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The extrinsic factors important
to the homeostasis of allergen-
specific memory CD4 T cells

Aryeong Choi, Yong Woo Jung* and Hanbyeul Choi*

Department of Pharmacy, Korea University, Sejong-si, Republic of Korea
Memory T cells, which are generated after the primary immune response to

cognate antigens, possess unique features compared to naïve or effector T

cells. These memory T cells are maintained for a long period of time and

robustly reactivate in lymphoid or peripheral tissues where they re-encounter

antigens. Environments surroundingmemory T cells are importantly involved in

the process of the maintenance and reactivation of these T cells. Although

memory T cells are generally believed to be formed in response to acute

infections, the pathogenesis and persistence of chronic inflammatory diseases,

including allergic diseases, are also related to the effector functions of memory

CD4 T cells. Thus, the factors involved in the homeostasis of allergen-specific

memory CD4 T cells need to be understood to surmount these diseases. Here,

we review the characteristics of allergen-specific memory CD4 T cells in

allergic diseases and the importance of extrinsic factors for the homeostasis

and reactivation of these T cells in the view of mediating persistence,

recurrence, and aggravation of allergic diseases. Overall, this review provides

a better understanding of memory CD4 T cells to devise effective therapeutic

strategies for refractory chronic inflammatory diseases.

KEYWORDS

allergen-specific memory CD4 T cells, homeostasis, chronic inflammatory diseases,
microenvironments, extrinsic factors
Abbreviations: AD, atopic dermatitis; BALF, bronchoalveolar lavage fluid; CCR4, C-C chemokine receptor

type 4; CCR8, C-C chemokine receptor type 8; CRTH2, chemoattractant receptor-homologous molecule

expressed on Th2; CXCR6, C-X-C Motif Chemokine Receptor 6; DAMPs, damage-associated molecular

patterns; DCs, dendritic cells; FA, food allergy; Th, helper T; PAMPs, pathogen-associated molecular

patterns; PBMCs, peripheral blood mononuclear cells; Treg, regulatory T; TRM, resident memory T; TSLP,

thymic stromal lymphopoietin; TARC, thymus- and activation-regulated chemokine.
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1 Introduction

Effector CD4 T cells, referred to as helper T (Th) cells, perform

protective functions after evasion of distinct types of infectious

pathogens, including viruses, bacteria, parasites, and fungi, by

enhancing the functions of phagocytes, B cells, or other T cells

through the secretion of cytokines (1–3). Th cells, including Th1,

Th2, and Th17 cells, differentiate from naïve CD4 T cells after

receiving proper cytokines depending on the type of infection or

antigen during early immune responses (4, 5). Of particular interest

are Th2 cells, because it is known that Th2 cells steer the pathogenesis

of diverse allergic disorders by secreting principal type 2 cytokines,

including IL-4, IL-5, IL-13, and IL-9 (6–8). These cytokines affect

other immune cells, such as B cells, mast cells, eosinophils, as well as

non-immune cells, including goblet cells and smooth muscle cells,

which drive the pathogenesis of allergic disorders (9, 10).

When antigens are cleared by the immune system, most

effector T cells die and only a small portion of these cells

survive to serve memory functions. Once these memory T cells

re-encounter their antigens, they respond robustly to protect the

body by directly killing abnormal cells or further stimulating other

immune or non-immune cells. Although these memory functions

are generally useful in infectious diseases, the importance of

memory CD4 T cells in the pathogenesis of chronic

inflammatory diseases, such as allergic or autoimmune diseases,

has been documented. For example, the numbers of CD45RO+

memory CD4 T cells in the nasal mucosa of patients with seasonal

allergic rhinitis increased during continuous exposure to allergens

during the pollen season compared to the non-pollen season (11).

In addition, memory Th2 cells enhanced the severity of allergic

responses, such as eosinophilic lung inflammation and airway

hyperresponsiveness, after re-exposure to allergens in

experimental allergic asthma models and atopic patients (12, 13).

