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Background: Drug repurposing is a fast and effective way to develop drugs for

an emerging disease such as COVID-19. The main challenges of effective drug

repurposing are the discoveries of the right therapeutic targets and the right

drugs for combating the disease.

Methods: Here, we present a systematic repurposing approach, combining

Homopharma and hierarchal systems biology networks (HiSBiN), to predict 327

therapeutic targets and 21,233 drug-target interactions of 1,592 FDA drugs for

COVID-19. Among these multi-target drugs, eight candidates (along with

pimozide and valsartan) were tested and methotrexate was identified to

affect 14 therapeutic targets suppressing SARS-CoV-2 entry, viral replication,
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and COVID-19 pathologies. Through the use of in vitro (EC50 = 0.4 mM) and in

vivo models, we show that methotrexate is able to inhibit COVID-19 via

multiple mechanisms.

Results: Our in vitro studies illustrate that methotrexate can suppress SARS-

CoV-2 entry and replication by targeting furin and DHFR of the host,

respectively. Additionally, methotrexate inhibits all four SARS-CoV-2 variants

of concern. In a Syrian hamster model for COVID-19, methotrexate reduced

virus replication, inflammation in the infected lungs. By analysis of

transcriptomic analysis of collected samples from hamster lung, we

uncovered that neutrophil infiltration and the pathways of innate immune

response, adaptive immune response and thrombosis are modulated in the

treated animals.

Conclusions: We demonstrate that this systematic repurposing approach is

potentially useful to identify pharmaceutical targets, multi-target drugs and

regulated pathways for a complex disease. Our findings indicate that

methotrexate is established as a promising drug against SARS-CoV-2 variants

and can be used to treat lung damage and inflammation in COVID-19,

warranting future evaluation in clinical trials.
KEYWORDS
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Introduction

SARS-CoV-2 has spread throughout the world rapidly,

infecting over 622 million people with COVID-19 and causing

more than 6 million deaths, as of October 19, 2022 (https://www.

who.int/). Vaccines are currently one of the most valuable tools

to combat the disease, and several SARS-CoV-2 vaccines have

been developed and approved to curb the spread of the virus.

However, as SARS-CoV-2 mutates quickly, several variant

strains have emerged that may undermine the effectiveness of

the vaccines. Thus, a timely development of effective drugs for

COVID-19 is an important task that could complement vaccines

to protect human lives. In this regard, drug repurposing is a

faster way to speed up drug discovery process as most FDA-

approved drugs have well-documented profiles on the efficacy,

safety, pharmacokinetics, and drug interactions (1, 2). Drug

repurposing for the emerging COVID-19 pandemic has been

proposed (3) and hastened with clinical studies on several

approved drugs like hydroxychloroquine (4), azithromycin (5)

and ivermectin (6), but their mechanisms of action are unclear

and not thoroughly validated.

COVID-19 is a complex disease manifesting a myriad of

symptoms and disorders ranging from mild fever and loss of

taste, inflammation, to severe pneumonia, acute respiratory

distress syndrome (ARDS) etc. (7) Some specific symptoms,
02
such as thrombotic complications directly contribute to patient

mortality and morbidity (8). For treating such a complex disease,

multiple disorders that play a role in patient survival should be

identified and simultaneously targeted to alleviate the disease

and promote recovery. The primary treatment strategy for

COVID-19 has been a combination of drugs such as

dexamethasone and anti-interleukin-6 monoclonal antibody

for anti-inflammation and remdesivir for anti-viral effects. On

the other hand, multi-target drugs where one compound targets

these multiple disease proteins/pathways to achieve similar

therapeutic effects with less adverse effects and drug-drug

interactions (due to drug cocktails) (9) appear as a very

promising alternative strategy.

The drug methotrexate (MTX) acts on folate and one-carbon

metabolism for de novo purine synthesis, and has been approved

for treatment of rheumatoid arthritis (RA) (10) and cancer (11).

Recent studies raised discussion on its role of COVID-19, such

as whether patients receiving MTX therapy (e.g., RA patients)

would discontinuation on immune response after COVID-19

vaccination (12), and mechanism-based hypothesis to test MTX

against COVID-19 in vitro (13, 14). While its mechanisms for

treating COVID-19 are remaining unclear. Furthermore,

whether methotrexate effectively treats COVID-19 in vivo and

utilizing transcriptomic data remains to be established.

Therefore, a systematic method for discovering multi-target
frontiersin.org

https://www.who.int/
https://www.who.int/
https://doi.org/10.3389/fimmu.2022.1080897
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2022.1080897
drugs and mechanisms is needed to identify effective drugs for

COVID-19.

In the current work, we presented an integrated drug

repurposing approach with a systematic drug score (Sdrug) by

combining structure-based Homopharma (15) and hierarchical

systems biology networks (HiSBiN) (16) for screening multi-

target compounds for COVID-19 from the 2,303 FDA-approved

drugs. We discovered methotrexate and its multi-targeting

mechanisms in treating COVID-19, which were further

investigated in cells (in vitro) and a Syrian hamster model (in

vivo). Additionally, methotrexate is active in vitro against the

four major SARS-CoV-2 variants of concern (VOC). We found

that methotrexate targeted and modulated multiple COVID-19

proteins/pathways, leading to suppressed SARS-CoV-2 entry,

virus replication, inflammation (via neutrophil infiltration,

neutrophil extracellular traps and regulation of immune

responses), and thrombosis.
Result

Identifying multi-target repurposing
drugs for COVID-19

The workflow for multi-target anti-COVID-19 FDA drugs is

summarized in Figures 1A, S1. Firstly, for the FDA drugs we

inferred about 9,130 drug-protein pairs from DrugBank

database. However, the reported COVID-19 drugs and targets

in literature are often unobserved in the database, thus we used

text-mining to collect 158 drug-protein pairs from over 140,000

literatures (Figures 1A, S1A). Also to study SARS-CoV-2 targets

for therapies, we used omics analysis of two clinical coronavirus

transcriptomic datasets from patients with SARS GSE5972

(precrisis and crisis) and GSE1739 (Figures S2A, B), given the

high genome sequence identity with SARS-CoV-2, the rationale

of which was validated in a recent work (17). This identified

2,516 differentially expressed genes (DEGs) of COVID-19. Next,

we applied Homopharma to the input 9,130 drug-protein pairs

(Figure S1B) to predict new drug-DEG pairs, using 162,155

inhibitor-DEG pairs from BindingDB database. This is achieved

by 1) Protein homology: identifying DEG similar proteins,

predict its drug and that DEG as a drug-DEG pair; 2)

Compound similarity: identifying inhibitor similar drugs,

predict its DEG and that drug as a drug-DEG pair, resulting in

a total of 21,233 predicted drug-DEG pairs (alongside 1,335

reported drug-DEG pairs). On the other hand, HiSBiN was

applied to the 2,516 DEGs to find their enriched subsystems/

pathways in KEGG, to predict drug perturbation of COVID-19

pathways (with a Z score > 1.96). Thirdly, we formulated a

systematic drug scoring to prioritize multi-target drugs, Sdrug =

o
T

i=1
(DTi)=

ffiffiffiffi
T

p
, where T is the target number of a drug, and DTi is

the score of each drug target i. For example, we discovered that
Frontiers in Immunology 03
methotrexate with a score Smethotrexate = 0.52 has 14 targets and

another drug pimozide with a score Spimozide = 0.8 has 56 targets.

(Figures S1C, S3C, F, I).

We thus applied this scoring function to score 2,303 FDA

drugs, of which the top 646 (40%) scored drugs were then

clustered by their perturbation of 184 enriched COVID-19

pathways (Figure S1D). We obtained five clusters, from which

the representative drugs for each cluster were then selected based

on: a) ATC codes, b) toxicity profiles, and c) perturbation effects.

Eight multi-target drug candidates were finally selected for

further experimental testing. In the in vitro results (Figure S4),

methotrexate showed the strongest inhibition of SARS-CoV-2

replication with a potent sub-micromolar anti-viral EC50 of 0.4

mM (Figure 2A) and thus chosen for further in in vivo studies.

To predict therapeutic targets, we scored the identified DEGs

based on their SDisG scores determined from: (a) significant gene

expression (p value) in disease vs. normal samples, (b) gene

druggability (Sdruggability), and (c) significant gene involvement

(SHiSBiN) in disease KEGG pathways and subsystems by

measuring the number of interacting drugs, all of which were

normalized from 0 to 1 (details in Figure S5). To predict

COVID-19 targets, we determined the SDisG threshold (0.737)

based on the precision and recall using the DisGeNET COVID-

19 target set (Figure S6A). A final set of 327 targets for COVID-

19 were predicted. Interestingly, among the top 10 COVID-19

targets scored by SDisG, eight of them, including JAK1, GSK3B,

and PARP1 were recorded in the DisGeNET for COVID-19

(Figure S6B), and the remaining predicted targets, HDAC1 (18)

and LCK (19) in independent works.

