAEs were discussed to lay a theoretical foundation

for the better application of CAR-T cells in clinical practice.
2 Clinical presentation of SAEs
associated with CAR-T cells therapy

Clinicians should be aware of the serious and potentially

fatal toxicity associated with CAR-T cells therapy, although they

hold promise for the treatment of certain cancers (27). In this

study, 24 clinical studies (1208 cases) in hematological tumors

and 7 clinical studies (92 cases) in solid tumors were

downloaded from the clinical trial database (www.clinicaltrials.

gov), and the trial results data were available for all the

downloaded clinical studies (Table 1–4). In addition, the data

of SAEs from the included clinical studies were analyzed, and the

occurrence of SAEs in the treatment of malignant tumors with

CAR-T cells was systematically summarized in combination

with the relevant published literature. Numerous clinical

studies have shown that CAR-T cells can cause SAEs in the

treatment of both hematological and solid tumors (Figure 1).

The SAEs can affect any organ system of the body, and can

develop into multiple organ failure in severe cases,

endangering life.
2.1 SAEs of CAR-T cells in the treatment
of hematological tumors

2.1.1 Immune system toxicities
This study found that 141 patients (11.67%) had immune

system SAEs, and the incidence of SAEs from high to low was
Frontiers in Immunology 02
the CRS (137 cases), graft versus host disease (2 cases), etc

(Table 2). As a result of the high production of cytokines during

CAR-T cells therapy, CRS is the most common SAEs of immune

system (28). It was found that 128 cytokines may be closely

related to CRS, among which IL6, IFN-g, TNF-a, ICAM-1,

VCAM-1, VEGFA and other important factors may be the key

factors to predict CRS (29). Additionally, it causes SAEs

throughout the body in a variety of systems (30). Cytokines

are a double-edged sword in the process of CAR-T cells therapy,

which can stimulate immune cells to kill tumor cells while also

causing damage to normal organs of the body (31, 32).

Z. Ying et al. (33)conducted a meta-analysis involving 27

studies (1687 patients) to evaluate the safety of CD19-targeted

CAR-T cells in patients with diffuse large B-cell lymphoma

(DLBCL). Severe CRS and severe neurotoxicity were found in

6% (95%CI: 3-10%) and 16% (95%CI: 10-24%), respectively.

Moreover, studies have shown that neurological SAEs are

associated with CRS (34, 35). This suggests that CRS may

contribute to neurological adverse events. Furthermore, M.

Shao et al. (36) retrospectively analyzed the adverse events of

37 R/R MM patients treated with BCMA-targeted CAR-T cells.

All of the 37 patients had CRS, and 34 (91%) had at least one

coagulation parameter abnormality. The values of coagulation

parameters were positively correlated with the severity of CRS, as

well as with the levels of cytokines such as IL-6, IL-10 and IFN-g.
The findings suggest that these factors may play an important

role in CRS-related coagulopathy as well as a connection

between coagulopathy and CRS. In addition, J. Zhou et al. (37)

retrospectively analyzed 133 patients with R/R lymphoma who

received CAR-T cells therapy. Studies have found that severe

neutropenia, anemia, and thrombocytopenia frequently occur

after CAR-T cells infusion. Further studies found that both

neutropenia and severe thrombocytopenia in severe patients

were associated with the incidence of CRS and the levels of

associated inflammatory factors. The above studies all reflect

that CRS is an adverse events and a initiating factor causing

various SAEs.

2.1.2 Nervous system toxicities
In this study, 244 patients (20.20%) developed nervous

system SAEs. The incidence of clinical symptoms from high to

low was encephalopathy (94 cases), speech impairment (33

cases), seizure (24 cases), somnolence (20 cases), confusion (11

cases), syncope (8 cases), and brain oedema (8 cases), headache

(8 cases), etc (Table 2). The most common life-threatening

neurological adverse event is encephalopathy, probably due to

the significant effects of CAR-T cells on cerebral vessels.

Secondly, the high incidence of severe speech complications

found in this study suggests that the language center may also be

an easy target for CAR-T cells. Seizures are also very common,

indicating that CAR-T cells disrupt brain neuronal

electrical activity.
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TABLE 1 The incidence of clinically serious adverse events of CAR-T in hematological tumors.

NCT
Number

Conditions Interventions Characteristics countrys Adverse
event

assessment
criteria

Enrollment All-
Cause

Mortality
(n/Total)

Serious
adverse
events
(n/

Total)

Other
(Not

Including
Serious)
Adverse
Events(n/
Total)

NCT03958656 Myeloma;Multiple
Myeloma

Anti-Signaling;
lymphocytic
activation
molecule F7
(SLAMF7);
chimeric antigen
receptor(CAR) T
cells

Phase 1 United
States

CTCAE v5.0 10 0/10 3/10 10/10

NCT03287804 Multiple Myeloma AUTO2 Phase 1
Phase 2

United
Kingdom

CTCAE v4.0 11 8/11 6/11 11/11

NCT03289455 B-cell Acute
Lymphoblastic
Leukemia

AUTO3
(CD19/22 CAR-T
cells

Phase 1
Phase 2

United
Kingdom

CTCAE v5.0 15 9/15 6/15 15/15

NCT00924326 Primary
Mediastinal B-cell
Lymphoma;
Diffuse, Large B-
cell; Lymphoma

Anti-CD19-CAR-
T cells

Phase 1
Phase 2

United
States

CTCAE 3.0 46 2/46 29/46 46/46

NCT03019055 Lymphoma;Non-
Hodgkin,
Lymphoma, B-Cell;
Small Lymphocytic
Lymphoma

CAR-20/19-
T cells

Phase 1 United
States

CTCAE v4.0 22 0/22 22/22 22/22

NCT02659943 Lymphoma;B-Cell,
Lymphoma, Non-
hodgkins

Anti-CD19-CAR-
T cells

Phase 1 United
States

CTCAE v5.0 21 0/21 17/21 21/21

NCT02794246 Multiple Myeloma Anti-CD19-CAR-
T cells

Phase 2 United
States

CTCAE v4.03 6 0/6 2/6 1/6

NCT01747486 Relapsed or
Refractory CLL or
SLL

Anti-CD19-CAR-
T cells

Phase 2 United
States

CTCAE v4.0 42 12/42 32/42 35/42

NCT02215967 Myeloma-Multiple
Myeloma

Anti- BCMA-
CAR-T cells

Phase 1 United
States

CTCAE 4.0 26 0/26 13/26 26/26

NCT02535364 Acute
Lymphoblastic
Leukemia

Anti-CD19-CAR-
T cells

Phase 2 United
States

CTCAE v4.0 38 24/38 23/38 38/38

NCT01593696 B Cell Lymphoma,
Leukemia

Anti-CD19-CAR-
T cells

Phase 1 United
States

CTCAE v4.0 53 29/53 14/53 53/53

NCT01593696 Recurrent Plasma
Cell Myeloma

BCMA CAR-T
Cells

Phase 1 United
States

CTCAE v4.0 25 7/25 21/25 25/25

NCT01593696 Lymphoma;
Lymphoma, Large
B-Cell, Diffuse;
Lymphoma,
Extranodal NK-T
Cell;Lymphoma, T-
Cell,Peripheral