In addition to their ability to induce robust recall responses,

memory T cells retain the capacity to survive antigen-

independently and restore their populations using external

cytokines from their surrounding microenvironments (14, 15).

This characteristic of memory T cells is referred to as homeostasis

and is crucial for the maintenance and exacerbation of allergic

diseases. Thus, in this review, we summarize the recent findings

on allergen-specific memory CD4 T cells and their external

homeostatic microenvironments that mediate the pathology of

allergic diseases such as allergic asthma, atopic dermatitis (AD),

and food allergies (FA).
2 The characteristics of allergen-
specific memory CD4 T cells in
allergic disorders

Allergic disorders caused by innocuous environmental

antigens manifest aberrant immune reactions in accordance
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with the exposure of allergens to the epithelium, including the

lung, airways, skin, and gastrointestinal tract. Although allergic

responses vary depending on the tissue, allergen-specific

memory CD4 T cells in barrier tissues orchestrate the

pathology of these diseases (Figure 1A).
2.1 Residency and the functions of
allergen-specific memory CD4 T cells
in allergic asthma

Allergic asthma is a chronic inflammatory disease of the lung

that is continuously exposed to inhaled external materials,

including allergens. Th2 cells, major players in the pathology

of allergic lung inflammatory disease, accumulated in the

bronchoalveolar lavage fluid (BALF) of allergic asthma

patients (16). In addition, many studies have highlighted the

memory responses of Th2 cells in the pulmonary system in

experimental animal models and in asthmatic patients (9, 17–

21). These studies provide clues that allergen-specific memory

Th2 cells are present in the lungs of asthmatic patients. However,

the characteristics of memory Th2 cells have directly not been

analyzed for their lifespan and migratory capacity until recently.

This was probably due to the proposal that the lung does not

provide favorable microenvironments for the survival of

memory T cells (22).

Previously, our group employed TCR-transgenic mice and

measured the longevity of allergen-specific memory CD4 T cells.

We found that these cells survived for over 70 days in the murine

lung and airways suffering from allergic inflammation (23).

Moreover, it was discovered that allergen-specific memory

CD4 T cells showed residency in these tissues and induced

rapid and enhanced allergic lung inflammation upon allergen re-

exposure. Other groups have suggested that resident memory T

(TRM) cells in the lung are reactivated by allergens in situ and

have transcriptional characteristics distinct from those of

circulating memory Th2 cells (17, 18, 24). In human

asthmatics, allergen-specific CD4 T cells were discovered in

BALF after segmental allergen challenge, and these cells

mediated allergic lung inflammation by providing type 2

cytokines and eosinophil recruitment (6, 9, 25). Additionally,

the microbiota in the upper airways of humans was correlated

with the development of adult asthma (26). Contrary to the

original proposal, these studies support the notion that allergic

lungs provide favorable microenvironments for the homeostasis

of allergen-specific memory CD4 T cells.

Recently, it has also been shown that IL-17 producing cells

participate in inducing and maintaining allergic asthma. These

IL-17-producing memory CD4 T cells were reported to develop

from allergen-specific memory Th2 cells after stimulation by

proinflammatory cytokines, and to aggravate allergic asthma

upon allergen re-exposure in mice and humans (27). Moreover,

dual-positive Th2/Th17 cells differentiated from Th2 cells
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1080855
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Choi et al. 10.3389/fimmu.2022.1080855
correlated with asthma severity and decreased responsiveness to

dexamethasone in the BALF of asthmatic patients (28). These

results may indicate that allergen-specific memory CD4 T cells,

particularly Th2 cells, mediate disease relapses and aggravation,

including steroid unresponsiveness in the lung.
2.2 The importance of Th2 and TRM cells
in various allergic skin diseases

Allergic skin diseases, such as AD and atopic eczema,

induced by protein allergens or chemicals, are multifactorial

and complex diseases (29). Similar to asthma, several reports

have raised a point that these allergic skin diseases are also

considered to be initiated and maintained by CD4 T cells (30–

33). Upon allergic stimulations, CD4 T cells were shown to

migrate massively into the epidermis of itchy sites and induce

type 2 immune responses to mediate allergic skin diseases (34,

35). When allergic eczema patients were rechallenged with

allergens, the numbers of allergen-reactive Th2 cells increased,

mainly due to the proliferation of these cells in the skin lesions

(36). Another study using AD patients presented that allergen-

specific Th2 cells persisted in the skin for more than four

years (37).