Among these predicted drug candidates, methotrexate was the

most promising and could target multiple pathways including

SARS-CoV-2 entry and replication as well as innate/adaptive

immune response and thrombosis (Figure 1A). Thus

methotrexate was further evaluated using in vitro and in vivo

COVID-19 models (20, 21). In the animal studies, we compared

virus infection, white blood cells (WBCs), histopathology,

pathology scoring and immunohistochemistry (IHC) among

hamster groups (uninfected mock, infected-untreated,

methotrexate-treated, and remdesivir-treated). Representative

images of hematoxylin and eosin (H&E)-stained lungs and total

pathology scores are shown in Figure 1B. Furthermore, WBC

analysis and omics data analysis of RNA sequencing obtained

from lung tissues revealed detailed systemic effects and multi-

targeting mechanisms of methotrexate and underlying genes and

pathways involved (Figure 1C). Methotrexate suppressed overall

viral replication, decreased neutrophils and monocytes in

agreement with regulation of innate immune pathways,

increased levels of lymphocytes related to adaptive immune

pathways, and modulation of transcription and thrombus

pathways. These results show that our repurposing approach

can identify therapeutic targets, multi-target drugs and regulated

pathways for an emerging complex disease.
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FIGURE 1

Study overview. (A) The steps including Homopharma, HiSBiN and the scoring system to identify multi-target repurposing drugs. The drug-
protein pairs of approved drugs and the COVID-19 DEGs were obtained and input to the Homopharma which by ① protein homology and ②

compound similarity, predicted drug–DEG pairs such as methotrexate with furin (of entry), MTR, DHFR, etc. The HiSBiN predicted drug
perturbed COVID-19 pathways such as methotrexate interfering the pyrimidine metabolism pathway affecting the downstream pathways such
as innate/adaptive immune response, transcription, etc. The green dash lines indicate the predicted drug-protein pairs (e.g., methotrexate-MTR)
and their regulated pathways (e.g., Biosynthesis of amino acids pathway). (B) Hematoxylin and eosin (H&E)-stained lung lobes from SARS-CoV-2
Syrian hamster groups, with multifocal pulmonary inflammation (arrows) and total pathology scores. The hamster groups (n = 3) are uninfected-
mock (gray), infected-untreated (orange), methotrexate-treated (blue) and remdesivir-treated (brown); scale bars are 1,000 mm, *p < 0.05. Bars
indicate mean values for the four hamster groups. Statistical analysis by non-parametric Mann–Whitney test. (C) The systemic effects of
methotrexate treatment in the infected hamsters are summarized using untreated and methotrexate-treated cases. Variations in the white blood
cells (neutrophils, monocytes, and lymphocytes) and the regulation of corresponding pathways in the lung omics (e.g., innate and adaptive
immune responses, transcription and thrombus) are depicted.
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Methotrexate inhibited the replication
and entry of SARS-CoV-2 and variants
of concern

The drug candidates were experimentally tested by in vitro

antiviral cytopathic effect (CPE) and cytotoxicity assays, along

with the reference drug remdesivir. In the CPE assay, Vero E6 cells

were inoculated with SARS-CoV-2 (multiplicity of infection

[MOI] of 0.001) and treated with solvent or various doses of

respective drugs and incubation for 48 h to measure the dose-

dependent % virus inhibition. Cytotoxicity studies were also

conducted to evaluate the % cell viability for solvent or various

drug dose treatments. From the in vitro results (Figure S4),

methotrexate showed the strongest inhibition of SARS-CoV-2

replication with a potent sub-micromolar anti-viral EC50 of 0.4

mM (Figure 2A) which was significantly better than that of the

remdesivir (EC50 of 12.47 mM) (Figure S4H). Additionally,

methotrexate was relatively non-cytotoxic with a CC50 > 100

mM and thus attained a selectivity index (SI = CC50/EC50) of ~250.

Methotrexate’s dose-dependent inhibition of virus replication was

further confirmed using an immunofluorescence assay where the

SARS-CoV-2 replication in infected host cells was visualized by a

fluorescent-tagged antibody against the spike protein of the virus.

As shown in Figure 2B, methotrexate decreased green florescence

and thus the virus count in a dose-dependent fashion; only very

rare green fluorescence was noted in cells treated with 1 mM of

methotrexate and become completely absent in cells treated with

10 mM of methotrexate. These results indicate methotrexate is a

non-cytotoxic yet potent drug against SARS-CoV-2.

To investigate the mechanisms of SARS-CoV-2 inhibition by

methotrexate, we performed a time-of-addition assay in which

Vero E6 cells inoculated with SARS-CoV-2 (MOI of 0.01) were

treated with methotrexate at various addition times as following:

‘entry’ - drug added simultaneously with the virus and removed

1 h post-infection, ‘post-entry’ - drug added at 1 h post-infection

and incubated for 24 h, ‘full-time’ - drug added with the virus

and incubated for 24 h. The amount of virus was quantified and

% virus inhibition was calculated for each group. The strongest

inhibition of virus replication was observed when methotrexate

was added post-entry and for full-time (nearly 100%), while

moderate inhibition (~20%) was noted when methotrexate was

added at the entry stage (Figure 2C). We validated the results by

western blot, where the virus spike protein was detected in

infected Vero E6 cells in different time-of-addition groups

(Figure 2D). A slight decrease in spike protein expression in

the entry group compared to DMSO control was observed,

followed by further reduction in post-entry and full-time

groups. The inhibition of viral entry by different doses of

methotrexate was further explored by an in vitro pseudovirus

neutralization assay. Entry of SARS-CoV-2 spike-based

pseudovirus was measured by the intracellular luciferase

activity encoded in the genome. In addition, virus plaques

formed were also quantified. We found methotrexate dose-
Frontiers in Immunology 05
dependently decreased viral plaques and determined the EC50

of entry inhibition as 76.30 mM (Figures 2E, F). It must be noted

that, furin inhibition could lead to a maximal inhibition of ~50%

overall virus entry, as residual viral entry is still possible by

other mechanisms.

The SARS-CoV-2 virus mutates quickly and four major

VOCs namely B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma),

and B.1.617.2 (Delta) have emerged since the outbreak of the

pandemic (22). Thus, it is important to develop therapies and

drugs along with vaccines, to combat these virus variants. As our

results indicate methotrexate potently inhibited SARS-CoV-2

(WA), we were interested to further investigate whether

methotrexate effectively inhibits other variants. We employed

the CPE assay where Vero E6 cells were inoculated with the four

SARS-CoV-2 variants (MOI of 0.001) followed by treatments

with various doses of methotrexate and incubation for 72 h. The

% virus inhibition were then plotted against the drug

concentrations for all four variants (Figure 2G). The results

showed methotrexate potently inhibited the replication of all

four variants in dose-dependent manner with EC50 values of 1

mM for B.1.1.7, 1 mM for B.1.351, 0.63 mM for P.1, and 1.16 mM
for B.1.617.2, which are in similar range as for WA (1.25 mM).

These results strongly support methotrexate could treat all the

four VOCs and would be a highly valuable drug against mutating

SARS-CoV-2.

Several previous studies have established that the furin

protease, alongside TMPRSS2, is a key human host protease

essential for the viral spike protein maturation and entry into

host cells (23), thus making furin an important anti-COVID-19

drug target (24, 25). According to our predictions and scores,

methotrexate could target furin, based on its high compound

similarity (C.S. = 0.806) with folic acid which was reported to

target furin (24). Thus we explored mechanisms of furin inhibition

by methotrexate, specifically to block furin-mediated cleavage of

specific substrate peptide motif RRARS (26) at SARS-CoV-2 spike

S1/S2 site, necessary for RBD opening and binding to the host cell

ACE2 for viral entry (Figure S3A). The targeting of furin protease

by methotrexate was confirmed using an enzymatic assay (24),

where 100 mM of methotrexate competitively inhibited ~73% of

furin protease activity, while similar compound folic acid showed<

30% inhibition. We additionally used a structure-based analysis to

elucidate the mechanisms of furin inhibition by methotrexate,

folic acid and the RRARS substrate peptide. We observed that the

substrate peptide RRARS occupied key furin S1, S1’ and S2

charged subpockets (dotted curves, surface positive: blue,

negative: red) where substrate arg(R) interacted with D306 at

S1, and substrate ser(S) engaged T365 at S1’ of furin (Figures 2H,

I). Methotrexate displayed a similar binding pose in furin, being

strongly bound to these subpockets with its charged positive ring

group engaging D258 at S1 and negative tail group interacting

with R193 at S1’. In addition, methotrexate strongly interacted

with the catalytic residues (underlined labels), S368 by hydrogen-

bond and H194 by van der Waals interactions. We further
frontiersin.org
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FIGURE 2

Methotrexate inhibits SARS-CoV-2 infection and entry in vitro. (A) Virus infected Vero E6 cell lines were used in: cytopathic (CPE) assay for %
viral inhibition curves of methotrexate and cytotoxicity assay for % cell viability curves. The results are shown as mean ± SD of technical
quadruplication. (B) In immunofluorescence assay, increasing doses of methotrexate caused better inhibition of SARS-CoV-2 replication,
detected by anti-S Ab (green), and cell nuclei stained with DAPI (blue); scale bars are 30 mm. (C) Time-of-addition assay measuring the viral yield
by qRT-PCR for the three time-of-addition groups. The % inhibition was calculated by the relative viral RNA expression normalized to DMSO
control; statistical analyses were performed using one-way ANOVA; ****p < 0.0001, ns, not significant. (D) Western blot analysis quantifying
spike protein for different time-of-addition groups, with a GAPDH control. (E) The virus entry inhibition by methotrexate was studied by
pseudovirus neutralization assay, where the pseudovirus entering the host cell was measured by its luciferase activity. The % entry inhibition
curve yields EC50 for entry inhibition of methotrexate. (F) The pseudovirus plaques for increasing concentrations of methotrexate compared to
DMSO and mock. (G) Inhibition of wild-type (WA), B.1.1.7, B.1.351, P.1 and B.1617.2 virus variants by methotrexate in CPE assay. The horizontal
dashed lines indicate 50% and 0% inhibition. Data are mean ± SD of technical octuplicate. (H) The binding poses with 2D diagrams of substrate
spike peptide RRARS (green stick) and methotrexate (blue stick) in furin active site (surface) are shown with S1’, S1, S2 subpockets (dotted
curves), catalytic triad residues (gray sticks, bold and underlined labels), key interacting residues (sticks with bold labels), and total interaction
energy (I.E. in kcal/mol). In the RRARS peptide, the arg(R) interacts with the negatively charged S1 subpocket residues, the ser(S) interact with the
positively charged S1’ subpocket residues, while the catalytic residues engage in arg(R)-ser(S) peptide bonds (scissors). The methotrexate pose in
furin protease mimics that of the substrate peptide, with its pterin ring and carboxylic tail groups binding to negative S1 and positive S1’
subpocket residues, respectively, additionally strongly engaging S368 and H194 catalytic residues. (I) The interaction profile of RRARS and
methotrexate in furin, with the E (electrostatic, red), H (hydrogen-bond, green) and V (van der Waals, gray) interactions.
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examined how the methotrexate’s binding in a new target, by

analysis of methotrexate and folic acid binding in DHFR vs. furin

(Figure S3A). These combined in vitro and in silico results support

methotrexate’s inhibition of SARS-CoV-2 entry by targeting furin.

Inhibition of DHFR by methotrexate leads to blockade of

folate synthesis (and nucleic acid) (27). Adding folinic acid to

methotrexate treated cells rescues the cells by replenishing folate

reserves, a process referred to as folinic acid rescue (28). Here,

we used folinic acid rescue to study the role of DHFR inhibition

by methotrexate in the suppression of virus replication (Figure

S7). We found methotrexate significantly blocked virus

replication and this inhibition was reversed and rescued by

addition of folinic acid (Figure S7A). These data suggest

DHFR inhibition and depletion of folic acid is an underlying

mechanism by which methotrexate inhibited virus replication.