Anti-CD30 CAR-
T Cells

Phase 1 United
States

CTCAE v5.0 22 0/22 10/22 22/22

NCT03318861 Relapsed/Refractory
Multiple Myeloma

BCMA-CAR-T
cells(KITE-585)

Phase 1 United
States

CTCAE v 4.03 14 7/14 1/14 14/14

NCT01593696 ALL;B Cell
Lymphoma;
Leukemia;Large

Anti-CD19-CAR-
T cells

Phase 1 United
States

CTCAE v 4.0 53 29/53 14/53 53/53

(Continued)
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Neurotoxicity caused by CAR-T cells, also known as ICANS,

is the primary cause of these complications (38). Similarly,

studies have demonstrated that the most common ICANS

with CAR-T cells include encephalopathy, headache, tremor,

dizziness, aphasia, delirium, insomnia, and anxiety (39, 40). L. Lv
Frontiers in Immunology 04
et al. (41)explored the safety of CAR-T cells for central nervous

system lymphoma (CNSL). A total of 63 patients were included

in 8 studies in the meta-analysis, and the incidence of grade 3 or

above neurotoxicity was found to be 12%. Besides, A. Gajra et al.

(42) investigated adverse neurologic events associated with
TABLE 1 Continued

NCT
Number

Conditions Interventions Characteristics countrys Adverse
event

assessment
criteria

Enrollment All-
Cause

Mortality
(n/Total)

Serious
adverse
events
(n/

Total)

Other
(Not

Including
Serious)
Adverse
Events(n/
Total)

CellLymphoma;
Non-Hodgkin
Lymphoma

NCT03624036 Relapsed/Refractory
Chronic
Lymphocytic
Leukemia and
Relapsed/
Refractory Small
Lymphocytic
Lymphoma

Anti-CD19-CAR-
T cells(KTE-X19)

Phase 1 United
States

CTCAE v 5.0 16 3/16 7/16 16/16

NCT02030847 Patients With B
Cell ALL, Relapsed
or Refractory

CD19-CAR-T Phase 2 United
States

CTCAE v 4.0 30 30/30 30/30 30/30

NCT02614066 Relapsed/Refractory
Bprecursor Acute
Lymphoblastic
Leukemia

Anti-CD19 CAR-
T Cells

Phase 1
Phase 2

United
States

CTCAE v 4.0 125 65/125 80/125 125/125

NCT03761056 B-cell Lymphoma anti-CD19 CAR-
T

Phase 2 United
States,
Australia
and France

CTCAE v5.0 40 6/40 18/40 40/40

NCT01865617 Recurrent Adult
Acute
Lymphoblastic
Leukemia;Recurrent
Chronic
Lymphocytic
Leukemia;Recurrent
Diffuse Large B-
Cell Lymphoma
Recurrent Mantle
Cell Lymphoma

anti-CD19 CAR-
T

Phase 1
Phase 2

United
States

CTCAE v 4.0 197 115/197 189/197 196/197

NCT02348216 B-Cell Lymphoma;
Transformed
Follicular
Lymphoma (TFL)

anti-CD19 CAR-
T

Phase 1
Phase 2

United
States

CTCAE v 4.0 292 115/292 153/292 292/292

NCT02926833 Refractory Diffuse
Large B Cell
Lymphoma

anti-CD19 CAR-
T

Phase 1
Phase 2

United
States

CTCAE v 4.0 34 11/34 23/34 34/34

NCT02706405 B Cell Lymphoma anti-CD19 CAR-
T

Phase 1 United
States

CTCAE v 4.03 29 13/29 19/29 29/29

NCT03568461 Follicular
Lymphoma

anti-CD19 CAR-
T

Phase 2 United
States

CTCAE v 4.03 97 7/97 42/97 94/97
fr
All clinicaltrials can be downloaded from www.clinicaltrials.gov (accessed October 02, 2022).
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TABLE 2 Summary of clinical serious adverse events of CAR-T in hematological tumors(Patients Number/symptom).

NCT General Infections and Cardiac Nervous system Immune Blood and
ymphatic
system
plications

Respiratory,
thoracic and
mediastinal
complications

Gastrointestinal
complications

Vascular
complications

1/Dyspnoea

aemia;3/
ropenia; 3/
mbocytopenia;2/
le neutropenia

rile
openia;
phopenia

4/Hypoxia;
2/Dyspnea

1/Colitis;2/Dysphagia 5/Hypotension;2/
Thrombosis

rile neutropenia;
tropenic fever

1/nausea 1:hypotension

rile neutropenia 1/Neutropenic
colitis;1/Abdominal
pain

emia 1/Dyspnea;
1/Hypoxia

1/Diarrhea;
1/Nausea

4/Hypotension

1/Hypoxia

2/Hypoxia;
1/Pulmonary
edema;
1/Respiratory
failure

2/Hypotension;1/
Hypertension

1/Abdominal pain 3/Hypotension;1/
Embolism

rile neutropenia 1/Hypoxia 1/Constipation

(Continued)

C
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t
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10
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3
8
9
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2
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18

1

Fro
n
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in

Im
m
u
n
o
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g
y

fro
n
tie

rsin
.o
rg

0
5

Number
(Patients
Number)

complications infestations complications complications system
complications

co

NCT03287804
(11)

2/Pyrexia 1/Lung infection 1/Acute myocardial
infarction

1/Hedache

NCT03289455
(15)

1/Pyrexia 1/Cellulitis 1/Encephalopathy;1/Seizure 3/An
Neu
Thro
Febr

NCT00924326
(46)

3/Fever 1/Pneumonia 2/Arrhythmia.
Supraventricular
tachycardia;1/
Supraventricular and
nodal arrhythmia;1/
Atrial fibrillation;1/Left
ventricular systolic
dysfunction

12/Speech impairment; 10/
Confusion; 9/Somnolence,
depressed level of consciousness;
4/Neuropathy,motor; 2/Seizure; 2/
Ataxia;2/Cognitive disturbance; 1/
CNS cerebrovascular ischemia;1/
Encephalopathy

6/Fe
neut
1/Ly

NCT03338972
(25)

11/fever 1/lung infection;1/
upper respiratory
infection

1/CRS 8/feb
2/ne

NCT02535364
(38)

1/Asthenia;
1/Pyrexia

2/Sepsis;1/
Bacteraemia

1/Atrial fibrillation;
1/Myocardial infarction

8/Encephalopathy; 5/Brain
oedema; 2/Seizure

8/CRS 1/Fe

NCT03049449
(22)

2/Fever 3/Sepsis 3/Sinus tachycardia 1/Encephalopathy 1/An

NCT03318861
(14)

1/Chest pain

NCT01593696
(53)

3/Fever 3/Sinus tachycardia;2/
Left ventricular systolic
dysfunction;
1/Cardiac arrest;
1/Heart failure