In the case of allergic contact dermatitis and contact

hypersensitivity, hapten-specific CD4 TRM cells accumulated

even after the skin has healed (38). Further, these cells

expanded in the dermis and were sufficient to mediate skin

inflammation after re-exposure to the same hapten. Thus, in this

type of allergic disease, skin-resident allergen-specific memory

CD4 T cells are crucial for mediating local skin inflammation.

Altogether, allergen-specific memory CD4 T cells steer the

recurrence and exacerbation of allergic inflammation through

their persistence and reactivation in the skin.
2.3 Th2 responses in FA

FA triggers diverse symptoms by mediating type 2

inflammation in various tissues, including the cutaneous and

respiratory systems, as well as the gastrointestinal system. In

underlying pathologic mechanisms of FA, allergen-specific IgE

and Th2 cells are considered important mediators (39–42). In

accordance with the development of research tools, recent

studies have indicated that allergen-specific CD4 T cells, in

particular, IL-13-producing follicular helper T cells, play a role

in the production of high affinity IgE rather than Th2 effector

cells (43). These findings highlight that allergen-specific CD4 T

cells are also involved in the pathology of FA.

Another important aspect of FA is the breakdown of oral

tolerance. Oral tolerance to food antigens is mainly maintained

by antigen-specific regulatory T (Treg) cells (39, 44). The
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activation of STAT6 in these Treg cells stimulated by IL-4

reprogrammed and converted them into a Th2-like phenotype,

resulting in an imbalance in oral tolerance (Figure 1B) (45).

Recently, a greater proportion of activated Tregs and memory-

like Treg cells were observed in peripheral blood mononuclear

cells (PBMCs) of peanut-allergic patients compared to non-

allergic controls (46). Since severe manifestations, such as

anaphylaxis, are induced after re-exposure to food antigens, it

was speculated that food allergen-specific memory CD4 T cells

are present in the gastrointestinal system (47). Although the

presence and characteristics of allergen-specific memory CD4 T

cells in the gut are yet to be defined, these diseases appear to

represent memory responses to food allergens.
2.4 The phenotypes of various allergen-
specific memory CD4 T cells

There have been many attempts to identify allergen-specific

memory CD4 T cells regarding to their functions or disease

severities in allergic disorders. Among the markers used to

define the populations, cytokine or chemokine receptors

expressed on CD4 T cells have well been elucidated as

characteristics of allergen-specific memory CD4 T cells and

Treg cells that mediate their recruitment and regulate their

functions in the tissue (Figure 1). These receptors include C-C

chemokine receptor 4 (CCR4), a chemoattractant receptor-

homologous molecule expressed on Th2 (CRTH2), C-C

chemokine receptor type 8 (CCR8), and C-X-C Motif

Chemokine Receptor 6 (CXCR6).

2.4.1 CCR4
CCR4 is highly expressed on Th2 cells and contributes to the

migration of antigen-specific Th2 cells into inflamed tissue sites

(48). In asthmatics, the frequency of CCR4+ CD4 T cells was

higher in the BALF than in children without any airway diseases

(49). Moreover, it has been shown that the frequencies of CCR4+

CD45RO+ CD4 T cells representing the memory phenotype

were higher in allergic patients than in healthy subjects, and that

these increased frequencies were positively correlated with AD

disease severity (30, 50). In the case of FA, allergen-specific

memory CD4 T cells indicated a CCR4+ phenotype in the PBMC

of shrimp-allergic individuals (51).