Western blot analysis (Figure S7B) indicated the expression of

spike protein could be rescued by folinic acid in cells treated with

methotrexate, further validating DHFR inhibition (and depleted

folate and nucleic acid synthesis) as a key mechanism of

methotrexate to inhibit SARS-CoV-2 replication.
Evaluating methotrexate in SARS-CoV-2-
infected Syrian hamsters

After determining the antiviral activities of methotrexate in

vitro, we evaluated the efficacy of methotrexate in vivo using

Syrian hamsters, which is a well-established COVID-19 animal

model for studying the pathogenesis and treatments for COVID-

19 (20). Methotrexate is a well-studied drug for rheumatoid

arthritis, with suitable pharmacokinetics showing a relatively

rapid absorption (29). In the present study, hamsters were

divided into uninfected mock, infected untreated control,

infected methotrexate-treated, and infected remdesivir-treated

groups (n = 3). For virus infection hamsters were intranasally

inoculated 104 plaque-forming units (PFU) of SARS-CoV-2. The

infected hamsters developed clinical signs of lethargy, ruffled fur,

and anorexia starting from the 1st day post infection (dpi). For

the drug treatment groups, a loading dose of 2 mg/kg

methotrexate or 5 mg/kg remdesivir was given on the day of

infection, then a daily dose of 2 mg/kg methotrexate or 2.5 mg/

kg remdesivir was given on 1st to 3rd dpi (Figure 3A). The

hamsters were sacrificed on 4th dpi, the blood samples were

taken for cell analyses, and the lungs were collected for viral

RNA and PFU quantification, RNA sequencing, histopathology

and IHC studies.

In the initial body weight analysis, we observed that the

weight loss was alleviated in all three methotrexate-treated

hamsters, compared to the untreated hamsters (Figure 3B).

This effect was better than that of remdesivir treatments,

indicating a better health status attained by methotrexate

treatments. Next, the viral load in the lungs of hamsters was

quantified by qRT-PCR. We found methotrexate decreased virus
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RNA copies as compared to the untreated group (Figure 3C).

Furthermore, a plaque assay was used to measure the infectious

virus in lungs (Figure 3D), where methotrexate treatment

reduced plaque counts by about 10-fold in two hamsters

whereas remdesivir seemed ineffective.

To further assess the effectiveness of methotrexate in

ameliorating SARS-CoV-2 infection and pathologies in the

hamster lungs, histopathological examination on the H&E-

stained lung sections (Figure 1B) were performed independently

by two pathologists in a blinded fashion. Methotrexate decreased

an overall ~30% inflammation area in the lungs in all three

hamsters compared to the untreated, an efficacy that was better

than remdesivir (Figure 3E). Detailed pathologies in bronchioles,

alveoli, blood vessels are shown in Figure 3F, followed by a

summary of the pathology scores in Figure 3G. In the untreated

hamsters, marked bronchial epithelial cell necrosis (blue arrows)

with peribronchiolar inflammatory mononuclear cell infiltration

(black arrow) was observed; alveolar wall necrosis, edema

(asterisk), alveolar space infiltration (black arrow), and vasculitis

(red arrows) were also evident. On the contrary, lung histology of

the methotrexate-treated hamsters were largely similar to those of

the uninfected mock group (Figure 3F). Little infiltration by

inflammatory cells in the bronchiole and alveoli along with mild

vasculitis was noted, suggesting recovery to a healthier state after

methotrexate treatment. In the remdesivir group, improved

inflammation, a mild degree of bronchiolar epithelium cell

death, peribronchiolar mononuclear cell infiltration, and a

severe degree of pulmonary edema, were observed. Detail

histopathological examinations indicate methotrexate improved

epithelial necrosis (with or without inflammatory cell infiltration

of the bronchiole), alveolar wall necrosis and vasculitis and edema

(in alveoli and perivascular area), often better than remdesivir in

alleviating these pathologies. Consistent with the histological

examination with H&E-stained sections, quantitative IHC

studies of hamster lung tissues (Figure 4) showed levels of

activated neutrophils (MPO+), macrophages (Iba-1+), T cells

expressing the inflammation markers (CD3+ and Mx1+), were

decreased in the lungs of methotrexate-treated hamsters. In

summary, histopathology and IHC studies indicate

methotrexate is an effective drug for reducing SARS-CoV-2

infection, inflammation and pathologies.
Hematological analysis of methotrexate-
treated SARS-CoV-2-infected hamsters

We explored the mechanisms and processes underlying

methotrexate’s anti-viral and anti-inflammatory activities in

SARS-CoV-2-infected hamsters. We first analyzed various

WBC populations in the blood of mock, untreated,

methotrexate-treated and remdesivir-treated hamsters, the

results showing levels of neutrophils, lymphocytes, and

monocytes are in Figure 5A. We observed significantly
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FIGURE 3

Methotrexate inhibits lung infection, damage and inflammation in SARS-CoV-2-infected hamsters. (A) Study design: Twelve hamsters were
divided into 4 hamster groups (each group, n=3), of which 3 groups were infected with SARS-CoV-2 (104 PFU) intranasally. For the 2 treatment
groups, from the day of infection a daily administration of methotrexate (2 mg/kg) and remdesivir (5 mg/kg at day 0 then 2.5 mg/kg) were given
for 4 dpi. On 4 dpi, all the hamsters were sacrificed and the samples collected. (B) Body weight analysis for methotrexate-treated (blue),
remdesivir-treated (brown), untreated (orange) and mock (gray) hamster groups. Statistical analyses were performed using two-way ANOVA,
Tukey’s post-test, with the p value compared to the mock. The results are shown as mean ± SD. (C) The virus load in hamster lungs was by
quantified by qRT-PCR of virus RNA copies. Statistical analyses were performed using non-parametric Kruskal–Wallis test; p value of untreated
vs. methotrexate ≥ 0.9999 and untreated vs. remdesivir = 0.3255. (D) Viral titers in the lung samples measured by the plaque-forming units
(PFU/ml). Statistical analyses were performed using the non-parametric Kruskal–Wallis test; p value of untreated vs. methotrexate = 0.8206 and
untreated vs. remdesivir ≥ 0.9999. (E) Quantification of the total inflammation area of the lung of the untreated, methotrexate-treated and
remdesivir-treated groups. (F) Representative H&E-stained magnified images of bronchioles, alveoli and blood vessels for the four hamster
groups; scale bars are 50 mm. In the bronchioles, bronchial epithelial cell degeneration and necrosis (blue arrow) and peribronchiolar
mononuclear cell infiltration (black arrow) are shown. In the alveoli, alveolar necrosis with massive alveolar space infiltration (black arrow) and
pulmonary edema (asterisk) are shown, while in the blood vessels the vasculitis (red arrows) is highlighted. (G) Pathology scores for individual
parameters. Statistical analyses of (E, G) were performed using the non-parametric Mann–Whitney test, *p < 0.05.
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decreased neutrophils and monocytes in blood upon

methotrexate treatments compared to the untreated group,

and this efficacy was better than that of remdesivir.

Lymphopenia is an important phenomenon observed during

severe SARS-COV-2 infection (30). In this regard, methotrexate

treatment significantly increased blood lymphocyte count

compared to that of the untreated group, which may be

beneficial in countering COVID-19 lymphopenia.
Omics analyses and bioassay evaluations
in the hamster model reveal multi-
targeting by methotrexate

Parts of the hamster lungs were subjected to RNA

sequencing using Illumina platform, followed by whole-
Frontiers in Immunology 09
genome transcriptome analysis. The sequence data are

deposited in the National Center for Biotechnology

Information Gene Expression Omnibus under accession code

GSE179709. In RNA-seq analysis, a fold change of ≥ 2.0 was set

to identify 710 upregulated and 582 downregulated DEGs in

infected vs. control samples, and 489 upregulated and 621

downregulated DEGs in methotrexate-treated vs. infected

samples, followed by KEGG pathway analysis and functional

analysis for affected ontology biological processes (GO-BPs)

(Figure 5B). The systemic effects of methotrexate treatment

and underlying mechanisms were explored. The enriched

KEGG pathways in methotrexate-treated and untreated cases,

and their significant down/upregulation are shown, along with

enriched gene GO-BPs of DEGs from each pathway.

In SARS-CoV-2-infected hamsters, methotrexate ’s

perturbations of the enriched KEGG pathways and GO-BP
A

B

C

D

FIGURE 4

Immunohistochemistry (IHC) studies showed that methotrexate affected the innate/adaptive immune responses in hamster lungs. Methotrexate
reduced neutrophil and macrophage infiltration in hamster lungs. The representative immunohistochemistry (IHC) images and quantifications of
(A) neutrophils (myeloperoxidase+, MPO, % MPO+ of total cells), (B) macrophages (ionized calcium-binding adaptor molecule 1+, Iba-1, % Iba-1+

of total cells) (C) T cell surface glycoprotein+ (CD3, % CD3+ of total cells), and (D) interferon-induced GTP-binding protein+ (Mx1, % Mx1+ of
total cells), in lungs of methotrexate-treated (blue), remdesivir-treated (brown), untreated (orange) and mock (gray) hamster groups. Scale bars
in IHC images are 300 mm. Statistical analysis was performed by an unpaired Student’s t-test where drugs-treated groups were compared with
untreated group, *p < 0.05.
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FIGURE 5