4/Nervous system complications;
2/Seizure; 1/Dysphasia; 1/
Headache; 1/Hydrocephalus;
1/Somnolence

9/CRS

NCT03624036
(16)

2/Pyrexia;
1/Malaise

1/Sepsis; 1/Systemic
candida

1/Tachycardia 1/Aphasia; 1/Confusional state 4/CRS

NCT02030847
(30)

3/Sepsis;2/
Pneumonia;1/
Meningitis;1/
Staphylococcal
infection

1/Haemorrhage intracranial; 1/
Headache;1/Seizure

21/CRS 1/Fe
l

m

t

i

b
r
m

u

b

b
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TABLE 2 Continued

NCT
Number

General
complications

Infections and
infestations

Cardiac
complications

Nervous system
complications

Immune
system

Blood and
lymphatic

m
tions

Respiratory,
thoracic and
mediastinal
complications

Gastrointestinal
complications

Vascular
complications

nia;2/
d

ia

13/Hypoxia;5:
Respiratory
failure; 4:ARDS;3/
Dyspnoea;1/
Pulmonary
embolism

2/Colitis;2/Ileus;1/
Diarrhoea;1/Gastritis

31/Hypotension;1/
Hypertension;1/
Shock

stem
s;
tropenia

1/Pleural effusion;
1/Pneumonitis

1/Diarrhea

/ 1/Acute
pulmonary
oedema

1/Abdominal pain 1/Hypertension;1/
Hypotension

ted

8/Respiratory
failure;6/
Hypoxia;3/Pleural
effusion; 3/
Pulmonary
edema;2/ARDS;1/
Dyspnea

2/Abdominal pain;2/
Nausea

34/Hypotension

ount
3/Hypoxia 2/Diarrhea;1/

Abdominal pain; 1/
Ileus

6/Hypotension

ia;5/
a;2/
openia;
ow

7/Hypoxia;2/
Acute respiratory
failure;
2/Pleural effusion

3/Abdominal pain;3/
Pancreatitis;2/
Dysphagia

13/Hypotension

/
;1/
openia

3/Hypoxia;1/
Respiratory
failure; 1/Pleural
effusion

1/Abdominal pain;1/
Diarrhoea;1/
Obstruction gastric

2/Hypotension

(Continued)

C
h
e
n
e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
2
.10

79
18

1

Fro
n
tie
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in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
6

(Patients
Number)

complications syste
complic

NCT02614066
(125)

20/Pyrexia;2:
Fatigue; 1:Chills;
1:Multiple organ
dysfunction
syndrome;1:Face
oedema

9/Bacteraemia;7/
Sepsis;6/
Pneumonia;1/
Cellulitis

9/tachycardia;1/
Cardiomyopathy

15/Encephalopathy;7/Aphasia;5/
Seizure;2/Cerebrovascular
accident;1/Immune effector cell-
associated neurotoxicity
syndrome;1/Brain oedema; 1/
Facial paralysis 1/Headache

1/Drug
hypersensitivity;1/
Graft versus host
disease;

6/Febrile
neutropenia
2/Pancytope
Disseminate
intravascula
coagulation
1/Cytopenia
1/Neutropen

NCT03019055
(22)

1/Fever;1/Multi-
organ failure

1/Upper respiratory
infection

1/Nervous system complications -
Other, specify

5/CRS 4/Blood and
lymphatic s
complicatio
1/Febrile ne

NCT03761056
(40)

3/Pyrexia;2/Non-
cardiac chest pain

3/infection;1/Covid-
19;1/Covid-19
pneumonia;1/
Cytomegalovirus
infection
reactivation

1/Atrial fibrillation; 1/
Sinus bradycardia; 1/
Supraventricular
tachycardia

5/Encephalopathy;1/
Neurotoxicity;1/Dysarthria;1/
Memory impairment; 1/
Haemorrhage intracranial

1/Anaemia;1
Neutropenia

NCT01865617
(195)

17/Fever;3/Multi-
organ failure

9/Infections and
infestations-Other,
specify;6/Lung
infection; 3/Sepsis

3/Atrial fibrillation; 3/
Sinus tachycardia; 2/
Cardiac arrest; 2/Heart
failure;
2/Left ventricular
systolic dysfunction

18/Encephalopathy;4/Seizure; 4/
Depressed level of
consciousness;2/Edema
cerebral;2/Nervous system
complications;1/Dysphasia

41/CRS 132/Febrile
neutropenia
2/Dissemina
intravascula
coagulation

NCT02659943
(21)

1/Fever 1/Lung infection 1/Cardiac arrest;
1/Sinus tachycardia

3/Syncope;1/Encephalopathy;1/
Tremor

1/Anemia;1
Neutrophil
decreased

NCT02348216
(292)

25/Pyrexia 7/Lung infection; 3/
Bacteraemia;2/
Adenovirus
infection;2/Covid-19;
1/Covid-19
pneumonia

4/Atrial fibrillation; 4/
Cardiac arrest; 2/Atrial
flutter; 2/Cardiac
failure

29/Encephalopathy;10/Aphasia;8/
Somnolence;5/Seizure;3/
Headache;3/Syncope;2/Depressed
level of consciousness; 2/
Haemorrhage intracranial; 1/
Immune effector cell-associated
neurotoxicity syndrome;

12/Febrile
neutropenia
5/Neutropen
Pancytopen
Thrombocy
2/Bone mar
failure

NCT02926833
(34)

3/Pyrexia;1/
Multiple organ
dysfunction
syndrome;1/
Localised oedema

1/Lung infection;
1/Sepsis

1/Supraventricular
tachycardia

10/Encephalopathy;2/Seizure;1/
Aphasia

1/
Haemophagocytic
lymphohistiocytosis

2/Anaemia;1
Neutropenia
Febrile neut
a

;

r
;
;

y
n
u

;

r
;

/
c

;

i
t
r

r
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TABLE 2 Continued

NCT
Number

General
complications

Infections and
infestations

Cardiac
complications

Nervous system
complications

Immune
system

complications

Blood and
lymphatic
system

complications

Respiratory,
thoracic and
mediastinal
complications

Gastrointestinal
complications

Vascular
complications

alopathy 1/Disseminated
intravascular
coagulation

6/Dyspnea;3/
Hypoxia

2/Diarrhea 6/Hypotension

alopathy;1/Somnolence 9/CRS 3/Febrile neutropenia 1/Dyspnea;1/
Pleural effusion

2/Abdominal pain;1/
Duodenal
hemorrhage

1/Hypotension

1/CRS

alopathy;1/Headache;1/
effector cell-associated
icity syndrome;1/

19/CRS;1/Graft
versushost disease
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2/Fever 2/Lung infection; 2/
Upper respiratory
infection

4/Sinus tachycardia; 1/
Supraventricular
tachycardia

1/Encep

NCT02706405
(29)

5/Fever;1/Multi-
organ failure

1/Bacteremia 2/Sinus tachycardia 2/Encep

NCT03958656
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1/Fever 2/Sinus tachycardia

NCT03568461
(97)
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TABLE 3 The incidence of clinical serious adverse events of CAR-T in solid tumors.