2.4.2 CRTH2
The role of CRTH2, which has been used to identify human

Th2 cells, includes the production of IL-4, IL-5, and IL-13,

chemotaxis of Th2 cells in response to prostaglandin D2, and

prevention of apoptosis (52–54). A greater number of CRTH2+

CD4 T cells was observed in patients with allergic diseases and

was positively correlated with the severity of allergic airway or

gastrointestinal inflammation (55–57). CRTH2+ allergen-
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specific memory CD4 T cells are associated with poor

compliance to corticosteroids in allergic pulmonary

inflammation (58). In addition, a recent study showed that

CRTH2 expression on Tregs was also correlated with the

malfunction of them as well as enhanced function of Th2 cells

in allergic asthmatics (59).

2.4.3 CCR8
The expression of CCR8 has a potential for driving the

migration of CD4 T cells including Th2 cells and Foxp3+ CD4 T

cells into allergic inflammatory sites (60). In atopic asthmatics

and dermatitis patients, CCR8-expressing Th2 cells infiltrated in

the airways and skin after allergen challenge, respectively (61,
Frontiers in Immunology 04
62). Among the compartments of T cells in the skin, CCR8+ CD4

T cells are associated with a resident memory phenotype, CD69

and CD103, and greater proliferation capacity in in vitro

stimulation (63).

2.4.4 CXCR6
CXCR6 is required for the localization of TRM cells in

various infection models (64, 65). The level of this gene was

highly expressed in the lung CD4 TRM cells than in circulating

memory CD4 T cells after allergic lung inflammation (17).

Moreover, recent research reported that the CXCR6 expression

on Th2 cells correlated with the severity of atopic

dermatitis (66).
B

A

FIGURE 1

The phenotypes of allergen-specific memory CD4 T cells and Treg cells. (A) Allergen-specific memory Th2 cells express diverse cytokine and
chemokine receptors that are correlated with the pathogenesis of allergic diseases. (B) Treg cells express diverse cytokine and chemokine
receptors. To maintain the immune tolerance, TGF-bR needs to be expressed on Treg cells. This receptor signaling mediates RORgt
transcription factor for anti-inflammatory functions of Treg cells. In dysfunctional Treg cells, hyperactive IL-4-STAT6 axis and no TGF-b
signaling enhances type 2 cytokine production. These receptors contribute to the type 2 cytokine production by Th2 cells and dysfunctional
Th2-type Treg cells during the pathogenesis of allergic diseases.
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2.4.5 Others
Rechallenge of allergens increased the expression of diverse

cytokine receptors on allergen-specific CD4 T cells. Type 2-

associated innate immune receptors, including ST2 (IL-33

receptor) and IL17RB (IL-25 receptor), were highly expressed

on allergen-specific CD4 T cells from the BALF of patients with

allergic asthma after an allergen challenge (9). In the case of

allergic rhinitis, the expression of IL17RB on CD4 T cells also

increased in the blood of patients with seasonal allergic rhinitis

after exposure to natural allergens (67). Moreover, ST2

expressing lung CD4 TRM cells contribute to the induction of

excessive steroid-resistant eosinophilic inflammation in the

lung (68).

In conclusion, diverse expressions of chemokine and

cytokine receptors on allergen-specific memory CD4 T cells

are implicated in the pathogenesis of allergic disorders. Thus,

identification of the precise phenotype of allergen-specific

memory CD4 T cells will provide a better tool for studying the

roles of these cells.
3 The extrinsic regulators of
allergen-specific memory CD4
T cells in allergic diseases

The niches of the immune system regulate the survival,

differentiation, and maintenance of immune cells under
Frontiers in Immunology 05
immune homeostatic or pathological conditions. Memory T

cells are antigen-independently maintained, and reactivated by

the interactions with neighboring cells, providing exogenous

stimuli such as co-stimulatory signals and cytokine signals. In

this section, we discuss the importance of exogenous regulatory

mechanisms for the reactivation and homeostasis of allergen-

specific memory CD4 T cells in allergic disorders (Figure 2).
3.1 OX40L signalings for allergen-
specific memory CD4 T cells