Methotrexate modulated gene expression, pathways and biological processes of inflammation, immune responses, transcription and thrombosis
in SARS-CoV-2 infected hamsters. (A) Analysis of populations of white blood cells (WBC) such as neutrophils, lymphocytes and monocytes for
mock (gray), infected-untreated (orange), methotrexate-treated (blue) and remdesivir-treated (brown) hamster groups. Bars indicate mean
values. Statistical analysis was performed by an unpaired Student’s t-test, drug-treated groups compared with untreated group, *p< 0.05,
**p< 0.01. (B) Enriched KEGG pathways for untreated (control vs. infected untreated hamsters) and methotrexate-treated cases (infected vs.
methotrexate-treated hamsters). For each pathway, bar graphs show significant upregulated and downregulated genes, that were reversed
between untreated (orange bars) and methotrexate-treated cases (blue bars). The pathways are categorized into innate immunity, adaptive
immunity, thrombosis and transcription/translation. The enriched gene ontology-biological processes (GO-BPs) for each pathway gene set are
shown as a dot plot matrix, with black dot sizes representing the significance by –log (p value), and similar biological processes clustered. See
Table S1 for full names of KEGG pathways and GO-BPs. (C) For specific pathways from each category, the gene expression fold change are
shown as heat maps, for untreated and methotrexate-treated cases (red: upregulated; green: downregulated), some genes of interest bold and
underlined. (D) For specific genes, qRT-PCR-based validation of gene expressions in lung samples from three hamster groups. The results are
shown as mean ± SD. Statistical analyses were performed by the non-parametric Mann–Whitney test, *p < 0.05.
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terms, along with the respective expressions of key genes further

validated by IHC (Figure 4) studies and qRT-PCR (Figure 5) are

summarized as follows: a) The enriched KEGG pathways, of

which the gene expression in the diseased state was reversed by

methotrexate, are primarily grouped into four categories: innate

immune responses (purplelabel, IL-17 signaling, IL-6 and IFN-

g), transcription (green label, pyrimidine metabolism), adaptive

immune responses (gray label, B cell receptor signaling, CD3+ T

cells in Figure 4B) and thrombosis (yellow label, complement

and coagulation cascades, PAI-1). b) The enriched GO-BP

functional processes can be roughly clustered into several

types, related to cytokines, thrombus and transcription, and

neutrophils (MPO+ in Figure 4A), T/B cells (lymphocytes) and

monocytes which were observed to be perturbed in the blood cell

analysis results (Figure 5A). c) Most of the enriched KEGG

pathways and their genes are in consensus with biological

processes of GO-BP terms, such as chemokine/cytokine

receptor/IL-17 signaling pathways with IL-6/IFN-g/IL-10 genes

are highly related to cytokine and leukocyte processes

(Figure 5B); DNA replication/pyrimidine metabolism

pathways are in direct connection to transcription;

complement and coagulation cascades pathway with PAI-1

gene are linked to GO-BP thrombus process. These results

imply that methotrexate has multi-targeting properties to

modulate innate and adaptive immune responses, virus

transcription/replication, and thrombosis in SARS-CoV-2

infected Syrian hamsters.
Methotrexate modulated innate and
adaptive immune responses in SARS-
CoV-2-infected hamsters

Among the various enriched pathways affected by

methotrexate, the innate immune response-related pathways

and genes were significantly upregulated in the untreated case.

Methotrexate treatment reversed the pattern (bar charts on the left

side, Figure 5B) to downregulate genes in most of these pathways

associated with SARS-CoV-2 infection (31), like innate immune

and ROS generation (32). For instance, methotrexate treatment

significantly modulated pathways of chemokine signaling,

cytokine-cytokine receptor interaction, TNF signaling, IL-17

signaling and Toll-like receptor signaling pathways associated

with COVID-19 immunology (33). Here, we observed

downregulation of major cytokines and chemokines such as

IFN-g and IL-6 in these pathways (underlined genes in

Figure 5C). These cytokines and chemokines were further

validated by qRT-PCR (Figure 5D), indicating that suppression

of the immune response pathways by methotrexate could mitigate

COVID-19 symptoms, related to hyper-inflammation and

cytokine storm.

The second major type of pathways modulated by

methotrexate treatment were related to the adaptive immune
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response, such as B cell receptor signaling, sphingolipid signaling

pathway and mTOR signaling pathways, resulting in activation

of B cells and T cells to counter viral infection (Figure 5B). The B

cell receptor signaling pathway upregulated by methotrexate

involves genes with enriched biological processes related to B cell

differentiation. Sphingolipid signaling is another key adaptive

immune pathway up-regulated by methotrexate leading to

increased sphingosine-1-phosphate (S1P) which acts as a lipid

signaling molecule that binds with S1P receptors to regulate B

cell circulation (34). Methotrexate also significantly upregulated

other adaptive immune pathways such as mTOR signaling

which is a central regulator of T cell responses in fighting

infections (35). These observations on the modulation of

adaptive immune pathways by methotrexate treatment are in

agreement with the IHC studies in Figure 4. Here in the

methotrexate-treated hamster group, activated T cells were

decreased in lung tissues (% CD3+ T cells) compared to the

untreated group (Figure 4B), which is in line with decreased T

cell diapedesis and extravasation GO-BPs modulated by

methotrexate. Additionally, an overall decreased virus

replication upon methotrexate treatment in hamster lungs may

lead to lesser adaptive immune responses.
Methotrexate treatment suppressed
neutrophil infiltration and
inflammatory cytokines in
SARS-CoV-2-infected hamsters

Most of the methotrexate-downregulated innate immune

pathways observed in our analysis such as the chemokine,

cytokine receptor, TNF and IL-17 signaling pathways have

been reported to be involved in hyper-inflammation, a

hallmark of COVID-19 disease (31). Upon exploring the

enriched biological processes (Figure 5B) related to these

methotrexate-modulated pathways, we identified neutrophil

activation, chemotaxis & migration, Th1 lymphocyte

migration & diapedesis and monocyte chemotaxis, which were

in strong agreement with the overall decrease in neutrophils in

the blood upon methotrexate treatment (Figure 5A). Also in the

histopathology and IHC examination results methotrexate

decreased MPO+ neutrophils (Figure 4A) due to reduced

neutrophil infiltration, decreased Iba-1+ macrophages (related

to monocytes) due to reduction in their infiltration (Figure 4C),

which strongly validated the omics-based inferences. These

results conclusively indicate that methotrexate led to reduction

of neutrophils and monocytes in the lungs to achieve its anti-

inflammation activity. Additionally, methotrexate modulated

adaptive immune response pathways such as the B cell

receptor signaling pathway involving genes with enriched GO-

BP of B cell differentiation, which were in line with increased

lymphocyte levels and migration (improving lymphopenia) and

enhanced extravasation. The sphingolipid pathway was another
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adaptive immune pathway significantly modulated by

methotrexate treatment with upregulated genes in treated case

compared to untreated (Figure 5C). As this pathway played a

role in COVID-19 and its stimulation hypothesized as a

potential strategy in combating SARS-CoV-2 associated hyper-

inflammation (36), methotrexate may reduce inflammation by

enhancing sphingolipid pathway.

We further explored the anti-inflammatory effects of

methotrexate by examining its modulation on cytokines and

chemokines. For instance, the enriched IL-17 signaling pathway

is responsible for the production of IL-17, which recruits

neutrophils, monocytes, and macrophages and induces other

cytokines, such as IL-6 and IFN-g. Downregulation of this

pathway by methotrexate (Figure 5B) led to the suppression of

neutrophil and monocyte migration and significant

downregulation of IFN-g and IL-6 which were further

validated by qRT-PCR (Figure 5D) providing effects

comparable to those of remdesivir. Another pathway

modulated by methotrexate is chemokine signaling, which

plays a key role in COVID-19 patients exhibiting strong

chemokine-dominant hypercytokinemia, where expression of

pro-inflammatory cytokines, chemokines and typical antiviral

ISG genes are upregulated (31). Here, methotrexate

downregulated expressions of chemokines CCL2, CCR5,

CCL7, CCL12, CXCL10 (Figure 5C) and CCL22 suppression

confirmed by qRT-PCR (Figure 5D) leading to an anti-

inflammatory effect. Furthermore, direct evidence from qRT-

PCR showed methotrexate treatment increased anti-

inflammatory cytokine IL-10 compared to untreated, directly

contributing to its anti-inflammatory activity. Thus,

methotrexate modulates multiple COVID-19-associated

chemokines, cytokines and pathways for its strong anti-

COVID-19 inflammation effects.

The overall effects of methotrexate in COVID-19 are positive by

affecting multiple cell types, inflammatory pathways and cytokines/

chemokines; however, the underlying targeting mechanisms should

be connected to its effects. For instance, methotrexate has been

reported to suppress inflammation via increased adenosine release

to inhibit neutrophil extracellular trap (NET) formation in RA (27),

thus methotrexate can be expected to reduce NETs formation in

COVID-19 (5) for its anti-inflammatory effects. On the other hand,

lymphopenia observed in the infected hamsters strongly correlated

with the increased levels of IL-1b, IFN-g, CXCL10, and CCL2,

indicating a dysregulation of T-helper-1 (Th1) cell function (37).

Methotrexate downregulated IFN-g, and modulated Th1 related

biological processes to restore lymphocyte count (Figure 5A).

Methotrexate improved lymphopenia, a marker of COVID-19

disease severity (30), and thus increased the overall ability to

eradicate the virus in infected lungs (Figure 3F). These

observations are supported by previous studies where

methotrexate modulated the balance of Th1 pro-inflammatory

and Th2 anti-inflammatory cytokines (27, 38). In summary, the

suppression of neutrophils and monocytes and their activation/
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migration and improvement of lymphopenia in SARS-COV-2

infected hamsters may account for the mechanism of

methotrexate in treating COVID-19 infection and pathogenesis.

We also explored the connections between key histopathological

features (Figure 3) and omics results (Figure 5) for the anti-COVID-

19 mechanisms of methotrexate. The infection of alveolar epithelial

cells by SARS-CoV-2 in hamsters results in the development of

ARDS (also observed in human patients) (39), which is due to the

death of alveolar epithelial cells (untreated group in Figure 3F) and

release of pro-inflammatory mediators and cytokines. Pathway/gene/

biological process analyses aid in the understanding of tissue-level

pathologies, such as the alveolar epithelial cell necrosis observed in

infected hamster lung tissues (Figure 3G) and its amelioration by

methotrexate. Here, methotrexate regulated the expression of

enriched COVID-19 KEGG pathway in untreated case (Figure 5B).