NCT
Number

Conditions Interventions Characteristics Country Adverse
event

assessment
criteria

Enrollment/
n

All-
Cause

Mortality
(n/Total)

Serious
adverse
events
(n/

Total)

Other (Not
Including
Serious)
Adverse
Events(n/
Total)

NCT02664363 Glioblastoma;
Gliosarcoma

EGFRvIII CAR-T
cells

Phase 1 United
States

CTCAE v5.0 3 3/3 1/3 3/3

NCT03330834 Advanced
Lung Cancer

PD-L1 CAR-T
cells

Phase 1 China CTCAE v4.0 1 1/1 1/1 1/1

NCT01454596 Malignant
Glioma;
Glioblastoma;
Brain Cancer;
Gliosarcoma

EGFRvIII CAR-T
cells

Phase 1
Phase 2

United
States

CTCAE v4.0 18 1/18 2/18 18/18

NCT01583686 Cervical
Cancer;
Pancreatic
Cancer;
Ovarian
Cancer;
Mesothelioma;
Lung Cancer

Anti-mesothelin
CAR-T cells

Phase 1
Phase 2

United
States

CTCAE v4.0 15 1/15 5/15 15/15

NCT01218867 Metastatic
Cancer;
Metastatic
Melanoma;
Renal Cancer

Anti-VEGFR2
CAR-T cells

Phase 1
Phase 2

United
States

CTCAE v3.0 22 1/22 5/22 21/22

NCT02761915 Relapsed or
Refractory
Neuroblastoma

Genetic/1RG-
CAR-T cells

Phase 1 United
Kingdom

CTCAE v4.0 12 6/12 5/12 12/12

NCT02706392 Hematopoietic
and Lymphoid
Cell Neoplasm;
Malignant
Solid
Neoplasm;
Metastatic
Lung Non-
Small Cell
Carcinoma;
Metastatic
Triple-
Negative
Breast
Carcinoma;
Recurrent
Acute
Lymphoblastic
Leukemia;
Recurrent
Mantle Cell
Lymphoma;
Refractory
Chronic
Lymphocytic
Leukemia

ROR1 CAR-T
cells

Phase 1 United
States

CTCAE v4.0 21 12/21 17/21 21/21
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TABLE 4 Summary of clinical serious adverse events of CAR-T in solid tumors(Patients Number/symptom).
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1/Hypoxia 1/Constipation

2/Hypoxia 1/Nausea;1/Vomiting

1/Dyspnea (shortness
of breath);1/Hypoxia

1/Encephalopathy 3/CRS 3/Febrile
neutropenia

2/Dyspnea
3/Hypoxia
1/Respiratory failure

3/Hypotension

1/Febrile
neutropenia;

1/Laryngeal
haemorrhage

C
h
e
n
e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
2
.10

79
18

1

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
9

Number
(Patients
Number)

tions

NCT03330834
(1)

NCT02664363
(3)

1/Generalized muscle weakness

NCT01583686
(15)

NCT01218867
(22)

1/Pain;3/ALT, SGPT (serum glutamic pyruvic
transaminase);3/AST, SGOT (serum glutamic
oxaloacetic transaminase);3/Bilirubin
(hyperbilirubinemia)

1/Infection

NCT01454596
(18)

1/Multi-organ failure

NCT02706392
(21)

13/Fever
1/Non-cardiac chest pain;1/Myalgia

NCT02761915
(12)

1/Pain;5/Pyrexia 1/Post procedural cellulitis;1/
Pseudomonal bacteraemia;1/
Pseudomonal sepsis;1/Urinary
tract infection
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CAR-T cells therapy in patients with R/R large B-cell lymphoma.

There are a lot of neurologic adverse events associated with

CAR-T cells therapy in the real world, which is a testament to

the truthfulness of clinical trial reports. Although real data on

CAR-T cells-associated neurotoxicity are limited, one study

found an inverse association between grade 3-4 neurotoxicity

and OS (43). According to these studies, neurological

dysfunction is universal and important in the clinical

application of CAR-T cells therapy.

2.1.3 Respiratory, thoracic and
mediastinal toxicities

In this study, 103 patients (8.53%) developed respiratory,

thoracic and mediastinal SAEs. The incidence of clinical

symptoms from high to low were hypoxia (45 cases),

respiratory failure (18 cases), dyspnea (12 cases), pleural

effusion (10 cases), pulmonary edema (6 cases), ARDS (6

cases), pneumonitis (2 cases), etc (Table 2). The most

common SAEs of the respiratory system is hypoxemia, and the

disease can progress to respiratory failure. Common co-

symptoms are dyspnea, pleural effusion, pulmonary edema,

ARDS, and pneumonia.

Researchers have found that respiratory SAEs are a leading

cause of death associated with CAR-T cells therapy. J. Pan et al.

(44) evaluated the safety of anti-CD7 CAR-T cells in 20 patients

with R/R T cells acute lymphoblastic leukemia (NCT04689659).

The results of the study found that all adverse events were

reversible, except for one patient who died from a related fungal

pneumonia. Similarly, in the study of R. Benjamin et al. (45), two
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treatment-related deaths occurred. One was caused by

neutropenic sepsis complicated by CRS, and the other by

pulmonary hemorrhage with persistent cytopenia. K. Rejeski

et al. (46) described the clinical course of a 59-year-old patient

with R/R large B-cell lymphoma who received Axicabtagene-

Ciloleucel. Severe pneumonia eventually leads to respiratory

failure and death. Furthermore, respiratory adverse events may

be affected by CRS. A. Goldman et al. (47) retrospectively

analyzed adverse events in 2657 patients who received CD19-

targeted CAR-T cells therapy. Cardiopulmonary adverse events

occurred in 546 patients (20.5%). Ultimately, the mortality rate

for cardiopulmonary adverse events was 30.9%. Studies have

shown associations between CAR-T cells and various

cardiopulmonary adverse events, including rapid respiratory

failure, hypoxemia, arrhythmias, cardiomyopathy, pericardial

and pleural diseases. In addition, the overlapping reports of

cardiopulmonary adverse events and CRS were found in 68.3%

of the cases. CRS may also be involved in the pathogenesis of

severe cardiopulmonary adverse events, which should be

considered in the multidisciplinary evaluation and monitoring

of CAR-T cells recipients.

2.1.4 Cardiovascular toxicities
In this study, 116 patients (9.60%) had vascular SAEs, and

the main clinical SAEs were hypotension (109 cases), thrombosis

(3 cases), hypertension (3 cases), etc (Table 2). 68 patients

(5.63%) had cardiac SAEs. The incidence of SAEs from high to

low are sinus tachycardia (28 cases), atrial fibrillation (10 cases),

cardiac arrest (8 cases), and supraventricular fibrillation
FIGURE 1

Occurrence of serious adverse events in various human systems in CAR-T cells clinical studies (The figure is produced using the BioRender
online graphics website). DIC, disseminated intravascular coagulation.
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tachycardia (5 cases), left ventricular systolic dysfunction (5

cases), heart failure (5 cases), myocardial dysfunction (2 cases),

etc (Table 2). Studies have found that the main SAEs of vascular

complications is hypotension, the pathogenesis may be due to

the occurrence of inflammation in the body produces a large

number of inflammatory cytokines released into the blood,

resulting in peripheral vascular dilatation (48, 49).