OX40L (CD252), a co-stimulator provided by DCs or IgE-

activated mast cells, stimulates allergen-specific CD4 T cells to

promote their clonal expansion and survival during the

primary response and induces the development of allergen-

specific memory CD4 T cells (69–72). Consistent with this,

OX40 expressing memory CD4 T cells co-localized with

OX40L+ DCs or OX40L+ mast cells to enhance allergic

inflammation in the lung and skin upon re-exposure to

allergens or epithelial cell-derived cytokines (73–75).

Moreover, a blockade of OX40L induced the tolerogenic state

of allergen-specific memory CD4 T cells, resulting in the

reduced severity of airway inflammation (75). Altogether,

OX40L derived from immune cells, including DCs and mast

cells, is crucial for the development, maintenance, and

reactivation of allergen-specific memory CD4 T cells to

exacerbate allergic diseases.
FIGURE 2

The extrinsic factors for the regulation of allergen-specific memory CD4 T cells. The generation of effector Th2 cells is proposed to be
enhanced by the tissue-derived cytokine/DC axis. The pool of allergen-specific memory Th2 cells and their tissue residency are maintained
either by cytokines such as IL-2 and IL-7 or by OX40L expressed on TSLP-activated DCs. In contrast, TGF-b1 produced by RORgt+ Tregs, which
are differentiated by microbiota-derived signals, induces immune tolerance. The reactivation of allergen-specific memory Th2 cells is mediated
by IL-33 and IL-25, exacerbating allergic diseases in an allergen-independent manner.
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3.2 The tissue-associated signals for
allergen-specific memory CD4 T cells

Local tissue-derived cytokines, particularly epithelial cell-

derived cytokines called alarmins, such as TSLP, IL-33, and IL-

25, are positively correlated with the severity of allergic diseases

and are crucial for inducing Th2 polarization (76–79).

Furthermore, recent studies have shown that these epithelium-

derived signals influence the survival and reactivation of

memory CD4 T cells (80–82).

Epigenetic modifications of chromatin structure including

DNA methylation and post-translational modifications of

histones are well known to determine and maintain the

differentiation of cells for regulating the gene expression

patterns (83). Moreover, IL-4 in memory Th2 cells is rapidly

expressed by this type of epigenetic modification upon antigen

re-stimulation (84). Thus, epigenetic changes are crucial

strategy for enhancing the function of memory Th2 cells.

These alarmins have been proposed to mediate chromatin

modification of allergen-specific memory CD4 T cells

resulting in the enhancement of type 2 cytokine expressions.

For example, TSLP stably programmed the effector state of

memory Th2 cells by hyperacetylation within Th2 cytokine

locus (81). Additionally, allergen-specific memory T cells

expressing ST2 produced high levels of IL-5 by selective

remodeling of chromatin structure at the Il5 locus with a

challenge of IL-33 without allergen (85).

Recent research reported another role of IL-33 in allergic

response. ST2hi memory CD4 T cells stimulated by IL-33

produced epidermal growth factors, particularly amphiregulin.

This growth factor reprogrammed eosinophils toward an

inflammatory state and then induced fibrosis of nasal polyps

in allergic rhinitis (86).