From the enriched COVID-19 pathway, we could postulate that that

alveolar cell necrosis released damage-associated molecular patterns

(DAMPs) which in turn triggered the innate immune response via

the Toll-like receptor pathway (40) and eventually led to cytokine

storm and hyper-inflammation. Methotrexate decreased alveolar cell

necrosis with a better potency than remdesivir (Figure 3G), which

would likely reduce DAMPs and decrease triggering of the TLR

pathway. This notion is supported by the finding that, the

upregulated TLR pathway in the untreated hamsters was reversed

in the methotrexate-treated hamsters. In summary, omics analysis

and histopathological results show thatmethotrexate treatment is able

to modulate chemokine, cytokine receptor and IL-17 signaling

pathways to suppress neutrophil infiltration and inflammatory

cytokines in SARS-CoV-2-infected hamsters.
Methotrexate reduced virus replication in
SARS-CoV-2-infected hamsters

Methotrexate treatment modulated pathways pertaining to

nucleic acid synthesis and transcription/translation, including

the cell cycle, DNA replication, pyrimidine metabolism, and

nucleotide repair pathways enriched to reduce SARS-CoV-2

replication (Figures 3C, D). The suppression of pyrimidine

metabolism by methotrexate observed here (Figure 5C), was

well-established by its direct inhibition of DHFR involved in

folate biosynthesis (Figure S7) and TYMS involved in

pyrimidine biosynthesis (27), which are critical processes for

essential building blocks in virus RNA replication. Additionally,

methotrexate also downregulated protein processing in the

endoplasmic reticulum (ER) pathway which could affect virus

protein production. This in turn counteracts hijacking of the ER

by SARS-CoV-2. Methotrexate also downregulated the

spliceosome pathway (Figure 5B) and the accumulation of

spliceosomes, which is induced by inhibition of global mRNA

splicing by viral NSP16 during SARS-CoV-2 infection (41). In

summary, methotrexate affected biological processes related to

the central dogma of the cell to reduce SARS-CoV-2 replication.
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Methotrexate affected thrombus-
related processes in SARS-CoV-2-
infected hamsters

Furthermore, methotrexate affected the complement and

coagulation cascades and platelet activation pathways

(Figure 5B), which are involved in thrombus-related processes

and events such as platelet aggregation and blood coagulation.

The formation of thrombi and their pathological role in COVID-

19 inflammation, and organ failure have been well-established

(42, 43). In this regard, elevated levels of Plasminogen Activator

Inhibitor-1 (PAI-1) have been reported to play a key role in

COVID-19-associated coagulopathy, and its targeting have

therapeutic benefits in COVID-19 (44). Here, we observed that

methotrexate significantly repressed these upregulated pathways

and suppressed the gene expression of PAI-1 (Figure 5C). qRT-

PCR validation (Figure 5D) further confirmed that PAI-1 was

significantly suppressed by methotrexate in the lungs of infected

hamsters, while the standard drug remdesivir showed no effect

against PAI-1 expression. This unique therapeutic effect of

diminishing thrombus formation is an unexpected advantage,

as no other treatments have been reported to achieve this

protection. Therefore, methotrexate might be an important

drug to improve morbidity and mortality in severely infected

COVID-19 patients.

In summary, we integrated omics analysis, cell population

analysis and qRT-PCR to comprehensively elucidate and

validate the cellular, histopathological and system-level

processes occurred in SARS-CoV-2 infected hamsters and

affected by methotrexate treatment. These results conclusively

support the multi-targeting action of methotrexate including

overall regulation of innate/adaptive immune responses,

transcription/translation, and thrombus pathways to mediate

its anti-viral and anti-inflammation effects in combating

SARSCoV-2 infection. Our findings suggest that methotrexate

is a promising drug against SARS-CoV-2 and its VOCs,

warranting further clinical trials in human patients in the future.
Discussion

The key advantage of our method is the identification of

both multi-target drugs and their mechanisms by inferring

COVID-19-specific associations of genes, drugs and protein-

drug interactions to discover FDA-approved drugs. Here, we

identified methotrexate as a multi-target drug: 1) inhibits SARS-

CoV-2 entry, 2) reduces virus replication (via pyrimidine

metabolism), and 3) diminishes the inflammatory monocyte-

driven cytokine storm (via IL-17 signaling) to reduce NETs

formation associated thrombosis (via complement and

coagulation cascades) and lymphopenia (via T cell receptor

signaling) (Figure 6). Importantly, these predictions were

validated in a hamster model by lung omics and biomarker
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assays. These data indicate that our approach is indeed a useful

tool for identifying multi-target candidates for further

repurposing development for human diseases.

Since the outbreak of COVID-19 pandemic, scientists

worldwide are racing to find effective COVID-19 treatments

including drug repurposing (45, 46). However, less than 1% of

clinical trials registered (~4/200) showed significant therapeutic

effects. Thus, good activities in vitro does not warrant clinical

success as shown in the case of HCQ (4). In this regard, although

some previous reports indicated methotrexate’s in vitro activity

(13, 47) and proposed for COVID-19 treatment (14) and even

viral disease (48). However, it’s in vivo efficacy remained to be

tested. Our work reports several unique and novel findings.

Firstly, we provided a powerful strategy with a scoring function

to discover drugs and their multiple targets, for complex diseases

such as COVID-19 with multiple symptoms (e.g., cytokine storm

and thrombosis). For instance, here we discovered methotrexate

inhibition of a novel target furin involved in SARS-CoV-2 entry.

Secondly, our work is the first in vivo study to quantify

methotrexate effects in SARS-CoV-2 lung infection, hyper-

inflammation and histopathological evaluation, which were

not previously explored. Thirdly, using lung transcriptomics

we reveal the systemic effects of methotrexate to predict its

mechanisms in COVID-19 (e.g., innate and adaptive immunity,

thrombosis) thus enabling further clinical evaluation.

The mechanism by which methotrexate inhibits SARS-CoV-

2 infection deserves further consideration in the face of evolving

virus variants. SARS-CoV-2 mutates quickly and at least 4 major

variants appeared since the outbreak (22), which jeopardize the

effectiveness of vaccines. Breakthrough infections have also been

reported in vaccinated individuals. Drugs that directly target

SARS-CoV-2 proteins could also be affected from the virus

mutations. Therefore, devising better treatment strategies and

drugs that remain unaffected by the viral mutations are needed

to protect humans. Methotrexate inhibits multiple host proteins

for which genes are stable and preserved. This feature is clearly

advantageous in that efficacy is unlikely to diminish when

treating different SARS-CoV-2 variants. Indeed, we showed

methotrexate strongly inhibited all the four variants of

concern in the current study. On the other hand, methotrexate

could be combined with drugs that target directly SARS-CoV-2

virus to synergistically treat COVID-19. Nevertheless, these

hypotheses should be addressed by treating patient

populations in future clinical studies.

The advantages of methotrexate in treating COVID-19 are

summarized as follows: (a) methotrexate achieves true multi-

targeting in COVID-19, by inhibiting multiple targets from

diverse protein families like proteases (furin), reductases

(DHFR), synthases (TYMS) and transformylase (ATIC). This

finding is different from the case of baricitinib that inhibits

protein kinases only. Here, methotrexate’s additional targeting

on virus entry is a new discovery. (b) Methotrexate mitigates

broader clinical COVID-19 symptoms like NETosis,
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inflammation and thrombosis, critical for patient survival. (c)

Methotrexate is a remarkable drug for COVID-19 due to the

benefits like good efficacy and safety, options for oral or parenteral

route and currently unrivalled cost-effectiveness. Additionally, as

the burden of COVID-19 pandemic on people’s lives and health is

specifically worse in developing countries, an immediate access to

easily accessible and affordable anti-COVID-19 drug such as

methotrexate, can be a game changer for patients in these

regions. (d) Methotrexate showed systemic and cellular anti-

COVID-19 effects often comparable, sometimes better than the

standard drug remdesivir. As methotrexate strongly inhibits

SARS-CoV-2 replication and reduces inflammation, it could be

effective in treating patients with mild to moderate illness, prevent

disease progression to severe illness and death (49). Furthermore,

based on clinical use of methotrexate in other diseases (such as

RA), we believe that methotrexate could be safely used in pediatric

(50) as well as aging patients (51). with no age-bias. Also, there

were no significant differences in methotrexate prescriptions

based on gender as discussed in Giusti et al. (52), thus no

gender-bias. However, use of methotrexate in COVID-19

patients with other concomitant disease conditions needs careful

evaluation, pointing to future studies considering comorbidities.

For instance, methotrexate use in patients with coronary artery

disease (CAD) could be particularly beneficial, due to reduced risk

of cardiovascular diseases events (observed in methotrexate

treated RA patients with CAD) (53). In contrast, methotrexate

administration may induce adverse effects such as gastrointestinal

complications in patients with renal dysfunction (54).

The approach, combining Homopharma and HiSBiN, in the

current study, however has some limitations and challenges.

First, the predicted drug-target relationships still need to be

experimentally validated. Furthermore, the prediction

performance although has been verified by Set_E and Set_C
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(Figures S1E, F), needs more systematic validation to figure out

its strengths and weaknesses. However, as there are still no

golden positive COVID-19 drug sets, future successful clinical

drugs will help to achieve this. Thirdly, owing to the limited

structural data, we predicted potential targets for a drug using

both structure and sequence similarities, thus our approach may

lose the targets having similar binding pockets but with low

sequence similarity. Finally, our predictions do not consider

host-pathogen interactions because the pathway databases (such

as KEGG) are often incomplete, and the lung omics data used for

DEGs contains host genes only. These challenges could be

resolved in the future, leading to an improvised method.

Hamsters has become one of the standard animal models to

study SARS-CoV-2 due to its high susceptibility. However, the

disadvantages are that it is non-lethal, the lack of anti-hamster

cytokine antibodies and pharmacokinetic data, which limits the

extent of experimental analysis. The mechanisms of

methotrexate in the hamster omics analyses, provide

interesting clues connecting inhibition of molecular targets to

systemic effects. However, for these large-scale high throughput

approaches, it is challenging to reveal strong and detailed

evidences for each of the mechanisms. Some supporting

evidences that could help address this challenge are discussed

as follows. Methotrexate’s direct inhibition of its multiple

molecular target proteins such as DHFR, TYMS and ATIC

suppresses nucleotide biosynthesis, and promotes adenosine

release and ROS production processes in the cell (27, 38). In

severe COVID-19 cases, the deregulation of innate immune

system and abnormal activation of neutrophils and monocyte/

macrophage has been reported in several previous studies (32,

55, 56). For instance, the methotrexate-induced adenosine

release via ATIC is supposedly involved in reduction of

neutrophils (confirmed by IHC of MPO+ cells) and formation
FIGURE 6

Schema of methotrexate function in COVID-19. Methotrexate inhibits SARS-CoV-2 entry (via target FURIN; orange) and regulates pyrimidine
metabolism and spliceosome pathways (via TYMS, DHFR and ATIC; light blue) to inhibit virus replication. Methotrexate suppresses COVID-19
immunopathologies (purple), including monocyte-driven cytokine storm (by regulating IL-17 and chemokine signaling), NETs formation,
thrombosis (by regulating complement and coagulation cascades) and lymphopenia. The methotrexate targets expression in treated hamsters is
shown, and the validated biomarkers are shown by black labels.
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of NETs observed in methotrexate-treated hamsters,

contributing to its anti-inflammatory effects. Methotrexate-

induced adenosine release could also lead to inhibition of

JAK-STAT signaling (via a canonical ISGF3 pathway that

induces Mx1 (57)) leading to decreased Mx1 (Mx1+ cells in

Figure 4D). In another example, methotrexate decreased the

activated macrophages (Iba-1+ in Figure 4) in SARS-CoV-2-

infected hamsters, which could be similar to its inhibition of

macrophage activation and conditioning for decreased pro-

inflammatory cytokines like TNF-a and IL-6, observed in RA

(58). These and many other anti-COVID-19 mechanisms of

methotrexate can be further validated by detailed future studies.