Arrhythmias occur in the cardiovascular system to compensate

for hypotension, so the most common arrhythmias are sinus

tachycardia and atrial fibrillation. Severe arrhythmias can

progress to cardiac arrest and eventually lead to heart failure

(50). In addition, symptoms of left ventricular dysfunction have

been seen in clinical studies (48, 51). Therefore, the occurrence

of adverse cardiovascular events may be due to the massive

cytokine release during CAR-T cells therapy.

Cardiovascular toxicity is not uncommon in patients

receiving CAR-T cells therapy (52). Adam Goldman et al. (47)

found that the occurrence of tachyarrhythmia was a major

adverse effect of the heart. Atrial fibrillation is the main

tachyarrhythmia, followed by ventricular arrhythmia. Studies

have also shown an association between CAR-T cells and

symptoms such as tachyarrhythmia, cardiomyopathy,

pericardial and pleural disease. Additionally, 10-30% of

patients also exhibit decreased left ventricular ejection function

(48). R. M. Alvi et al. (53) also reported a new reduction in

ejection fraction in 8 of 137 patients, 5 patients also experienced

arrhythmias, and 6 patients experienced cardiovascular death.

To examine cardiovascular adverse events associated with CAR-

T cells, A. Guha et al. (54) used the U.S. Food and Drug

Administration Adverse Event Reporting System (FAERS) to

observe 996 cases in which the most commonly reported

cardiovascular adverse event was arrhythmia (77.6%). This was

followed by heart failure (14.3%) and myocardial infarction

(0.5%). Cardiovascular adverse events associated with CAR-T

cells therapy were also associated with higher mortality.

Therefore, the use of CAR-T cells in tumor therapy should be

vigilant for cardiovascular events.
2.1.5 Gastrointestinal toxicities
In this study, 48 patients (3.97%) had gastrointestinal SAEs.

The incidence of SAEs from high to low were abdominal pain

(13 cases), diarrhea (9 cases), nausea (5 cases), colitis (4 cases),

dysphagia (4 cases), pancreatitis (3 cases), etc (Table 2). The

adverse events of CAR-T cells on the digestive system are

relatively less, and SAEs are mainly caused by gastroenteritis

leading to abdominal pain, diarrhea and other clinical

manifestations. A small number of adverse events of

pancreatitis were also observed. These results suggest that

CAR-T cells may be mainly through its cytokines acting on

gastrointestinal mucosa, leading to impaired barrier function

and the progression of mucositis (55). The incidence of SAEs in

the digestive system is significantly less than that in the nervous,
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immune, cardiovascular and respiratory systems. Moreover, the

severity of adverse effects is relatively mild, and no serious life-

threatening adverse events have been reported.

2.1.6 Infections and infestations
Infection-related SAEs occurred in 116 patients (9.60%). The

incidence of SAEs from high to low were lung infection (33

cases), upper respiratory infection(7 cases), sepsis (22 cases),

bacteraemia(15 cases), Covid-19(4 cases), and Covid-19

pneumonia(3 cases), etc (Table 2). The most common

infection is a respiratory tract infection, which can involve the

lungs in severe cases. Telli Dizman et al. (56) conducted a

systematic review and meta-analysis of the incidence of severe

infections in hematological malignancies treated with CAR-T

cells. The severe infection rate was 16.2%, with the respiratory

tract being the most common site of infection. This also

confirms the above views. The common pathogen is bacteria,

but it can also be seen in clinical studies of COVID-19 infection.

Besides, severe bacteremia and septicemia are often seen. The

immune barrier function may be impaired during CAR-T cells

therapy, allowing opportunistic pathogens to flourish (57).

Most infections after CAR-T cells therapy occur after

neutropenia and/or severe CRS, indicating a greater degree of

immune impairment (58, 59). Furthermore, most CAR-T cells

recipients had previously received other antitumor therapies,

including autologous and allogeneic hematopoietic cell

transplants. Preexisting cytopenia and hypogammaglobulinemia

increase the likelihood of infection (60, 61). The occurrence of

CRS co-infection may lead to a greater impact on the body, which

may not respond well to antimicrobial therapy. In the study

conducted by J. A. Hill et al. (58), 80% of patients had their first

infection within the first 10 days after CAR-T cells infusion, mainly

with gram-negative bacterial infections. Besides, 42% of patients

had predominantly viral infections within 30 days of infusion,

including respiratory viral infections and cytomegaloviremia and

pneumonia. Later infection may reflect a state of immunoglobulin

deficiency and lymphocytopenia (58). These studies suggest that

serious infection-related adverse events associated with CAR-T cells

therapy are not only related to CRS, but also to the patient’s

immunocompromised physical condition, posing a serious threat

to patient health.

2.1.7 Blood and lymphatic system toxicities
Blood and lymphatic system SAEs were found in 228

patients (18.87%). The incidence of SAEs from high to low is

febrile neutropenia (187 cases), neutropenia (12 cases), anaemia

(9 cases), pancytopenia (8 cases), thrombocytopenia (5 cases),

and disseminated intravascular coagulation (DIC) (5 cases), etc

(Table 2). The most common SAEs of hemolymph system is

neutropenia. As an important immune cell, neutrophils play an

important role in preventing the invasion of pathogenic

microorganisms. However, neutrophil depletion during CAR-T
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cells treatment may account for the susceptibility of the body to

infection-related diseases. Besides, the study found that patients

also had a decrease in various blood cells and platelets (62),

which indicates that the blood system may be seriously damaged

during the treatment.

When injected into the bloodstream to kill tumors, CAR-T

cells have been shown to be hemotoxic (62). L. Wang et al. (63)

retrospectively studied the characteristics and risk factors of

new-onset severe cytopenia after CAR-T cells infusion in 76

patients with R/R acute lymphoblastic leukemia. A high

incidence of new severe cytopenia was found, including severe

neutropenia (56,70%), severe anemia (66,53%), and severe

thrombocytopenia (64,48%). The study also found that people

with higher levels of CRS had higher incidence and longer

duration of severe cytopenia. Multivariate analysis showed that

the occurrence of CRS and higher grade of CRS were risk factors

for prolonged hematotoxicity. These observations lead to the

conclusion that the occurrence of CRS is associated with the

incidence of severe cytopenia, suggesting that CRS may be a

direct or indirect cause of hemotoxicity.
2.1.8 General toxicities
General SAEs occurred in 133 patients (11.01%). The

incidence of SAEs from high to low was pyrexia (116 cases),

multi-organ failure (7 cases), fatigue (3 cases), etc (Table 2). The

most common adverse effect of the body is pyrexia, which is

mainly caused by the massive release of inflammatory factors

into the blood during CRS, but the possibility of subsequent

infection after the immune system is compromised cannot be

ruled out (57). Therefore, it is difficult to distinguish CRS or

infection from fever alone during CAR-T cell therapy.
2.2 SAEs of CAR-T in the treatment of
solid tumors

In this study, nervous system SAEs occurred in 2 cases

(2.17%) during the treatment of solid tumors. Confusion (1 case)

and encephalopathy (1 case) were the SAEs (Table 4). There

were 3 cases (3.26%) of SAEs in Immune system and the main

SAEs was CRS (Table 4). The type of SAEs of CAR-T cells in the

treatment of solid tumors is basically similar to that of the

hematological tumors. However, no cardiovascular adverse

events were found in the included studies. In addition, this

study have found that the incidence of neurological SAEs and

CRS in solid tumors is lower than that in hematological tumors

(Figure 2). Similarly, a clinical study (NCT03874897) conducted

by C. Qi et al. (64) evaluated the safety and efficacy of CAR-T

cells targeting CLDN18.2 in the treatment of gastric cancer.