Although individual alarmins have been intensively studied,

these cytokines are also known to be released and to cooperate in

the same organ to develop a memory Th2 response. DCs

activated by TSLP enhanced the expression of IL-17RB on

memory Th2 cells by providing OX40L. Finally, memory Th2

cells, which were stimulated by IL-25, upregulated transcription

factors including GATA-3, c-Maf, and Jun B, and type 2

cytokines in the absence of TCR triggering (87). Altogether,

these results imply that tissue-derived cytokines have many

aspects to reactivate allergen-specific memory CD4 T cells for

the pathology of allergic diseases.
3.3 The homeostasis of allergen-specific
memory CD4 T cells

Increasing efforts to identify homeostatic microenvironments

for the formation, survival, and maintenance of allergen-specific

memory CD4 T cells have led to a better understanding of the

mechanisms underlying allergic disease relapses.
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First, it was reported that DCs and IL-2 signalings, which

are known to be critical to the activation and proliferation of

naïve T cells, contributed to the formation of memory Th2

cells. In a mouse model of allergic asthma, IL-2 signalings

provided in the allergic lung microenvironments importantly

facilitate the early residency of memory Th2 cells (88). DCs,

particularly TSLP-activated DCs, also induced the homeostatic

proliferation of allergen-specific central memory Th2 cells to

maintain the pool of these cells without antigens (72). Thus,

these findings suggest that IL-2- and DC-mediated signalings

are crucial for the homeostasis of allergen-specific memory

CD4 T cells.

Second, IL-7 and IL-15 are well documented to be

important for the survival and homeostatic proliferation of

memory CD8 T cells (89). The roles of these cytokines in the

maintenance of memory CD4 T cells have also been studied.

Between these two cytokines, IL-7 enhanced the survival of

memory Th2 cells by increasing the expression of anti-

apoptotic protein Bcl-2 (90). This cytokine, produced by

Thy1+ lymphatic endothelial cells, provided a survival

environment for allergen-specific memory Th2 cells in the

inducible bronchus-associated lymphoid tissue of the lung,

which is formed after allergic lung inflammations in humans

and mice (90). IL-7 is also crucial for the development of

memory CD4 T cells by mediating the transition of effector T

cells into memory T cells (91). In the lung and airways suffered

from allergic inflammation, the generation of allergen-specific

memory CD4 T cells was affected by IL-7Ra-mediated signals

(23). Moreover, in a skin hypersensitivity model, hair follicle-

derived IL-7 was required to maintain memory CD4 TRM cells

(92). Accordingly, it has been suggested that IL-7 plays an

important role in the homeostasis of allergen-specific memory

CD4 T cells in barrier tissues.
3.4 The control of allergen-specific
CD4 T cells

Our bodies have evolved immune homeostasis mechanisms

that need to decide between protection against pathogens and

tolerance to innocuous substances, such as food, commensal

bacteria, and inhaled environmental particles (93, 94). Among

these mechanisms, it has extensively examined that Treg cells

play a crucial role in preventing the development and

aggravation of hypersensitivity against harmless environmental

substances (95). The underlying mechanisms include the

development of Treg cells in the thymus by TGF-b signaling,

which mediates the suppressive functions of these cells in certain

peripheral tissues (96, 97). In an experimental model of FA,

TGF-b1-deficient allergen-specific Treg cells did not develop

into oral tolerance-promoting RORgt+ Treg cells, resulting in an

increased incidence of FA. Furthermore, the regulation of oral

tolerance mediated by RORgt+ Tregs was affected by microbiota-
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derived signals (98). These findings suggest that extrinsic factors

contributing to immune tolerance by stimulating allergen-

specific CD4 T cells are required to modulate allergic disorders.
4 Discussion

Allergic diseases diminish the patient’s quality of life and

incur enormous personal and social costs to maintain their

lives (99, 100). The roles of CD4 T cells in the steering

pathogenesis of allergic disorders have been studied for many

decades. In this review, we summarize the characteristics and

regulation of extrinsic factors for allergen-specific memory

CD4 T cells in hypersensitivity, particularly allergic

disorders. Since much lights have been shed to understand

the roles of microenvironments in the homeostasis and effector

function of allergen-specific memory CD4 T cells, we propose

to investigate how these microenvironments can alter the

longevity of memory T cells to regulate these diseases. This

future direction will guide us to develop a novel strategy for the

discovery of therapeutics for allergic diseases.
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