In conclusion, our systematic drug repurposing approach is

able to discover disease-specific multi-target drugs, pharmaceutical

targets and regulated pathways. Additionally, methotrexate showed

remarkable anti-COVID-19 efficacy by modulating multiple host

genes and pathways to treat SARS-CoV-2-induced lung damage

and inflammation. Thus, methotrexate is a promising drug for

future clinical evaluation in COVID-19 patients.
Material and methods

Study approval

Experiments using infectious SARS-CoV-2 have been

approved by the Institutional Biosafety Committee (IBC) and

were performed in the high biocontainment BSL3 and ABSL3

facilities of the Institute of Preventive Medicine (IPM), National

Defense Medical Center (NDMC), which are approved for

SARS-CoV-2-related studies by the Taiwan Centers for

Disease Control, under license D1–109–0030#1123 and D1–

0031#1124. All animal experimentation was reviewed and

approved by IPM’s Institutional Animal Care and Use

Committee (IACUC) under permits AN-109–31 and AN-110–

08, and was performed according to the standard operating

procedures of the Animal Biosafety Level 3 facilities.
Animal models

In this work, we designed our hamster experiments with n=3

based on literature on COVID-19 animal models (59, 60) which

used n=3 for hamster experiments, and also due to limited

capacity of our ABSL3 lab. Twelve male Syrian golden hamsters,

aged 7−9 weeks old were obtained from the National Laboratory

Animal Center, Taipei, Taiwan. The animals were kept in

specific-pathogen-free (SPF) housing and were acclimatized at

the ABSL-3 facility for 3 days before the experiments. Hamsters

were randomly allocated to study groups for antiviral evaluation.

About 100 mL of SARS-CoV-2 (1×104 PFU) was intranasally
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kg)/Xylazine (0.5 mg/kg) at day 0, and the mock-infected

hamsters were challenged with 100 mL of PBS. Body weight

and clinical signs of the disease in the hamsters were monitored

daily during the study as a measure of disease progression.

For the drug treatment groups, on the day of infection, a

loading dose of 2 mg/kg of methotrexate or 5 mg/kg of

remdesivir was given; on 1st to 3rd day post-infection (dpi), a

daily dose of 2 mg/kg of methotrexate or 2.5 mg/kg of remdesivir

was given (Figure 3A). Clinically, methotrexate (MTX) is used in

high doses to treat various malignancies such as acute

lymphoblastic leukemia and lymphoma (61). However, it is

also used in low doses to effectively treat inflammatory

diseases such as rheumatoid arthritis and Crohn’s disease (62,

63). The methotrexate doses in animal experiments ranges from

2mg/kg to 200mg/kg (64, 65). For the dose in our experiments,

due to lack of hamster pharmacokinetics we used the mice

pharmacokinetics by Lobo ED’s lab (66), and to avoid

methotrexate-induced toxicity (67) to consider a lower test

dose of 2mg/kg/day for short-term treatment. On the 4th dpi,

the blood was harvested for hematological analysis. All hamsters

were euthanized, and the lungs were collected and divided into 3

parts: for viral yield measurement by qRT-PCR and plaques, for

RNA extraction for desired gene-cytokine-chemokine

expression profiles, and for histological examinations.
Gene expression analyses for public
SARS-CoV datasets

Public omics datasets GSE5972 and GSE1739 of SARS-CoV-

infected patients’ peripheral blood samples were collected from

the NCBI Gene Expression Omnibus (GEO) (68). GSE5972

included different stages of the patients, precrisis, crisis and

discharge (69), so we separated them into two datasets (i.e.,

GSE5972: precrisis and GSE5972: crisis) considering distinct

phases of illness by samples taken at different days after disease

onset. For GSE1739, we analyzed 14 samples of peripheral blood

mononuclear cells (PBMCs) from 4 control and 10 infected

patients (70). Each sample comprised 8,793 probes using the

Affymetrix human genome (HG)-Focus microchip. For

GSE5972 which comprises 19,200 probes and 64 samples, 10

control, 26 precrisis and 28 crisis patients were considered (69).

The gene expression levels were measured on the UHNMAC

Homo sapiens 19K Hu19Kv8 microarray platform. For each

data set, the DEGs were selected between normal and post-

infection samples, based on fold change (FC) ≥ 1.5 and p value<

0.05, calculated using Student’s t-test through the GEO2R

analysis tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/), to

derive 2,516 DEGs from the union of the three public GEO

datasets (Figure S2A and Supplementary Data 1) (68).
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Analysis of the SARS-CoV-2
RNA-seq datasets

For the RNA-seq data from six hamster samples, the quality

of reads was examined using FastQC (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/). The reads

were aligned to the Syrian hamster (Mesocricetus auratus)

genome MesAur1.0 (https://www.ncbi.nlm.nih.gov/assembly/

GCF_000349665.1/) using HISAT2 (details on mapped reads

in Table S2) (71). The average mapping rate of all reads was

88.82% and the mapped reads from HISAT2 were assembled

into transcripts using StringTie (72). Then, the expression

profiles of all transcripts were evaluated and computed on

fragments per kilobase of transcript per million fragments

mapped (FPKM) using StringTie and the Ballgown package in

R (73). For the gene expression profiles generated using 58,830

probes for six samples, log2 transformation was performed to

measure the FC of mRNA expression. Then, we selected DEGs

between normal and SARS-CoV-2 infected hamster samples

based on FC ≥ 2 (Figure S2D) by using the limma R package. To

evaluate the RNA-seq samples, principal component analysis

(PCA) was performed (Figure S2E) to analyze the gene

expression of RNA-seq data by using WebMeV (Multiple

Experiment Viewer) (74), in which the three sample groups

were separated, and samples of the same group were clustered

together. Moreover, methotrexate-treated samples were closer to

mock samples than that of untreated ones.

For comparing the SARS-CoV and SARS-CoV-2 patient

profiles, we also collected the GSE163151 dataset, which

includes control and SARS-CoV-2 samples from human

nasopharyngeal tissue (93 control and 138 SARS-CoV-2

samples) and whole blood (20 control and 9 SARS-CoV-2

samples). The RNA-seq data comprised 26,485 probes and the

data was sequenced using an Illumina NovaSeq 6000. The

normalized data were analyzed using the DESeq package in R

and the DEGs with FC ≥ 2 and p value < 0.05 were selected

(Figure S2B). Hierarchical clustering of public SARS-CoV and

SARS-CoV-2 datasets based on their DEG enrichment in

pathways was performed (Figure S2C) and the results showed

clustering of upregulated gene pathways of SARS-CoV-2 with

SARS-CoV and the same for downregulated gene pathways,

indicating similar affected pathways and disease states.
Drugs, inhibitors, targets and drug–
target pairs

We aim to repurpose approved drugs for facilitate the

treatment of COVID-19. To predict the approved drugs for

COVID-19, we collected three drug-target sets. First, we

collected FDA-approved drugs from the DrugBank database

(75) (v5.1.7) according to the following criteria: (i) annotated

“approved” in the “Groups” column and “small molecule” in the
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“Type” column; and (ii) the number of heavy atoms (HA) of the

drug is 7≤ HA≤ 125 to obtain 2,303 drugs (Set_D). Then, we

collected their 2,363 druggable targets (Set_DT) from DrugBank

to get 9,130 drug-target pairs. To infer similar approved drugs of

DEG inhibitors using Homopharma, we secondly collected the

inhibitors with bioassay data from BindingDB database (76)

(version 2020m10) satisfying three criteria: (i) its binding

affinities, including one of Ki, Kd or EC50 values ≤10 mM, (ii)

its targets marked as “reviewed” in UniProt database, and (iii)

one of its targets in 2,516 SARS-CoV infected DEGs. In total

from the BindingDB, we retrieved 147,754 inhibitors (Set_I) of

DEGs and 162,155 inhibitor-DEG pairs. Third, we collected 158

drug-target pairs by text mining in COVID-19 related literature.

As of June 2021, over 140,000 studied had “COVID-19” or

“SARS-CoV-2” in the title/abstract. Furthermore, to evaluate the

performance, we additionally collected two types of reference

COVID-19 inhibitors. We collected 77 drugs that had positive

outcomes in Vero E6 cells, 37 of which had a strong effect (46),

denoted Set_E. Then, we selected 58 drugs (Set_C) from

ClinicalTrials.gov (until 2021/06) with two criteria: i) the

clinical status was “completed” and ii) the drug was a small

compound (i.e., 7 ≤HA ≤ 125 recorded in DrugBank.
Homopharma and docking analysis

For drug repurposing, we previously proposed the concept

of Homopharma (15), in which compounds with similar

topologies often bind to similar proteins having similar

pockets in protein-compound interfaces (Figures S1B, E, H).

For a DEG-drug/inhibitor pair (complex), we predicted the DEG

as a potential drug target if, its inhibitor is similar to FDA-

approved drugs or its homologous proteins are recorded in

DrugBank. We predicted similar drugs of a DEG drug/

inhibitor by searching the FDA-approved drugs database by

their similarity score (C.S.> 0.8) calculated using Tanimoto

similarity with 214 compound features (204 checkmol and 10

atom composition features) (77). We also inferred the

homologous drug target of a DEG with the following criteria

(1): significant sequence similarity BLASTP E-values ≤ 10-10 (2);

aligned sequence coverage > 70%; and (3) sequence identity (S.I.)

> 30%. Finally, if the pair has a structure complex, we used the

in-house tool iGEMDOCK to dock the drug candidates into the

target protein (or) aligned the predicted homologous drug target

and drug candidates to the target protein and ligand in the

complex respectively. In addition, for these docked or aligned

proteins and compounds, we explored conserved interactions

formed by conserved residues and similar functional groups to

compute their binding scores and potential repurposing.