Results of 37 patients treated, 94.6% had grade 1 or 2 CRS.

However, no deaths have been reported. Besides, Y. Liu et al.

(65) conducted a phase I trial (NCT01869166) to evaluate the
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safety and efficacy of autologous anti-EGFR CAR-T cells in

patients with metastatic prostate cancer in 14 patients. No SAEs

such as cardiovascular system, nervous system, blood system and

CRS were found. Furthermore, Y. Zhang et al. (66) also

evaluated the safety of EGFR-targeted CAR-T cells in the

treatment of small cell lung cancer. The most common

adverse events were grade 1 to 3 fever. No patients had grade

4 adverse events or severe CRS. The tumor-killing sites of CAR-

T cells are different in hematological tumors than in solid

tumors. Solid tumors are more limited to tumor tissues due to

targeted guidance, while hematological tumors cover the entire

blood system due to tumor cells dispersed in the blood system.

Therefore, some SAEs of CAR-T cells in hematological tumors

may be more severe than those in solid tumors.

In this study, Respiratory, thoracic and mediastinal SAEs,

Infection-related SAEs, Blood and lymphatic system SAEs,

General SAEs occurred in 13 cases (14.13%), 5 cases (5.43%),

8 cases (8.70%) and 33 cases (35.87%) respectively (Table 4).

Similarly, Z. Zhao et al. (55) conducted a meta-analysis involving

10 studies (94 patients) that reported the occurrence of adverse

events during the treatment of digestive system tumors with

CAR-T cells. The study found that the five most common side

effects were fever, lymphadenia, pain other than abdominal pain,

thrombocytopenia and fatigue. The specific SAEs types were

basically the same as those of hematological tumors.

Interestingly, these findings suggest that CAR-T cells SAEs in

solid tumors and hematological tumors are similar.
3 The pathological mechanism of
SAEs in the treatment of malignant
tumors by CAR-T cells

It has been established that CRS and ICANS are the two major

causes of all complications associated with CAR-T cells therapy (31,

42, 67, 68). In light of this, understanding the pathological

mechanism of CRS and ICANS is of theoretical importance when

dealing with patients with severe complications.

CRS is a systemic inflammatory response, and current

studies have shown that it can be induced by a variety of

factors, including severe infection, followed by drugs, such as

CAR-T cells and monoclonal antibodies (69–74). Severe viral

infections such as influenza and COVID-19 can also trigger CRS

through massive immune and non-immune cell stimulation

(75). CRS is usually associated with tumor load and usually

occurs between day 1 and week 2 after CAR-T cells infusion (76,

77). All systems of the body are affected by CRS, including fever,

myalgia, anorexia, hypotension, tachycardia, arrhythmia,

shortness of breath and hypoxia, coagulopathy, respiratory

failure, shock and organ dysfunction etc (42, 46, 48, 57, 78).

Upon interaction of CAR-T cells with the corresponding

target antigen, inflammatory cytokines and chemokines such as
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interferon (IFN) g, tumor necrosis factor (TNF)a, granulocyte
macrophage colony-stimulating factor (GM-CSF), interleukin

(IL)-6, IL-10 are released (79–82). High secretion of these

cytokines can lead to systemic inflammatory response-CRS.

However, not all of these cytokines were secreted by activated

CAR-T cells. Activating peripheral immune and non-immune

cells such as monocytes, macrophages, dendritic cells, and

endothelial cells is accomplished by CAR-T cells binding to

antigens on tumor cells (83, 84). It has been shown that

xenogeneic models emphasize the role of host immune cells in

CRS pathogenesis, suggesting that IL-6 is primarily released by

monocytes, macrophages, and dendritic cells, not CAR-T cells

(82, 85, 86). Since IL-6 plays a key role in CRS, depleting

macrophages (87) and eliminating monocytes (86) may reduce

its severity. Further, inhibiting GM-CSF signaling alleviates

symptoms of CRS (88, 89).

ICANS was another cause of SAEs during CAR-T cells

therapy (40, 76, 90–92). In addition to CD19, CAR- T cells

targeting CD22, BCMA, and other hematopoietic antigens have

also been observed for neurotoxicity (11, 13, 93–95). Other

treatments involving immune effector cells have also been

reported to cause similar neurotoxic effects (96, 97). Therefore,

the neurotoxicity of CAR-T cells was renamed ICANS (80,

98).ICANS can occur in conjunction with or independently of

CRS (83, 99, 100). ICANS occurs independently and the general

neurological symptoms tend to be mild (35). Typically, ICANS

appear 4-5 days after CAR-T cells therapy, but delayed ICANS

have also been reported after CAR-T cells therapy (26, 34, 98).

ICANS typically manifest as disturbances in attention and

consciousness, and expressive aphasia is considered a fairly

specific early sign of ICANS (26). ICANS can further develop
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into low levels of consciousness, coma, epilepsy, motor

weakness, and cerebral edema. All cases of fatal cerebral

edema are associated with CRS (34, 35), and severe CRS has

been shown to be associated with severe ICANS (92, 101, 102).

At present, relatively little is known about the pathophysiology

of ICANS. ICANS have been associated with CAR-T cells

transport in the central nervous system (98, 103, 104), passive

diffusion of cytokines into the central nervous system (26, 34,

105), endothelial activation with impaired blood-brain barrier

(26, 34), activation of microglia and myeloid cells in the central

nervous system with secretion of IL-1 and IL-6 (85, 86).
4 Strategies to deal with SAEs of
CAR-T cells therapy

The primary cause of CAR-T cells-associated SAEs is CRS

and ICANS (31, 42, 67, 68), so treating SAEs involves preventing

CRS and ICANS, as well as alleviating symptoms (67, 106). The

specific measures were on one hand to optimize the CAR-T cells

structure to reduce cytokine release. On the other hand, clinical

management should be strengthened to find and correct CRS

and ICANS in time to reduce the occurrence of related SAEs.
4.1 Optimization of CAR-T cells structure

Stable proliferation and activation of CAR-T cells in the

tumor microenvironment are the prerequisite for tumor killing,

but safety is also crucial (107). Endogenous non-effector
A B

FIGURE 2

Incidence of serious adverse events of CAR-T cells in hematological and solid tumors. (A) is the incidence of serious adverse events of
hematological tumors; (B) is the incidence of serious adverse events in solid tumors.
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immune cells are also expanded during CAR-T cells therapy. In

studies on CRS, monocytes and macrophages were found to be

the major source of cytokines associated with severe

manifestations (31, 108). A large number of preclinical studies

have demonstrated that different CAR-T cells structures and

scFv sequences can produce different tumor killing efficacy (17,

109–112). Additionally, CAR-T cells must be positively

regulated by a large number of cytokines in order to kill

tumors. Therefore, CAR-T cells constructs were designed to

activate and maintain CAR-T cells while attenuating monocyte

and macrophage activation. The structure of CAR-T cells is

correlated with the incidence of CRS. To reduce the risk of CRS,

newly designed next-generation CAR-T cells therapy is being

developed for hematopoietic malignancies and solid tumors. S.

Balagopal et al (113) have discussed Six interesting approaches

to control cytokine production in CAR-T cells therapy: adaptor-

based strategies, orthogonal cytokine–receptor pairs, regulation

of macrophage cytokine activity, autonomous neutralization of

key cytokines, kill switches and methods of reversible

suppression of CARs. With these strategies, future CAR-T cells

therapies will be designed to preemptively inhibit CRS,

minimizing patient suffering and maximizing the number of

patients who benefit.

Furthermore, the selection of different costimulatory

domains by CAR-T cells affected the occurrence of ICANS.

Approximately 45% of patients treated with CAR-T cells

containing CD28 as a costimulatory domain develop high-

grade ICANS (39, 91, 92, 114, 115). However, ICANS was less

common during treatment with CAR-T cells using 4-1 BB as the

co-stimulatory domain, with 13% of patients experiencing severe

ICANS (76, 77). W. Luo et al. (116)conducted a meta-analysis

involving 52 studies including 2,004 patients. Hematotoxicity

analysis of CD19 CAR-T cells subsets demonstrated that 4-1BB,

as a costimulatory domain, had less hematotoxicity than CD28.

Therefore, it is of great significance to optimize the selection of

co-stimulatory domain to avoid the occurrence of ICANS.

The development of relatively specific targets for solid

tumors is also crucial. It is well known that specific targets

have not been found in the treatment of solid tumors, and only

tumor-associated targets are used in CAR-T cells (117, 118).

This leads to the possibility that CAR-T cells targeting such

targets may cause cytotoxicity outside the tumor. R. A. Morgan

et al. (119) reported that CAR-T cells targeting HER-2 in the

treatment of colorectal cancer, because CAR-T cells

simultaneously targeted and killed the patient’s pleural cells,

the patient eventually died of respiratory failure. The above case

report indicates that it is crucial to select relatively specific

targets in the treatment of solid tumors with CAR-T cells.

Therefore, the treatment of solid tumors with CAR-T cells

should first optimize the selection of targets, and then design

more optimal CAR frames to reduce the occurrence of CRS

while killing tumors.
Frontiers in Immunology 14
4.2 Clinical management and medication

The management of SAEs in CAR-T cells therapy is actually

primarily about controlling CRS. Standardized grading of

clinical adverse events was first required using the common

terminology criteria for adverse events (CTCAE) (120) and

CAR-T cells therapy-related toxicity (CARTOX) scoring

systems. If CRS is suspected, the patient should be graded at

least twice a day as the patient’s condition changes (121).

Management of CRS should be determined on a hierarchical

basis, and low-grade CRS can be managed mainly through

supportive care. The anti-IL-6 receptor antagonist tocilizumab

and/or corticosteroids are considered when high-grade CRS and

persistent refractory fever or fluid-refractory hypotension occur

together (98).

The use of steroids for the suppression of excessive

inflammatory responses and CRS has been proven in clinical

experience (67). Several views exist regarding when and how

corticosteroids should be administered. Some choose to use

corticosteroids as a first-line agent, while others don’t (83). It

is important to recognize that corticosteroids have general effects

on the immune system, which may also affect the antitumor

efficacy and the amplification and persistence of CAR-T cells in

vivo (122). Therefore, steroids should be avoided as first-line

treatment, but used when ablating CAR-T cells is necessary in

patients with severe CRS and who are resistant to other

treatments. Furthermore, steroids are recommended for

patients who are experiencing adverse neurological effects.

Tocilizumab is a humanized monoclonal antibody to the IL-

6 receptor that inhibits the IL-6 signaling pathway (76, 123). It

was approved by the FDA in 2017 as the first treatment for CRS-

related toxicity following CAR-T cells infusion. Tocilizumab

controlled CRS but did not significantly reduce CAR-T cells

activity. The favorable effect of a single injection in patients with

CRS induced by CAR-T cells therapy strongly suggests that IL-6

blocking may constitute a novel therapeutic approach for the

treatment of severe systemic inflammatory responses. In patients

who respond, fever and low blood pressure improve within a few

hours, while in some patients supportive treatment is needed for

several days. H. Liu et al. (124) evaluated the antitumor effect

and safety of PD-L1-targeted CAR-T cells in patients with non-

small cell lung cancer through a phase I clinical study. One

patient in the trial developed severe CRS with symptoms of

pneumonia and respiratory failure. The patient was given

oxygen and treated with intravenous tocilizumab and

methylprednisolone. The patient’s symptoms improved quickly

and the lung inflammation gradually subsided. Besides, K. Qi

et al. (125) analyzed the adverse events after treatment in 126

patients with hematologic malignancies who received CAR-T

cells therapy. The results showed that cardiac adverse events

associated with CAR-T cells therapy were common and related

to the development of CRS. For patients with grade 3-5 CRS,
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timely administration of corticosteroids and/or tocilizumab can

effectively prevent the occurrence and development of cardiac

disease. However, a large number of patients are resistant to

tocilizumab (98). Another therapeutic agent is a monoclonal

antibody targeting IL-6, siltuximab, which has a higher affinity

for IL-6 than tocilizumab for the IL6 receptor, making it a

potential smoke screen for CRS treatment (126). Siltuximab is

encouraged in patients who do not respond to tocilizumab

and corticosteroids.

Clinically, because the clinical manifestations of infection

and CRS are very similar (28, 127). Thus, diagnosis of infection

becomes difficult when CRS are present. However, the treatment

of CRS and infection is different (83, 98). CRS can be successfully

improved with IL-6 receptor inhibitors and corticosteroids,

whereas infection requires immediate initiation of antibiotic

therapy (83). Therefore, it is necessary to distinguish between

infections and CRS for appropriate treatment in CAR-T cells

therapy. H. Luo et al. (49) selected 109 cases from three clinical

trials (ChiCTR-OPN-16008526, ChiCTR-OPC-16009113,

ChiCTR-OPN-16009847) to analyze the characteristics of

infection events within 30 days after CAR-T cells infusion.