To further investigate the binding mechanisms of the drugs

and targets, we applied our previous tools (e.g., iGEMDOCK

(78)) to simulate the binding mechanisms. For the methotrexate

case, structures of furin binding site using reference peptide-
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mimic (ARG-ARG-ARG-LYS-ARG-00S) bound structure

6HZD was downloaded from Protein Data Bank (PDB) and

the binding site was extracted radius around the ligand within ≤

9 Å. We docked methotrexate and folic acid into the extracted

binding cavities by iGEMDOCK, using the docking parameters

1,000 population size, 80 generations and 100 poses. For each

pose, the total protein-ligand interaction energies including

electrostatic, hydrogen bond, and van der Waals interactions

were calculated. The docked poses were clustered based on

similarity in the interaction profile and compound binding at

the active site subpockets. The optimal poses for methotrexate

and folic acid from clusters were chosen, if they (i) occupied the

key binding subpockets, (ii) had a pose similar to the RRARS

peptide, and (iii) interacted with one or more catalytic residues.

We used the same procedure for the binding mechanism of

pimozide and valsartan in their respective target proteins

(Figures S3D–I).
Target–pathway pairs by hierarchical
systems biology network

To evaluate how DEGs and drug targets are involved in

pathways during SARS-CoV-2 infection, we first collected 342

human pathways containing 7,806 proteins (genes) from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database

(79). We then modified the hierarchical systems biology model

(HiSBiM) (16) from our previous work to measure the

involvement of drug targets in the KEGG pathways, including

DEG identification, pathway enrichment, and subsystem

contribution by ‘hierarchical systems biology network (HiSBiN)’.

The DEGs for COVID-19 were identified based on fold

change and p value between normal and SARS-CoV (or SARS-

CoV-2) infection samples. To yield KEGG pathway enrichment

of the DEGs, the p value of hypergeometric distribution was

calculated as follows:

p =o
n

i=x

ðMi ÞðN�M
n�i Þ

ðNn Þ
(1)

where N is the number of all genes in the KEGG database, M is

the number of DEGs, n is the number of genes and i is the

number of DEGs in a specific KEGG pathway.

To understand how each DEG is involved in KEGG subsystems

and pathways, we defined the SHiSBiN of a gene as follows:

SHiSBiN =
ZSubs + Zpath

2
  (2)

ZSubs =
om

i=1Ziffiffiffiffi
m

p  ;  ZPath =
on

j=1Zjffiffiffi
n

p

where ZSubs and ZPath are the meta-z-scores of the subsystems

and pathways in which a gene is involved; Zi and Zj are the z-
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scores of subsystem i and pathway j, respectively; and m and n

are numbers of a DEG-involved subsystems and pathways,

respectively. The z-score of each pathway was the p value

transformation using a standard normal distribution
Identifying disease therapeutic targets by
SDisG

To systematically infer the disease therapeutic targets, we

developed a disease gene score (SDisG) and scored the DEGs. The

SDisGi
score (Figure S5A) of a DEG(i) considers (a) the gene

expression significance p value (SPVi
) in disease and

corresponding normal samples; (b) druggability (SDruggabilityi)

measuring the number of interacting drugs; and (c) HiSBiN

derived significant gene involvement in disease pathways and

subsystems (SHiSBiNi
). The score is computed as follows:

SDisGi
= wPV � SPVi

+ wD � SDruggabiliyi + wp � SHiSBiNi
(3)

where i is the DEG(i) and wPV, wD and wp are the weights of SPVi
,

SDruggabiliyi and SHiSBiNi
, respectively. Based on the systematic

analysis, wPV, wD and wp are set to 0.5, 2, and 1, respectively.

For deriving (a), we consider the importance of genes in

disease using SPVi
, which is the maximum p value of target i gene

expression (calculated by the GEO2R analysis tool) in the two

datasets (GSE5972: precrisis, crisis and GSE1739) computed as

follows:

SPVi
= max −log10 p   valuesið Þð Þ

where s is the number of datasets.

For (b), SDruggabilityi measures the druggability of a DEG(i),

based on the number of targeting drugs derived from

Homopharma, computed as follows:

SDruggabilityi = a +  o
b

j=1
Shpj � b

where a is the number of reported drugs for DEG(i), Shpj is the

Homopharma score of drug j (which is C.S. when predicted by

compound similarity and S.I. when predicted by protein

homology) and b is the number of predicted drugs of DEG(i).

For example, DEG PADI4 is a methotrexate target and is

predicted to be targeted by 4 drugs (a = 4) (e.g., azithromycin,

tetracycline, streptomycin, and citrulline), as reported in drug–

target pair data (i.e., DrugBank), and by 42 drugs, as predicted

from Homopharma (b = 42) (Figure S5B).

For (c), to evaluate how DEGs and drug targets are involved

in pathways, we first identified 342 human pathways containing

7,806 proteins/genes in the KEGG database and modified the

hierarchical systems biology model (HiSBiM) from our previous

work (16) to measure the involvement of drug targets in these

KEGG pathways, including DEG identification, pathway

enrichment, and subsystem contribution, obtaining the
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“hierarchical systems biology network (HiSBiN)”. To determine

the KEGG pathway enrichment of the DEGs, the p value of the

hypergeometric distribution was calculated by Equation (2). A

detailed example of the gene PADI4 is shown in Figure S5C and

Supplementary Data 2.

To evaluate the performance of identifying disease

therapeutic targets for COVID-19, we employed the precision

and recall to systematically evaluate the disease gene score

(SDisGi
). Precision and recall are defined as TP/(TP+FP) and

TP/(TP+FN) respectively, where TP, FP, and FN are the

numbers of true-positive, false-positive, and false-negative

cases. The 325 positive druggable COVID-19 genes

(Supplementary Data 3) those overlapping between the 1,544

COVID-19 genes from DisGeNET (80) (No. of PMIDs ≥ 2) and

the current 2,516 COVID-19 DEGs.
Systematic drug score for identifying
multi-target drugs for COVID-19

To predict multiple target drug candidates for COVID-19,

we developed a systematic drug score Sdrug that was calculated as

follows:

Sdrug =o
T

i=1
(DTi)=

ffiffiffiffi
T

p

DTi = w(wpvPVi + wpathSHiSBiNi)

w =

1       if   drug − target   ið Þ   recorded   in  DrugBank  
0:5    C : S :   if   target   i   predicted   by   compound   similar  

0:5     S : I :   if   target   i   predicted   by   protein   homologous

8>><
>>:

where T is the target number of a drug; DTi is the score of target

protein i; wpv (= 0.7) and wpath (= 0.3) are the weights of PV and

SHiSBiN defined in Equation (2). PVi is the average p value of

target i of gene expression in three SARS-CoV GEO datasets

(GSE5972: precrisis, GSE5972: crisis and GSE1739) and was

computed as follows:

PVi = o
3

k=1

− log10 p   valueki
� �

=k

The p value was calculated by the GEO2R analysis tool, k was

number of datasets, and then PVi was normalized from 0 to 1. In

Figure S1D, we used an example drug pimozide and described

the detailed computing steps for all scoring terms. Finally, we

computed the Sdrug values of 2,303 FDA-approved drugs.

We combining Homopharma and HiSBiN was applied to

discover multi-target anti-COVID-19 drugs (see Figure S1). We

first investigated the genes associated with disease, DEGs of three

omics datasets from GSE5972 and GSE1739, including precrisis

and crisis of human SARS-CoV-infected samples (Figures S1A,

S2A). Second, we predicted potential approved drug candidates
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for COVID-19 using Homopharma, HiSBiN, and multi-target

drug scores (Figure S1B). Third, we clustered these predicted drug

candidates and selected the representative drugs for bioassay

evaluation (Figure S1C). Additionally, we also evaluated the

reliability of our method for COVID-19 drug predictions based

on the two reference sets, Set_E and Set_C (Figures S1E, F).
Performance evaluation of the
integrated approach

We evaluated the reliability of our method to predict multi-

target drugs for COVID-19, utilizing two independent reference

sets collected, Set_E and Set_C (described in the previous

section), by quantifying the method’s predictive power of the

drug sets. The performance parameter recall is defined as TP/

(TP+FN), where TP, FP, and FN are the numbers of true-

positive, false-positive, and false-negative cases, respectively. The

percentile rank is defined as [M/D] × 100, where M is the

number of ranked drugs at percentile X, D is the total number of

ranked drugs (Figures S1E, F). From the results, we found that

our approach improved the prediction of ranked drugs from

these drug sets. The prediction with only Homopharma (1,575

drugs) showed improved performance compared with that

without Homopharma and HiSBiN (619 drugs). The

prediction with Homopharma with added HiSBiN, showed

improvement (1,588 drugs) and had the best performance.

Furthermore, the prediction applied in the current case of

multi-targeting (with target T = 4), showed similar good

performance (1,592 drugs). Additionally, for the Set_E, the

integration (with both Homopharma and HiSBiN) showed the

best recall of 0.33 at the percentile rank of 25%, while for Set_C,

it showed the best recall of 0.3 at the percentile rank of 25%.
Cells and viruses

Vero E6 cells (an African green monkey kidney cell line,

ATCC CRL-1586) were maintained in high glucose DMEM

(HyClone), supplemented with 10% fetal bovine serum (FBS,

HyClone) and an antibiotic-antimycotic (Gibco) in a humidified

atmosphere of 37°C and 5% CO2. The SARS-CoV-2 WA strain

used in this study was kindly provided by Chang Gung

Memorial Hospital, and the four VOCs namely B.1.1.7,

B.1.351, P.1, and B.1.617.2, all of which were kindly provided

by Taiwan Centers for Disease Control, Ministry of Health and

Welfare and propagated using Vero E6 cells supplemented with

2% FBS. Passage 2 virus was used for the all the studies described

here. Viral stocks were free of contamination and confirmed to

be identical to the initial deposited GenBank sequence

(MT370517.1). The viral titers were determined by plaque

assay followed by storage of aliquots at −80°C until further use

in the experiments.
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Cytotoxicity, antiviral cytopathic effect
and immunofluorescence assays

The cytotoxicity and antiviral activity of methotrexate were

evaluated by protocols similar to those described in our previous

work (77). In the cytotoxicity assay, Vero E6 cells (1×104 cells/well)

were seeded in a 96-well culture plate overnight. The cells were then

treated with increasing concentrations of methotrexate with or

without the control for 72 h. Media were removed after

incubation and 50 μL of the tetrazolium salt (3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) MTT

solution (5 mg/ml in phosphate-buffered saline (PBS) was added

to the cells for 4 h to allow MTT formazan formation. After

removing the medium, 100 μL of dimethyl sulfoxide (DMSO)

was added to dissolve the formazan crystals. The absorbance of

each well was measured at a 590-nm wavelength with an EMax

precision microplate reader (Molecular Devices, USA). The

cytotoxic concentration (CC50) was calculated as the

concentration of the compound that decreased cell viability by

50%, as compared to cells treated with DMSO alone.

The antiviral activity of a drug was evaluated by measuring

the inhibition of virus-induced cytopathic effect (CPE). Vero E6

cells (1×104 cells/well) were seeded in 96-well culture plates for

approximately 24 hours. When the cell cultures were confluent,

the culture medium was removed, and 100 ml of media (DMEM

with 2% FBS) containing 10 median tissue culture infectious

doses (TCID50) of virus and serial 2-fold dilutions of drugs were

added simultaneously. For the virus-only control and cell-only

control, the virus suspension and working medium (DMEM

with 2% FBS) without drugs were added and incubated (48 h for

SARS-CoV-2 WA, 72 h for the VOCs). The concentration of the

compound that reduced 50% of CPE to that induced by the

virus-only control was defined as the 50% effective concentration

(EC50). Both the CC50 and EC50 curves were plotted and

calculated by Prism 8.0 software (GraphPad Software Inc.).

For the immunofluorescence assays, antigen expression in

SARS-CoV-2-infected Vero E6 cells was detected with a mouse

monoclonal antibody against SARS-CoV-2 spike protein

(Genetex, GTX632604) followed by a DyLight4-conjugated

secondary antibody (Abcam). Cell nuclei were labeled with the

nucleic acid stain 4,6-diamidino-2-phenylindole (DAPI) (Sigma).
Pseudovirus neutralization assay

To produce the SARS-CoV-2 spike pseudovirus, the following

three plasmids were co-transfected into Lenti-X 293T cells (Takara

Bio USA): pLAS2w.Nluc-T2A-RFP-C. Ppuro, pCMVdeltaR8.91,

and pcDNA3.1–2019-nCoV-S-d18. The latter two plasmids were

obtained from the RNAicore facility of Academia Sinica, Taipei,

Taiwan. The reporter plasmid pLAS2w.Nluc-T2A-RFP-C. Ppuro

was cloned by insertion of the Nluc (NanoLuc, from Promega)-Gly-

Ser-Gly-T2A sequence upstream of the RFP coding sequence in a
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lentiviral vector (pLAS2w.RFP-C. Ppuro, acquired from the

RNAicore, Academia Sinica) by In-Fusion cloning (Takara). After

transfection, cell culture supernatants were collected as viral stock of

SARS-CoV-2-spike pseudovirus. For the pseudovirus neutralization

assay, HeLa cells stably expressing SmBiT-hACE2 (81) were

cultured in 96-well white plates at a density of 3×105 cells per

well one day before viral infection. Cells were treated with DMSO

control or methotrexate and simultaneously infected with SARS-

CoV-2-spike pseudovirus for 6 hr. The infected cells were washed

three times with phosphate-buffered saline and incubated for an

additional 18 hr. A Nano-GLo live-cell assay was used to measure

intracellular NanoLuc luciferase activity (Promega). The

luminescence signal was recorded immediately by a luminescent

microplate reader (BioTek Synergy HTX) at 37 °C with a time-lapse

kinetics program of 2 min intervals for 1 hr. To calculate the

percentage of neutralization, luminescent data from the time point

showing the highest signal in the negative control sample were

chosen for downstream calculation. The percentage of

neutralization (%) was calculated by 1- ((luminescence signal of

the test sample)/(luminescence signal of negative control sample))

*100, and the results were plotted as graphs.
Time-of-addition assay

A time-of-addition assay was performed to investigate the stage

of the SARS-CoV-2 life cycle affected by the inhibitor compounds.

Vero E6 cells were seeded in 6-well plates (8×105 cells per well). The

cells were infected with SARS-CoV-2 (MOI of 0.01) and then

incubated for 1 h. The viral inoculum was then removed and the

cells were washed twice with PBS. In the entry group, drugs were

added together with the virus inoculation at 0 hours post infection

(hpi), followed by drug removal at 1 hpi. In the post-entry group,

drugs were added 1 h after SARS-CoV-2 inoculation, followed by

incubation at 37 °C in 5% CO2 until 24 hpi. The group treated with

the drug for the entire experiment course of the infection was used

as a positive control and the group treated with DMSO was

included as a negative control. At 24 hpi, the cell culture

supernatant was collected for viral yield using qRT-PCR

quantification. The % inhibition was calculated by normalizing to

the DMSO-only group for each time group and graphs were plotted

by Prism 8.0 software (GraphPad Software Inc.).
Rescue of SARS-CoV-2 replication after
methotrexate treatment by folinic acid

A monolayer of Vero E6 cells (1×104 cells/well) was

prepared in a 96-well cell culture plate. Vero cells were then

infected with SARS-CoV-2 at 100 TCID50 and simultaneously

treated with 10 mM methotrexate, 50 mM folinic acid or a

combination of 10 mM methotrexate with 50 mM folinic acid

(Sigma-Aldrich, USA, #F7878), followed by 72 h incubation at
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37°C with 5% CO2. The cell viability was determined with an

MTT assay. For western blotting, a monolayer of Vero E6 cells

(8×105 cells/well) was prepared in a 6-well cell culture plate.

Vero cells were then infected with SARS-CoV-2 at an MOI of

0.01, with 10 mM methotrexate, 50 mM folinic acid or a

combination of 10 mM methotrexate with 50 mM folinic acid.

The cells were further incubated for 24 h at 37°C and 5% CO2.

After incubation, the cell lysate was collected to measure viral

spike protein expression by western blot.
Viral titers, viral RNA extraction and
quantitative PCR in hamster lungs

To determine virus titer, virus isolation was performed on the

lungs by homogenizing the tissues in 1 mL DMEM using a bead

disruption (Precellys). About 200 mL of a 1:10 serially diluted lung

lysate was inoculated into Vero E6 cells in a 24-well plate. One hour

after inoculation of cells, the inoculum was removed and replaced

with 1.4% methylcellulose in DMEM (HyClone) supplemented

with 2% fetal bovine serum. Three days after incubation, the

culture medium was removed, the cells were fixed with 10% (v/v)

formalin and then stained with 0.5% (w/v) crystal violet and the

plaques were counted. To measure virus yield in hamster lung

homogenates by qRT-PCR, first, viral RNA was extracted and

isolated in culture medium using a QIAamp Viral RNA Mini Kit

(Qiagen) according to the manufacturer’s instructions. The lung

tissue samples were homogenized using bead disruption (Precellys)

in RLT buffer (RNeasy plus Mini Kit, Qiagen) and centrifuged

(10,000 rpm, 5 min) to pellet cell debris, and RNA was collected

according to the manufacturer’s protocol. For detection of viral

RNA, 5 ml RNA was used in a one-step real-time RT-PCR against

the E gene of SARS-CoV-2. RT-PCR was performed on an ABI

7500 Fast Real-Time PCR System (Applied Biosystems) using the

One-Step PrimeScript RT-PCR Kit (Takara) according to the

manufacturer’s instructions. Dilutions of RNA standards

quantified by droplet digital PCR were run in parallel and used to

calculate gRNA copies with the E gene assay. Actin was used as the

internal control for hamster mRNA analysis and the relative mRNA

expression was calculated using the 2-DDCt method. The primer and

probe sequences were listed in Table S3.
Hamster lung histological and
quantitative image analysis

The hamster lungs from different treatment groups were fixed

in 4% paraformaldehyde (with two changes) for a minimum of 7

days and embedded in paraffin. Tissue sections (3 mm) were stained

with hematoxylin and eosin (H&E) and examined blindly for lung

damage by two board-certified veterinary pathologists. The severity

of lesions was graded according to the methods described by

Shackelford et al. (82). The degrees of lesions were graded
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histopathologically from zero to five depending on severity (0 =

not present; 1 = minimal (< 1%); 2 = slight (1–25%); 3 = moderate

(26–50%); 4 = moderately severe (51–75%); 5 = severe/high

(76–100%)).

Additional IHC analyses were performed as follows: serial

paraffin sections (3 μm) were deparaffinized by EZ prep

(Ventana Medical Systems, Inc., Tucson, AZ, USA). The slides

were incubated with antibodies against CD3 (Ventana Medical

Systems, 790-4341), MPO (Santa Cruz, sc-365436 at 1:50), Iba-1

(Genetex, GTX100042 at 1:100), and Mx1 (Santa Cruz, sc-50509

at 1:50) for 32 min using the automated Ventana Benchmark XT

(Ventana Medical Systems, Inc., Tucson, AZ, USA). Labeling

was detected with the Ultraview DAB Detection Kit (Ventana

Medical Systems, Inc., Tucson, AZ, USA) following the

manufacturer’s protocol. All sections were counterstained with

hematoxylin in Ventana reagent. Slides were immediately

digitized with a MoticEasyscan pro Digital Slide Scanner

(Motic) at ×40 (0.26 μm/pixel) with high precision (High

precision autofocus) and the IHC staining was analyzed with

Aperio ImageScope software (Aperio Technologies Inc.) using

positive pixel count algorithm version 9.
White blood cell population analysis

All hamster blood samples were collected, handled and

processed in the same way at room temperature (approximately

22°C). Complete blood count (CBC) was carried out within two

hours of sample collection using an automated hematology analyzer

(XT-1800i, Sysmex Corporation, Kobe, Japan). All procedures were

performed following the manufacturer’s instructions.
PCR-based quantification of genes,
cytokines and chemokines in
hamster lungs

For the desired gene, cytokine and chemokine profiles, RNAwas

first isolated from hamster lung homogenate using an RNeasy Plus

Mini kit (Qiagen) according to the manufacturer’s protocol. Diluted

RNAs (1:5) were used for one-step qRT-PCR by using a QuantiFast

SYBR Green RT-PCR Kit (Qiagen) on a 7500 Fast real-time PCR

system (Applied Biosystems). Actin was used as the internal control,

and the relative mRNA expression was calculated using the 2-DDCt

method. The list of the primers is provided in Table S3.
Quantification and statistical analysis

Statistics were performed by GraphPad Prism version 8

(GraphPad Software Inc.) noted with the appropriate tests

outlined in the figure legends. p< 0.05 was considered

statistically significant. Due to the low number of animals
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included in our study, p values ≤ 0.1 have been indicated in the

graphs. Ranges of significance were graphically annotated as

follows: p< 0.05; *p<0.01; **p< 0.001; ***p< 0.0001.
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