The “IL-6 double peak” was found in most patients with life-

threatening infections. Secondly, the prediction model

constructed by IL-8, IL-1b and IFN-g has high sensitivity and

specificity for predicting life-threatening infections. This study

indicates that the selection of effective markers during CAR-T

cells therapy is very important for the diagnosis of life-

threatening infections during CAR-T cells therapy and helps

to reduce the risk of infection-induced death.

In addition, the classification and management of ICANS is

also particularly important. It is recommended to have a

neurological assessment prior to starting CAR-T cells therapy

and to have one every day for the first 10 days following the

infusion of CAR-T cells (128). Most commonly used tools for

detecting and monitoring ICANS are the ICE score and ICANS

grading system. The management of patients with grade 3 or

greater ICANS should be conducted in the ICU, including the

provision of airway support if the patient is not conscious

(38, 128).

Corticosteroids are the mainstay of treatment for ICANS.

While corticosteroids may reduce the antitumor effects of CD19

CAR-T cells (122, 129), they are appropriate for the treatment of

moderate to severe ICANS due to their ICANS reversal effect.

Generally, patients with low initial consciousness level are

recommended to use dexamethasone for 1-3 days. The

treatment for grade 4 ICANS includes 1000 mg of

methylprednisolone, as the patient may not be able to wake

up, may be epileptic, or may exhibit imaging characteristics of

cerebral edema (128, 130). For patients with severe ICANS

characterized by cerebral edema, some groups advocate

supportive measures to manage elevated intracranial pressure,

including the use of intracranial pressure monitors, decreasing

intracranial pressure, etc (38, 128).
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Tocilizumab can be used to treat ICANS, with the greatest

benefit when ICANS occurs early and/or in conjunction with

CRS (38, 98). It may be due to the increased permeability of the

blood-brain barrier in the early stages, which facilitates

tocilizumab ‘s entry into the brain (98). Studies have shown

that tocilizumab may aggravate neurotoxicity, and the proposed

mechanism is that blocking IL-6 receptors with tocilizumab may

lead to increased circulating IL-6 in the central nervous system.

Therefore, treatment with a monoclonal antibody (siltuximab)

directly binding to IL-6 is recommended (38, 131, 132).

Siltuximab directly bound to IL-6 may be more beneficial in

isolated ICANS cases (38). Preclinical studies suggest that future

therapies such as monoclonal antibodies targeting IL-1 may

benefit ICANS, although clinical evidence is unproven for the

time being (86, 130, 133). In early trials, when ICANS appeared,

antiepileptic drugs were prophylactically administered to the

clinic. The benefits of prophylactic use of antiepileptic drugs,

which have not been proven to reduce epilepsy complications

definitively, remain controversial (26, 38, 105). The use of

benzodiazepines to treat sudden seizures is effective in most

cases, although refractory or prolonged seizures may also occur

(26, 105). Levetiracetam appears to be the preferred antiepileptic

agent for ICANS patients, possibly because of its low incidence

of drug interactions and good safety (38, 98).

Based on available evidence and clinical experience, the

NCCN Guidelines for management of immunotherapy-related

complications also provided recommendations on monitoring

patients receiving CAR-T cells therapy (22). Patients

with underlying organ dysfunction may have additional

adverse events when receiving CAR-T cells therapy, and

multidisciplinary intervention is particularly important for

these patients when SAEs occur. Since SAEs caused by CAR-T

cells can be seen in various organs of the body, the importance of

multidisciplinary collaboration in CAR-T cells therapy is

emphasized finally.
5 Discussion

CAR-T cells technology is a major breakthrough in the field

of cancer, as the star of tumor immunotherapy has brought light

to patients with advanced tumors, especially B cell-derived

hematological tumors and multiple myeloma (134–136). More

and more studies have shown its efficacy in a variety of cancers,

and a large number of clinical studies on hematological tumors

and solid tumors are ongoing. However, data from a growing

number of clinical trials indicate that all CAR-T cells therapies

have unique adverse events, such as CRS and ICANS (67, 137).

Its adverse events can cause clinical symptoms in many systems

of the whole body, manifested as a high incidence, serious can

endanger life (68, 138). Therefore, it is important to pay

attention to the occurrence of SAEs during CAR-T cells
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therapy for advancing the treatment of advanced

malignant tumors.

In this review, we summarize a subset of studies in the

treatment of hematological malignancies and solid tumors and

analyze the occurrence of clinical SAEs in the included studies.

In combination with published clinical studies, CRS was found

to be associated with SAEs in all major systemic systems. In

addition, all cases of severe ICANS were found to be associated

with CRS (34, 35).Thus, we found that CRS may be a major

cause of life-threatening adverse events in the treatment of

malignant tumors with CAR-T cells. In fact, cytokines play a

dual role in CAR-T cells therapy. On the one hand, they activate

CAR-T cells to kill tumor cells (110, 111, 139, 140). At the same

time, it activates the non-effector immune cells and then

produces a large number of negative cytokines, which leads to

the damage of the body (81, 85, 141). Therefore, to be widely

used in the treatment of malignant tumors in the future, CAR-T

cells technology must be further optimized in the design process

to activate CAR-T cells while reducing the impact on non-

effector immune cells.

This review also provides an overview of the management

and treatment of SAEs during CAR-T cells therapy. In view of

the high incidence of SAEs in the clinical application of CAR-T

cells (67, 142), it is necessary to closely monitor the vital signs of

patients in clinical application, timely evaluate the CRS grade,

and timely give standardized treatment according to the grade

(67, 138). Most SAEs can be reversed (137), and patients will

benefit most from timely multidisciplinary consultation.

In addition, the comparison of SAEs after CAR-T cells

therapy for hematological and solid tumors included in this

review may be different. Firstly, cardiac SAEs were not found in

the solid tumor study. Secondly, the incidence of SAEs of

nervous system and CRS in solid tumors is lower than that in

hematological tumors (Figure 2). W. Lei et al. (143) included a

total of 2592 patients in 84 studies for meta-analysis, and

analyzed the differences in the incidence of CRS and ICANS of

CAR-T cells in different tumor types. The results showed that

the incidence of CRS and ICANS in hematologic malignancies

was significantly higher than that in solid tumors. Our findings

are confirmed by this study. CAR-T cells mainly exist in tumor

tissues during the treatment of solid tumors because of the

targeted guidance. Nevertheless, CAR-T cells need to be

disseminated throughout the blood system in the treatment of

hematological tumors, so the cytokines produced may be more

readily disseminated in the body, which may be the reason for

the difference in the incidence and severity of some adverse
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events during the treatment of hematologic and solid tumors

with CAR-T cells therapy.
6 Conclusion

In conclusion, CAR-T cells technology can produce a variety

of SAEs in the treatment of malignant tumors, which can occur

in various systems of the body and can be life-threatening in

severe cases. Studies have shown that CRS and ICANS may be

the main causes of the above clinically SAEs. Therefore, through

strict clinical grading and management of CRS and ICANS, most

of the adverse events can be alleviated.
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